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1. (a) Since the average of the 5 numbers n, 2n, 3n, 4n, and 5n is 18, we obtain the equation
n + 2n + 3n + 4n + 5n

5
= 18.

Therefore,
15n

5
= 18 and so 3n = 18 or n = 6.

(b) Solution 1
Adding the equations 2x + y = 5 and x + 2y = 7, we obtain (2x + y) + (x + 2y) = 5 + 7
and so 3x + 3y = 12.

Therefore, the average of x and y is
x + y

2
=

3x + 3y

6
=

12

6
= 2.

Solution 2
Since 2x + y = 5, then 4x + 2y = 10.
Subtracting the second equation, we obtain (4x + 2y) − (x + 2y) = 10 − 7 which gives
3x = 3 and so x = 1.
Thus, y = 5− 2x = 3.

The average of x and y is thus
1 + 3

2
= 2.

(c) Since the average of the three numbers t2, 2t and 3 is 9, then
t2 + 2t + 3

3
= 9.

Therefore, t2 + 2t + 3 = 27 and so t2 + 2t− 24 = 0 which gives (t + 6)(t− 4) = 0.
Since t < 0, then t = −6.

2. (a) Since Q(5, 3) is the midpoint of P (1, p) and R(r, 5), then
1 + r

2
= 5 and

p + 5

2
= 3.

Thus, 1 + r = 10 which gives r = 9, and p + 5 = 6 which gives p = 1.
Therefore, p = 1 and r = 9.

(b) Solution 1
The point with coordinates P (3, 6) is 6 units above the x-axis.
A line with slope 3 moves 2 units to the right as it moves 6 units up. Therefore, to move
from P (3, 6) to the x-axis along a line with slope 3 results in a move of 6 units down and
2 units left. Thus, its x-intercept is 3− 2 = 1.
A line with slope −1 moves 6 units to the left as it moves 6 units up. Therefore, to move
from P (3, 6) to the x-axis along a line with slope −1 results in a move of 6 units down
and 6 units right. Thus, its x-intercept is 3 + 6 = 9.
The distance between these x-intercepts is 9− 1 = 8.

Solution 2
The line with slope 3 that passes through P (3, 6) has equation y − 6 = 3(x − 3) or
y = 3x− 3.
The x-intercept of this line has y = 0 and so 0 = 3x− 3 or 3x = 3, which gives x = 1.
The line with slope −1 that passes through P (3, 6) has equation y − 6 = (−1)(x − 3) or
y = −x + 9.
The x-intercept of this line has y = 0 and so 0 = −x + 9 or x = 9.
The distance between these x-intercepts is 9− 1 = 8.
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(c) The line with equation y = 2x + 7 has slope 2.
The line with equation y = tx + t has slope t.
Since these lines are perpendicular, the product of their slopes is −1 and so 2t = −1 which
gives t = −1

2
.

We now need to find the point of intersection of the lines with equations y = 2x + 7 and
y = −1

2
x− 1

2
.

Equating expressions for y, we obtain 2x+7 = −1
2
x− 1

2
or 5

2
x = −15

2
, which gives x = −3.

Therefore, y = 2x + 7 = 2(−3) + 7 = 1, and so the point of intersection of these lines is
(−3, 1).

3. (a) Since 64 = 26, its positive divisors are 1, 2, 4, 8, 16, 32, and 64.
The sum of these divisors is 1 + 2 + 4 + 8 + 16 + 32 + 64 = 127.

(b) Suppose that the four consecutive integers that Fionn originally wrote on the blackboard
were x, x + 1, x + 2, and x + 3.
When Lexi erases one of these integers, the sum of the remaining three integers is equal
to one of the following:

(x + 1) + (x + 2) + (x + 3) = 3x + 6

x + (x + 2) + (x + 3) = 3x + 5

x + (x + 1) + (x + 3) = 3x + 4

x + (x + 1) + (x + 2) = 3x + 3

We are told that the sum of these integers is 847.
We note that 847 = 3 · 282 + 1, which is one more than a multiple of 3. Since 3x + 3 and
3x + 6 are always multiples of 3 and 3x + 5 is 2 more than a multiple of 3, then we must
have 3x + 4 = 847 and so 3x = 843 or x = 281. (Alternatively, we could have set each
of the four sums above equal to 847 to determine in which case or cases we obtained an
integer solution for x.)
Therefore, the original integers were 281, 282, 283, 284 and Lexi erased x + 2 = 283.

(c) From the given information, the 7 terms in the arithmetic sequence are

d2, d2 + d, d2 + 2d, d2 + 3d, d2 + 4d, d2 + 5d, d2 + 6d

Since the sum of these 7 terms is 756, we obtain the following equivalent equations:

d2 + (d2 + d) + (d2 + 2d) + (d2 + 3d) + (d2 + 4d) + (d2 + 5d) + (d2 + 6d) = 756

7d2 + 21d = 756

d2 + 3d = 108

d2 + 3d− 108 = 0

(d + 12)(d− 9) = 0

and so d = −12 or d = 9.
The corresponding arithmetic sequences are

144, 132, 120, 108, 96, 84, 72 and 81, 90, 99, 108, 117, 126, 135
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4. (a) In 1 hour, Liang paints 1
3

of the room.

Thus, in 2 hours, Liang paints 2
3

of the room.

Edmundo needs to paint 1− 2
3

= 1
3

of the room.

In 1 hour, Edmundo paints 1
4

of the room.

Since 1
4

= 3
12

and 1
3

= 4
12

, this means that Edmundo paints for 1
3
÷ 1

4
= 4

12
÷ 3

12
= 4

3
of an

hour.

Therefore, Edmundo paints for 80 minutes.

(b) When converted to a fraction, A% is equal to
A

100
.

When an amount is increased by A%, we can find its new value by multiplying by 1+
A

100
.

When an amount is decreased by A%, we can find its new value by multiplying by 1− A

100
.

When $400 is increased by A%, the amount becomes $400

(
1 +

A

100

)
.

When this value is decreased by A%, the amount becomes $400

(
1 +

A

100

)(
1− A

100

)
.

Therefore,

$400

(
1 +

A

100

)(
1− A

100

)
= $391(

1 +
A

100

)(
1− A

100

)
=

391

400

1− A2

1002
= 1− 9

400
A2

1002
=

9

400
A2

1002
=

32

202

A

100
=

3

20
(since A > 0)

A = 100 · 3

20
= 15

Therefore, A = 15.
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5. (a) The quadratic function f(x) = x2 + (2n− 1)x + (n2 − 22) has no real roots exactly when
its discriminant, ∆, is negative.
The discriminant of this function is

∆ = (2n− 1)2 − 4(1)(n2 − 22)

= (4n2 − 4n + 1)− (4n2 − 88)

= −4n + 89

We have ∆ < 0 exactly when −4n + 89 < 0 or 4n > 89.
This final inequality is equivalent to n > 89

4
= 221

4
.

Therefore, the smallest positive integer that satisfies this inequality, and hence for which
f(x) has no real roots, is n = 23.

(b) Using the cosine law in 4PQR,

PR2 = PQ2 + QR2 − 2 · PQ ·QR · cos(∠PQR)

212 = a2 + b2 − 2ab cos(60◦)

441 = a2 + b2 − 2ab · 1
2

441 = a2 + b2 − ab

Using the sine law in4STU , we obtain
ST

sin(∠TUS)
=

TU

sin(∠TSU)
and so

a

4/5
=

b

sin(30◦)
.

Therefore,
a

4/5
=

b

1/2
and so a = 4

5
· 2b = 8

5
b.

Substituting into the previous equation,

441 =
(
8
5
b
)2

+ b2 −
(
8
5
b
)
b

441 = 64
25
b2 + b2 − 8

5
b2

441 = 64
25
b2 + 25

25
b2 − 40

25
b2

441 = 49
25
b2

225 = b2

Since b > 0, then b = 15 and so a = 8
5
b = 8

5
· 15 = 24.
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6. (a) Solution 1
We make two copies of the given triangle, labelling them 4ABC and 4DEF , as shown:

A

B C E

D

F

The combined area of these two triangles is 2 · 770 cm2 = 1540 cm2, and the shaded area
in each triangle is the same.
Next, we rotate 4DEF by 180◦:

A

B C

E

D

F

and join the two triangles together:

A

B C

E

We note that BC and AE (which was FE) are equal in length (since they were copies of
each other) and parallel (since they are 180◦ rotations of each other). The same is true
for AB and EC.
Therefore, ABCE is a parallelogram.
Further, ABCE is divided into 11 identical parallelograms (6 shaded and 5 unshaded)
by the horizontal lines. (Since the sections of the two triangles are equal in height, the
horizontal lines on both sides of AC align.)
The total area of parallelogram ABCE is 1540 cm2.
Thus, the shaded area of ABCE is 6

11
· 1540 cm2 = 840 cm2.

Since this shaded area is equally divided between the two halves of the parallelogram, then
the combined area of the shaded regions of 4ABC is 1

2
· 840 cm2 = 420 cm2.



2023 Euclid Contest Solutions Page 7

Solution 2
We label the points where the horizontal lines touch AB and AC as shown:

A

B C

B1

B7

B6

B5

B4

B3

B2

B8B9B10

C1

C7

C6

C5

C4

C3

C2

C8 C9
C10

We use the notation |4ABC| to represent the area of 4ABC and use similar notation
for the area of other triangles and quadrilaterals.
Let A be equal to the total area of the shaded regions.
Thus,

A = |4AB1C1|+ |B2B3C3C2|+ |B4B5C5C4|+ |B6B7C7C6|+ |B8B9C9C8|+ |B10BCC10|

The area of each of these quadrilaterals is equal to the difference of the area of two triangles.
For example,

|B2B3C3C2| = |4AB3C3| − |4AB2C2| = −|4AB2C2|+ |4AB3C3|

Therefore,

A = |4AB1C1| − |4AB2C2|+ |4AB3C3| − |4AB4C4|+ |4AB5C5|
− |4AB6C6|+ |4AB7C7| − |4AB8C8|+ |4AB9C9| − |4AB10C10|+ |4ABC|

Each of 4AB1C1, 4AB2C2, . . ., 4AB10C10 is similar to 4ABC because their two base
angles are equal due.
Suppose that the height of 4ABC from A to BC is h.
Since the height of each of the 11 regions is equal in height, then the height of 4AB1C1

is 1
11
h, the height of 4AB2C2 is 2

11
h, and so on.

When two triangles are similar, their heights are in the same ratio as their side lengths:

To see this, suppose that4PQR is similar to4STU and that altitudes are drawn
from P and S to V and W .

P

Q V R T

S

W U

Since ∠PQR = ∠STU , then 4PQV is similar to 4STW (equal angle; right

angle), which means that
PQ

ST
=

PV

SW
. In other words, the ratio of sides is equal

to the ratio of heights.

Since the height of 4AB1C1 is 1
11
h, then B1C1 = 1

11
BC.

Therefore, |4AB1C1| = 1
2
·B1C1 · 1

11
h = 1

2
· 1
11
BC · 1

11
h = 12

112
· 1
2
·BC · h = 12

112
|4ABC|.

Similarly, since the height of 4AB2C2 is 2
11
h, then B2C2 = 2

11
BC.
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Therefore, |4AB2C2| = 1
2
·B2C2 · 2

11
h = 1

2
· 2
11
BC · 2

11
h = 22

112
· 1
2
·BC · h = 22

112
|4ABC|.

This result continues for each of the triangles.
Therefore,

A = 12

112
|4ABC| − 22

112
|4ABC|+ 32

112
|4ABC| − 42

112
|4ABC|+ 52

112
|4ABC|

− 62

112
|4ABC|+ 72

112
|4ABC| − 82

112
|4ABC|+ 92

112
|4ABC| − 102

112
|4ABC|+ 112

112
|4ABC|

= 1
112
|4ABC|(112 − 102 + 92 − 82 + 72 − 62 + 52 − 42 + 32 − 22 + 1)

= 1
112

(770 cm2)((11 + 10)(11− 10) + (9 + 8)(9− 8) + · · ·+ (3 + 2)(3− 2) + 1)

= 1
112

(770 cm2)(11 + 10 + 9 + 8 + 7 + 6 + 5 + 4 + 3 + 2 + 1)

= 1
11

(70 cm2) · 66

= 420 cm2

Therefore, the combined area of the shaded regions of 4ABC is 420 cm2.

(b) Solution 1
We label five additional points in the diagram:

A

B
C

D

P Q R S

T

Since PQ = QR = RS = 1, then PS = 3 and PR = 2.
Since ∠PST = 90◦, then PT =

√
PS2 + ST 2 =

√
32 + 12 =

√
10 by the Pythagorean

Theorem.
We are told that ABCD is a square.
Thus, PT is perpendicular to QC and to RB.
Thus, 4PDQ is right-angled at D and 4PAR is right-angled at A.
Since 4PDQ, 4PAR and 4PST are all right-angled and all share an angle at P , then
these three triangles are similar.

This tells us that
PA

PS
=

PR

PT
and so PA =

3 · 2√
10

. Also,
PD

PS
=

PQ

PT
and so PD =

1 · 3√
10

.

Therefore,

DA = PA− PD =
6√
10
− 3√

10
=

3√
10

This means that the area of square ABCD is equal to DA2 =

(
3√
10

)2

=
9

10
.
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Solution 2
We add coordinates to the diagram as shown:

A

B
C

D

(0, 3) (1, 3) (2, 3) (3, 3)

(0, 2) (3, 2)

(0, 1) (3, 1)

(0, 0) (1, 0) (2, 0) (3, 0)

We determine the side length of square ABCD by determining the coordinates of D and
A and then calculating the distance between these points.

The slope of the line through (0, 3) and (3, 2) is
3− 2

0− 3
= −1

3
.

This equation of this line can be written as y = −1

3
x + 3.

The slope of the line through (0, 0) and (1, 3) is 3.
The equation of this line can be written as y = 3x.
The slope of the line through (1, 0) and (2, 3) is also 3.
The equation of this line can be written as y = 3(x− 1) = 3x− 3.

Point D is the intersection point of the lines with equations y = −1

3
x + 3 and y = 3x.

Equating expressions for y, we obtain −1

3
x + 3 = 3x and so

10

3
x = 3 which gives x =

9

10
.

Since y = 3x, we get y =
27

10
and so the coordinates of D are

(
9

10
,
27

10

)
.

Point A is the intersection point of the lines with equations y = −1

3
x + 3 and y = 3x− 3.

Equating expressions for y, we obtain −1

3
x + 3 = 3x − 3 and so

10

3
x = 6 which gives

x =
18

10
.

Since y = 3x− 3, we get y =
24

10
and so the coordinates of A are

(
18

10
,
24

10

)
. (It is easier

to not reduce these fractions.)
Therefore,

DA =

√(
9

10
− 18

10

)2

+

(
27

10
− 24

10

)2

=

√(
− 9

10

)2

+

(
3

10

)2

=

√
90

100
=

√
9

10

This means that the area of square ABCD is equal to DA2 =

(√
9

10

)2

=
9

10
.
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7. (a) Each possible order in which Akshan removes the marbles corresponds to a sequence of 9
colours, 3 of which are red and 6 of which are blue.
We write these as sequences of 3 R’s and 6 B’s.
Since are told that the first marble is red and the third is blue, we would like to consider
all sequences of the form

R B

The 7 blanks must be filled with the remaining 2 R’s and 5 B’s.

There are

(
7

2

)
=

7 · 6
2

= 21 ways of doing this, because 2 of the 7 blanks must be chosen in

which to place the R’s. (We could count these 21 ways directly by working systematically
through the possible pairs of blanks.)
Of these 21 ways, some have the last two marbles being blue.
These correspond to the sequences of the form

R B B B

In these sequences, the 5 blanks must be filled with the remaining 2 R’s and 3 B’s.

There are

(
5

2

)
=

5 · 4
2

= 10 ways of doing this, because 2 of the 5 blanks must be chosen

in which to place the R’s.
Therefore, 10 of the 21 possible sequences end in two B’s, and so the probability that the

last two marbles removed are blue is
10

21
.

(b) Factoring the first equation, we obtain

ac + ad + bc + bd = a(c + d) + b(c + d) = (a + b)(c + d)

We now have the equations

(a + b)(c + d) = 2023

(a + b) + (c + d) = 296

If we let s = a + b and t = c + d, we obtain the equations

st = 2023

s + t = 296

Noting that s and t are integers since a, b, c, and d are integers, we look for divisor pairs
of 2023 whose sum is 296.
To find the divisors of 2023, we first find its prime factorization:

2023 = 7 · 289 = 7 · 172

Therefore, the divisors of 2023 are 1, 7, 17, 119, 289, 2023.
This means that the divisor pairs of 2023 are

2023 = 1 · 2023 = 7 · 289 = 17 · 119

The one divisor pair with a sum of 296 is 7 and 289. (Alternatively, we could have found
these by substituting t = 206− s into st = 2023 and using the quadratic formula.)
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Since a < b < c < d, then a + b < c + d and so s = a + b = 7 and t = c + d = 289.
Since a and b are positive integers with a < b and a + b = 7, then the possible pairs (a, b)
are

(a, b) = (1, 6), (2, 5), (3, 4)

We know that c and d are positive integers with c < d and c + d = 289, but also with
b < c < d.
When (a, b) = (1, 6), this means that the possibilities are

(c, d) = (7, 282), (8, 281), (9, 280), . . . , (143, 146), (144, 145)

There are 144− 7 + 1 = 138 such pairs.
When (a, b) = (2, 5), the possibilities are

(c, d) = (6, 283), (7, 282), (8, 281), (9, 280), . . . , (143, 146), (144, 145)

There are 138 + 1 = 139 such pairs.
When (a, b) = (3, 4), the possibilities are

(c, d) = (5, 284), (6, 283), (7, 282), (8, 281), (9, 280), . . . , (143, 146), (144, 145)

There are 139 + 1 = 140 such pairs.
In total, there are 138 + 139 + 140 = 417 possible quadruples (a, b, c, d).

8. (a) Since 4ABC is right-angled at B, then

BC2 = AC2 − AB2

= ((n + 1)(n + 4))2 − (n(n + 1))2

= (n + 1)2(n + 4)2 − n2(n + 1)2

= (n + 1)2
(
(n + 4)2 − n2

)
= (n + 1)2

(
n2 + 8n + 16− n2

)
= (n + 1)2(8n + 16)

= 4(n + 1)2(2n + 4)

The length of BC is an integer exactly when 4(n + 1)2(2n + 4) is a perfect square.
Since 4(n+ 1)2 is a perfect square, then BC is an integer exactly when 2n+ 4 is a perfect
square.
We note that 2n + 4 ≥ 6 (since n ≥ 1) and that 2n + 4 is even.
Since n < 100 000, then 6 ≤ 2n + 4 < 200 004, and so we need to count the number of
even perfect squares between 6 and 200 004.
The smallest even perfect square in this range is 42 = 16.
Since

√
200 004 ≈ 447.2, the largest even perfect square in this range is 4462.

Therefore, the number of even perfect squares in this range is
446

2
− 1 = 222.

Thus, there are 222 positive integers n for which the length of BC is an integer.
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(b) Let f(x) =
√

log2 x · log2(4x) + 1 +

√
log2 x · log2

( x

64

)
+ 9.

Using logarithm laws,

log2 x · log2(4x) + 1 = log2 x(log2 4 + log2 x) + 1

= log2 x(2 + log2 x) + 1 (since 22 = 4)

= (log2 x)2 + 2 · log2 x + 1

= (log2 x + 1)2

and

log2 x · log2

( x

64

)
+ 9 = log2 x(log2 x− log2 64) + 9

= log2 x(log2 x− 6) + 9 (since 26 = 64)

= (log2 x)2 − 6 log2 x + 9

= (log2 x− 3)2

Therefore,

f(x) =
√

log2 x · log2(4x) + 1+

√
log2 x · log2

( x

64

)
+ 9 =

√
(log2 x + 1)2+

√
(log2 x− 3)2

Before proceeding, we recall that if a ≤ 0, then
√
a2 = −a and if a > 0, then

√
a2 = a.

When log2 x ≤ −1, we know that log2 x + 1 ≤ 0 and log2 x− 3 < 0, and so

f(x) = −(log2 x + 1)− (log2 x− 3) = 2− 2 log2 x

When −1 < log2 x ≤ 3, we know that log2 x + 1 > 0 and log2 x− 3 ≤ 0, and so

f(x) = (log2 x + 1)− (log2 x− 3) = 4

When log2 x > 3, we know that log2 x + 1 ≥ 0 and log2 x− 3 > 0, and so

f(x) = (log2 x + 1) + (log2 x− 3) = 2 log2 x− 2

We want to find all values of x for which f(x) = 4.
When log2 x ≤ −1, f(x) = 2− 2 log2 x = 4 exactly when log2 x = −1.
When −1 < log2 x ≤ 3, f(x) is always equal to 4.
When log2 x > 3, f(x) = 2 log2 x− 2 = 4 exactly when log2 x = 3.
Therefore, f(x) = 4 exactly when −1 ≤ log2 x ≤ 3, which is true exactly when 1

2
≤ x ≤ 8.

(It seems surprising that the solution to this equation is actually an interval of values,
rather than a finite number of specific values.)
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9. (a) If there are 5 or more people seated around a table with 8 chairs, then there are at most
3 empty chairs. But there must be an empty chair between each pair of people, and this
is not possible with 5 people and 3 empty chairs.
Therefore, there are at most 4 people seated.
If there were only 2 people seated, then there would be 6 empty chairs which would mean
that at least one of the two “gaps” around the circular table had at least 3 empty chairs,
and so another person could be seated, meaning that the table wasn’t full.
Therefore, there are at least 3 people seated.
This means that a full table with 8 chairs has either 3 or 4 people.
If there are 4 people, there are 4 empty chairs, and so there is exactly 1 empty chair
between each pair of people.
Thus, people are seated in chairs {1, 3, 5, 7} or in chairs {2, 4, 6, 8}.
If there are 3 people, there are 5 empty chairs.
With 3 people, there are 3 gaps totalling 5 chairs, and each gap has at most 2 chairs in it.
Therefore, the gaps must be 1, 2, 2 in some order. This is the only list of three positive
integers, each equal to 1 or 2, that adds to 5.
The gap of 1 can be between any pair of seats. In other words, the gap of 1 could
be between {1, 3}, {2, 4}, and so on. In each case, the position of the third person is
completely determined because the remaining two gaps have 2 chairs each.
Thus, with 3 people, they are seated in chairs

{1, 3, 6}, {2, 4, 7}, {3, 5, 8}, {4, 6, 1}, {5, 7, 2}, {6, 8, 3}, {7, 1, 4}, {8, 2, 5}

In total, there are thus 10 ways to seat people at a table with 8 chairs:

{1, 3, 5, 7}, {2, 4, 6, 8}, {1, 3, 6}, {2, 4, 7}, {3, 5, 8}, {4, 6, 1}, {5, 7, 2}, {6, 8, 3}, {7, 1, 4}, {8, 2, 5}

(b) Suppose that k is a positive integer.
Suppose that t people are seated at a table with 6k + 5 chairs so that the table is full.
When t people are seated, there are t gaps. Each gap consists of either 1 or 2 chairs. (A
gap with 3 or more chairs can have an additional person seated in it, so the table is not
full.)
Therefore, there are between t and 2t empty chairs.
This means that the total number of chairs is between t + t and t + 2t.
In other words, 2t ≤ 6k + 5 ≤ 3t.
Since 2t ≤ 6k + 5, then t ≤ 3k + 5

2
. Since k and t are integers, then t ≤ 3k + 2.

We note that it is possible to seat 3k + 2 people around the table in seats

{2, 4, 6, . . . , 6k + 2, 6k + 4}

This table is full becase 3k+ 1 of the gaps consist of 1 chair and 1 gap consists of 2 chairs.
Since 3t ≥ 6k + 5, then t ≥ 2k + 5

3
. Since k and t are integers, then t ≥ 2k + 2.

We note that it is possible to seat 2k + 2 people around the table in seats

{3, 6, 9, . . . , 6k, 6k + 3, 6k + 5}

This table is full becase 2k+ 1 of the gaps consist of 2 chairs and 1 gap consists of 1 chair.

We now know that, if there are t people seated at a full table with 6k + 5 chairs, then
2k + 2 ≤ t ≤ 3k + 2.
To confirm that every such value of t is possible, consider a table with t people, 3t−(6k+5)
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gaps of 1 chair, and (6k + 5)− 2t gaps of 2 chairs.
From the work above, we know that 3t ≥ 6k + 5 and so 3t − (6k + 5) ≥ 0, and that
2t ≤ 6k + 5 and so (6k + 5)− 2t ≥ 0.
The total number of gaps is 3t − (6k + 5) + (6k + 5) − 2t = t, since there are t people
seated.
Finally, the total number of chairs is

t + 1 · (3t− (6k + 5)) + 2 · ((6k + 5)− 2t) = t + 3t− 4t− (6k + 5) + 2(6k + 5) = 6k + 5

as expected.
This shows that every t with 2k + 2 ≤ t ≤ 3k + 2 can produce a full table.
Therefore, the possible values of t are those integers that satisfy 2k + 2 ≤ t ≤ 3k + 2.
There are (3k + 2)− (2k + 2) + 1 = k + 1 possible values of t.

(c) Solution 1
For each integer n ≥ 3, we define f(n) to be the number of different full tables of size n.
We can check that

• f(3) = 3 because the full tables when n = 3 have people in chairs {1}, {2}, {3},
• f(4) = 2 because the full tables when n = 4 have people in chairs {1, 3}, {2, 4}, and

• f(5) = 5 because the full tables when n = 4 have people in chairs {1, 3}, {2, 4}, {3, 5},
{4, 1}, {5, 2}.

In the problem, we are told that f(6) = 5 and in part (a), we determined that f(8) = 10.
This gives us the following table:

n f(n)
3 3
4 2
5 5
6 5
7 ?
8 10

Based on this information, we make the guess that for every integer n ≥ 6, we have
f(n) = f(n− 2) + f(n− 3).
For example, this would mean that f(7) = f(5) + f(4) = 5 + 2 = 7 which we can verify is
true.
Based on this recurrence relation (which we have yet to prove), we deduce the values of
f(n) up to and including n = 19:

n f(n)
3 3
4 2
5 5
6 5
7 7
8 10
9 12
10 17

n f(n)
11 22
12 29
13 39
14 51
15 68
16 90
17 119
18 158
19 209

We now need to prove that the equation f(n) = f(n− 2) + f(n− 3) is true for all n ≥ 6.
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We think about each full table as a string of 0s and 1s, with 1 representing a chair that is
occupied and 0 representing an empty chair.
Let a(n) be the number of full tables with someone in seat 1 (and thus nobody in seat 2).
Let b(n) be the number of full tables with someone in seat 2 (and thus nobody in seat 1).
Let c(n) be the number of full tables with nobody in seat 1 or in seat 2.
Since every full table must be in one of these categories, then f(n) = a(n) + b(n) + c(n).
A full table with n seats n ≥ 4 must correspond to a string that starts with 10, 01 or 00.
Since there cannot be more than two consecutive 0s, we can further specify this, namely
to say that a full table with n seats must correspond to a string that starts with 1010 or
1001 or 0100 or 0101 or 0010. In each case, these are the first 4 characters of the string
and correspond to full (1) and empty (0) chairs.

Consider the full tables starting with 1010. Note that such strings end with 0 since the
table is circular. Removing the 10 from positions 1 and 2 creates strings of length n − 2
that begin 10. These strings will still correspond to a full table, and so there are a(n− 2)
such strings. (We note that all possible strings starting 1010 of length n will lead to all
possible strings starting with 1010 of length n− 2.)
Consider the full tables starting with 1001. Note that such a string ends with 0 since the
table is circular. Removing the 100 from positions 1, 2 and 3 creates strings of length
n − 3 that begin 10. (There must have been a 0 in position 5 after the 1 in position 4.)
These strings will still correspond to full tables, and so there are a(n− 3) such strings.
Consider the full tables starting with 0100. Removing the 100 from positions 2, 3 and 4
creates strings of length n − 3 that begin 01. (There must have been a 1 in position 5
after the 0 in position 4.) These strings will still correspond to full tables, and so there
are b(n− 3) such strings.
Consider the full tables starting with 0101. Removing the 01 from positions 3 and 4 creates
strings of length n− 2 that begin 01. (The 1 in position 4 must have been followed by one
or two 0s and so these strings maintains the desired properties.) These strings will still
correspond to full tables, and so there are b(n− 2) such strings.
Consider the full tables starting with 0010. These strings must begin with either 00100 or
00101.
If strings start 00100, then they start 001001 and so we remove the 001 in positions 4, 5
and 6 and obtain strings of length n − 3 that start 001 (and thus start 00). There are
c(n− 3) such strings.
If strings start 00101, we remove the 01 in positions 4 and 5 and obtain strings of length
n− 2 that start 001 (and thus start 00). There are c(n− 2) such strings.
These 6 cases and subcases count all strings counted by f(n).
Therefore,

f(n) = a(n− 2) + a(n− 3) + b(n− 3) + b(n− 2) + c(n− 3) + c(n− 2)

= a(n− 2) + b(n− 2) + c(n− 2) + a(n− 3) + b(n− 3) + c(n− 3)

= f(n− 2) + f(n− 3)

as required, which means that the number of different full tables when n = 19 is 209.

Solution 2
Extending our approach from (b), the number of people seated at a full table with 19
chairs is at least 19

3
= 61

3
and at most 19

2
= 91

2
.

Since the number of people is an integer, there must be 7, 8 or 9 people at the table, which
means that the number of empty chairs is 12, 11 or 10, respectively.
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Suppose that there are 9 people and 9 gaps with a total of 10 empty chairs.
In this case, there is 1 gap with 2 empty chairs and 8 gaps with 1 empty chair.
There are 19 pairs of chairs in which we can put 2 people with a gap of 2 in between:
{1, 4}, {2, 5}, . . ., {19, 3}.
Once we choose one of these pairs, the seat choice for the remaining 8 people is completely
determined by placing people in every other chair.
Therefore, there are 19 different full tables with 9 people.

Suppose that there are 8 people and 8 gaps with a total of 11 empty chairs.
In this case, there are 3 gaps with 2 empty chairs and 5 gaps with 1 empty chair.
There are 7 different circular orderings in which these 8 gaps can be arranged:

22211111 22121111 22112111 22111211 22111121 21212111 21211211

We note that “22211111” would be the same as, for example, “11222111” since these gaps
are arranged around a circle.
If the three gaps of length 2 are consecutive, there is only one configuration (22211111).
If there are exactly 2 consecutive gaps of length 2, there are 4 relative places in which the
third gap of length 2 can be placed.
If there are no consecutive gaps of length 2, these gaps can either be separated by 1 gap
each (21212111) with 3 gaps on the far side, or can be separated by 1 gap, 2 gaps, and 2
gaps (21211211). There is only one configuration for the gaps in this last situation.
There are 7 different circular orderings for these 8 gaps.
Each of these 7 different orderings can be placed around the circle of 19 chairs in 19 dif-
ferent ways, because each can be started in 19 different places. Because 19 is prime, none
of these orderings overlap.
Therefore, there are 7 · 19 = 133 different full tables with 8 people.

Suppose that there are 7 people and 7 gaps with a total of 12 empty chairs.
In this case, there are 2 gaps with 1 empty chair and 5 gaps with 2 empty chairs.
The 2 gaps with 1 empty chair can be separated by 0 gaps with 2 empty chairs, 1 gap with
2 empty chairs, or 2 gaps with 2 empty chairs. Because the chairs are around a circle, if
there were 3, 4 or 5 gaps with 2 empty chairs between them, there would be 2, 1 or 0 gaps
going the other way around the circle.
This means that there are 3 different configurations for the gaps.
Each of these configurations can be placed in 19 different ways around the circle of chairs.
Therefore, there are 3 · 19 = 57 full tables with 7 people.

In total, there are 19 + 133 + 57 = 209 full tables with 19 chairs.

Solution 3
As in Solution 2, there must be 7, 8 or 9 people in chairs, and so there are 7, 8 or 9 gaps.
If there are 7 gaps, there are 2 gaps of 1 chair and 5 gaps of 2 chairs.
If there are 8 gaps, there are 5 gaps of 1 chair and 3 gaps of 2 chairs.
If there are 9 gaps, there are 8 gaps of 1 chair and 1 gap of 2 chairs.
We consider three mutually exclusive cases: (i) there is a person in chair 1 and not in chair
2, (ii) there is a person in chair 2 and not in chair 1, and (iii) there is nobody in chair 1
or in chair 2. Every full table fits into exactly one of these three cases.

Case (i): there is a person in chair 1 and not in chair 2
We use the person in chair 1 to “anchor” the arrangement, by starting at chair 1 and
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arranging the gaps (and thus the full chairs) clockwise around the table from chair 1.

If there are 7 gaps, we need to choose 2 of them to be of length 1, and so there are

(
7

2

)
ways of arranging the gaps starting at chair 1.

If there are 8 gaps, we need to choose 3 of them to be of length 2, and so there are

(
8

3

)
ways of arranging the gaps starting at chair 1.

If there are 9 gaps, we need to choose 1 of them to be of length 2, and so there are

(
9

1

)
ways of arranging the gaps starting at chair 1.

In this case, there are a total of

(
7

2

)
+

(
8

3

)
+

(
9

1

)
= 21 + 56 + 9 = 86 full tables.

Case (ii): there is a person in chair 2 and not in chair 1
We use the same reasoning starting with the person in chair 2 as the anchor.
Again, there are 86 full tables in this case.

Case (iii): there is nobody in chair 1 or chair 2
Since there is nobody in chair 1 or chair 2, there must be a person in chair 3 and also in
chair 19, which fixes one gap of 2 chairs.
Here, we use the person in chair 3 as the anchor.
If there are 7 gaps, there are 2 gaps of 1 chair and 4 gaps of 2 chairs left to place. There

are

(
6

2

)
ways of doing this.

If there are 8 gaps, there are 5 gaps of 1 chair and 2 gaps of 2 chairs left to place. There

are

(
7

2

)
ways of doing this.

If there are 9 gaps, there are 8 gaps of 1 chair and 0 gaps of 2 chairs left to place. There
is 1 way to do this.

In this case, there are a total of

(
6

2

)
+

(
7

2

)
+ 1 = 15 + 21 + 1 = 37 full tables.

In total, there are 86 + 86 + 37 = 209 full tables with 19 chairs.

10. (a) Since 0 <
1

3
<

2

3
< 1, then

⌊
1

3

⌋
=

⌊
2

3

⌋
= 0.

Since 1 ≤ 3

3
<

4

3
<

5

3
< 2, then

⌊
3

3

⌋
=

⌊
4

3

⌋
=

⌊
5

3

⌋
= 1.

These fractions can continue to be grouped in groups of 3 with the last full group of 3

satisfying 19 ≤ 57

3
<

58

3
<

59

3
< 20, which means that

⌊
57

3

⌋
=

⌊
58

3

⌋
=

⌊
59

3

⌋
= 19.

The last term is

⌊
60

3

⌋
= b20c = 20.
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If the given sum is S, we obtain

S = 2 · 0 + 3 · 1 + 3 · 2 + · · ·+ 3 · 19 + 1 · 20

= 0 + 3(1 + 2 + ·+ 19) + 20

= 3 · 1
2
· 19 · 20 + 20

= 570 + 20

= 590

(b) For every positive integer m > 4, let

q(m) =

⌊
1

3

⌋
+

⌊
2

3

⌋
+

⌊
3

3

⌋
+ . . . +

⌊
m− 2

3

⌋
+

⌊
m− 1

3

⌋
Extending our work from (a), we know that k − 1 ≤ 3k − 3

3
<

3k − 2

3
<

3k − 1

3
< k for

each positive integer k, and so

⌊
3k − 3

3

⌋
=

⌊
3k − 2

3

⌋
=

⌊
3k − 1

3

⌋
= k − 1.

Every positive integer m > 4 can be written as m = 3s or m = 3s + 1 or m = 3s + 2, for
some positive integer s, depending on its remainder when divided by 3.
We can thus write

q(3s) =

⌊
1

3

⌋
+

⌊
2

3

⌋
+

⌊
3

3

⌋
+ . . . +

⌊
3s− 2

3

⌋
+

⌊
3s− 1

3

⌋
= 2 · 0 + 3(1 + 2 + 3 + · · ·+ (s− 1))

= 3 · 1

2
· (s− 1)s

=
3s(s− 1)

2

=
3s(3s− 3)

6

q(3s + 1) =

⌊
1

3

⌋
+

⌊
2

3

⌋
+

⌊
3

3

⌋
+ . . . +

⌊
3s− 2

3

⌋
+

⌊
3s− 1

3

⌋
+

⌊
3s

3

⌋
= q(3s) + s

=
3s(3s− 3)

6
+

3s · 2
6

=
3s(3s− 1)

6

q(3s + 2) = q(3s + 1) +

⌊
3s + 1

3

⌋
=

3s(3s− 1)

6
+ s

=
3s(3s− 1)

6
+

3s · 2
6

=
3s(3s + 1)

6

We want to find a polynomial p(x) for which q(m) = bp(m)c for every positive integer
m > 4.
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In other words, we want to find a polynomial p(x) for which

bp(3s)c =
3s(3s− 3)

6
bp(3s + 1)c =

3s(3s− 1)

6
bp(3s + 2)c =

3s(3s + 1)

6

for every positive integer s.

We will show that the polynomial p(x) =
(x− 1)(x− 2)

6
satisfies the desired conditions.

If x = 3s + 1 for some positive integer s, then

(x− 1)(x− 2)

6
=

(3s + 1− 1)(3s + 1− 2)

6
=

3s(3s− 1)

6

We note that 3s is a multiple of 3. Since 3s and 3s− 1 are consecutive integers, then one

of these is a multiple of 2. Thus, 3s(3s − 1) is a multiple of 6 and so
3s(3s− 1)

6
is an

integer.

This means that

⌊
3s(3s− 1)

6

⌋
=

3s(3s− 1)

6
.

Therefore, q(3s + 1) =
3s(3s− 1)

6
=

⌊
3s(3s− 1)

6

⌋
= bp(3s + 1)c.

If x = 3s + 2 for some positive integer s, then

(x− 1)(x− 2)

6
=

(3s + 2− 1)(3s + 2− 2)

6
=

3s(3s + 1)

6

We note that 3s is a multiple of 3. Since 3s and 3s + 1 are consecutive integers, then one

of these is a multiple of 2. Thus, 3s(3s + 1) is a multiple of 6 and so
3s(3s + 1)

6
is an

integer.

This means that

⌊
3s(3s + 1)

6

⌋
=

3s(3s + 1)

6
.

Therefore, q(3s + 2) =
3s(3s + 1)

6
=

⌊
3s(3s + 1)

6

⌋
= bp(3s + 2)c.

If x = 3s for some positive integer s, then

(x− 1)(x− 2)

6
=

(3s− 1)(3s− 2)

6
=

9s2 − 9s + 2

6

Now,
9s2 − 9s

6
=

9s(s− 1)

6
is an integer because 9s is a multiple of 3 and one of s and

s− 1 is even.

Since
9s2 − 9s + 2

6
=

9s2 − 9s

6
+

1

3
, then

9s2 − 9s + 2

6
is

1

3
more than an integer which

means that

⌊
9s2 − 9s + 2

6

⌋
=

9s2 − 9s

6
=

3s(3s− 3)

6
= q(3s).

Therefore, q(3s) =
3s(3s− 3)

6
=

⌊
(3s− 1)(3s− 2)

6

⌋
= bp(3s)c.

This means that the polynomial p(x) =
(x− 1)(x− 2)

6
satisfies the required conditions.
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(c) Before working on the specific question we have been asked, we simplify the given expres-
sion for f(n) by noting that if k ≥ n, then kn ≤ k2 < k2 + 1.

This means that if k ≥ n, we have 0 <
kn

n2 + 1
< 1 and so

⌊
kn

k2 + 1

⌋
= 0.

This means that, for a fixed positive integer n, the apparently infinite sum that represents
f(n) can be stopped when k = n− 1 because every subsequent term equals 0.
Thus,

f(n) =

⌊
n

12 + 1

⌋
+

⌊
2n

22 + 1

⌋
+

⌊
3n

32 + 1

⌋
+ · · ·+

⌊
(n− 2)n

(n− 2)2 + 1

⌋
+

⌊
(n− 1)n

(n− 1)2 + 1

⌋
We note that

f(1) = 0 (since no terms are non-zero)

f(2) =

⌊
1 · 2

12 + 1

⌋
= 1

f(3) =

⌊
1 · 3

12 + 1

⌋
+

⌊
2 · 3

22 + 1

⌋
=

⌊
3

2

⌋
+

⌊
6

5

⌋
= 1 + 1 = 2

f(4) =

⌊
1 · 4

12 + 1

⌋
+

⌊
2 · 4

22 + 1

⌋
+

⌊
3 · 4

32 + 1

⌋
=

⌊
4

2

⌋
+

⌊
8

5

⌋
+

⌊
12

10

⌋
= 2 + 1 + 1 = 4

Suppose that t is an odd positive integer for which f(t + 1)− f(t) = 2.
We will assume that t is not a prime number, and show that f(t+ 1)− f(t) 6= 2. This will
show us that if f(t+ 1)− f(t) = 2, it must be the case that t is prime. Since t is odd and
not prime, then t = 1 or t is composite.
We note that when t = 1, we obtain f(2)− f(1) = 1− 0 = 1 6= 2.
Next, suppose that t is odd and composite.
Since t is odd and composite, then t can be written as t = rs for some odd positive integers
r ≥ s > 1. (t can be written in this form in at least one way, so we take one of these
possibilities.)
In this case, consider f(t + 1)− f(t).
We can write this as

f(t + 1)− f(t) =

⌊
t + 1

12 + 1

⌋
+

⌊
2(t + 1)

22 + 1

⌋
+ · · · +

⌊
(t− 1)(t + 1)

(t− 1)2 + 1

⌋
+

⌊
t(t + 1)

t2 + 1

⌋
−
⌊

t

12 + 1

⌋
−
⌊

2t

22 + 1

⌋
− · · · −

⌊
(t− 1)t

(t− 1)2 + 1

⌋
We re-write this as

f(t + 1)− f(t) =

(⌊
t + 1

12 + 1

⌋
−
⌊

t

12 + 1

⌋)
+

(⌊
2(t + 1)

22 + 1

⌋
−
⌊

2t

22 + 1

⌋)
+ · · ·

+

(⌊
(t− 1)(t + 1)

(t− 1)2 + 1

⌋
−
⌊

(t− 1)t

(t− 1)2 + 1

⌋)
+

⌊
t(t + 1)

t2 + 1

⌋

In the t−1 sets of parentheses, we have terms of the form

⌊
k(t + 1)

k2 + 1

⌋
−
⌊

kt

k2 + 1

⌋
for each

integer k from 1 to t− 1.

We know that
k(t + 1)

k2 + 1
>

kt

k2 + 1
because both k and t are positive, the denominators are
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equal and k(t + 1) > kt.

Thus,

⌊
k(t + 1)

k2 + 1

⌋
≥
⌊

kt

k2 + 1

⌋
. (The greatest integer less than or equal to the first fraction

must be at least as large as the greatest integer less than or equal to the second fraction.)
This means that the t − 1 differences in parentheses, each of which is an integer, is at
least 0.
To show that f(t+1)−f(t) 6= 2, we show that there are at least 2 places where the difference
is at least 1, and that the final term is at least 1. This will tell us that f(t+ 1)− f(t) ≥ 3
and so f(t + 1) − f(t) 6= 2, which will tell us that t cannot be composite, and so t must
be prime, as required.

Consider

⌊
t(t + 1)

t2 + 1

⌋
.

Since t(t + 1) = t2 + t ≥ t2 + 1, then
t(t + 1)

t2 + 1
≥ 1, which means that

⌊
t(t + 1)

t2 + 1

⌋
≥ 1.

Consider

⌊
t + 1

12 + 1

⌋
−
⌊

t

12 + 1

⌋
=

⌊
t + 1

2

⌋
−
⌊
t

2

⌋
.

Since t is odd, then we write t = 2u + 1 for some positive integer u, which gives⌊
t + 1

2

⌋
−
⌊
t

2

⌋
=

⌊
2u + 2

2

⌋
−
⌊

2u + 1

2

⌋
= bu + 1c −

⌊
u +

1

2

⌋
= (u + 1)− u = 1

Recall that t = rs with r ≥ s > 1.

Consider the term

⌊
r(t + 1)

r2 + 1

⌋
−
⌊

rt

r2 + 1

⌋
.

We have⌊
r(t + 1)

r2 + 1

⌋
−
⌊

rt

r2 + 1

⌋
=

⌊
r(rs + 1)

r2 + 1

⌋
−
⌊
r · rs
r2 + 1

⌋
=

⌊
r2s + r

r2 + 1

⌋
−
⌊

r2s

r2 + 1

⌋
We note that

r2s + r

r2 + 1
≥ r2s + s

r2 + 1
= s and

r2s

r2 + 1
<

r2s + s

r2 + 1
= s.

Thus,

⌊
r2s + r

r2 + 1

⌋
≥ s.

Also,

⌊
r2s

r2 + 1

⌋
< s which means

⌊
r2s

r2 + 1

⌋
≤ s− 1 and so

⌊
r(t + 1)

r2 + 1

⌋
−
⌊

rt

r2 + 1

⌋
≥ 1.

Therefore, if t is odd and not prime, then f(t+ 1)− f(t) 6= 2 because we have found three
terms that are equal to at least 1 meaning that f(t+1)−f(t) ≥ 3, and so if f(t+1)−f(t),
then t must be prime.

Here is an alternative approach so show that f(t + 1) − f(t) ≥ 3 when t is odd and
composite.

As above, we look for at least 3 integers k for which

⌊
k(t + 1)

k2 + 1

⌋
−
⌊

kt

k2 + 1

⌋
≥ 1. Here,

we allow for the possibility that k = t knowing that the second term in this difference will
be 0 in this case.

The positive integer k has the property that

⌊
k(t + 1)

k2 + 1

⌋
−
⌊

kt

k2 + 1

⌋
≥ 1 exactly when

there is an integer N for which
k(t + 1)

k2 + 1
≥ N >

kt

k2 + 1
.
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This pair of inequalities is equivalent to the pair of inequalities t + 1 ≥ N · k
2 + 1

k
> t

which is in turn equivalent to t + 1 ≥ Nk +
N

k
> t.

The following three pairs (N, k) of integers satisfy this equation:

• k = 1 and N =
t + 1

2
(noting that t is odd), which give Nk +

N

k
= t + 1;

• k = r and N = s, which give Nk +
N

k
= rs +

s

r
(noting that

s

r
< 1);

• k = t and N = 1, which give Nk +
N

k
= t +

1

t
.

This shows that f(t + 1)− f(t) ≥ 3 when t is odd and composite, as required.
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1. (a) Evaluating,
32 − 23

23 − 32
=

9− 8

8− 9
=

1

−1
= −1.

Alternatively, since 23 − 32 = −(32 − 23), then
32 − 23

23 − 32
= −1.

(b) Evaluating,
√√

81 +
√

9−
√

64 =
√

9 + 3− 8 =
√

4 = 2.

(c) Since
1√

x2 + 7
=

1

4
, then

√
x2 + 7 = 4.

This means that x2 + 7 = 42 = 16 and so x2 = 9.
Since x2 = 9, then x = ±3.
We can check by substitution that both of these values are solutions.

2. (a) Factoring, 2022 = 2 · 1011 = 2 · 3 · 337. (It turns out that 337 is a prime number, though
this fact is not needed here.)
Therefore, 2022 = 2 · 1011 and 2022 = 3 · 674 and 2022 = 6 · 337.
Thus, the three ordered pairs are (a, b) = (2, 1011), (3, 674), (6, 337).

(b) Manipulating algebraically, the following equations are equivalent:

2c+ 1

2d+ 1
=

1

17

17(2c+ 1) = 2d+ 1

34c+ 17 = 2d+ 1

34c+ 16 = 2d

d = 17c+ 8

Since c is an integer with c > 0, then c ≥ 1, which means that 17c+ 8 ≥ 25.
Therefore, the smallest possible value of d is d = 25.

Note that, when d = 25, we obtain c = 1 and so
2c+ 1

2d+ 1
=

3

51
=

1

17
.

(c) Solution 1
When x = −5, the left side of the equation equals 0.
This means that when x = −5, the right side of the equation must equal 0 as well.
Thus, (−5)2 + 3(−5) + t = 0 and so 25− 15 + t = 0 or t = −10.

Solution 2
Expanding the left side, we obtain

(px+ r)(x+ 5) = px2 + rx+ 5px+ 5r

Since this is equal to x2 + 3x + t for all real numbers, then the coefficients of the two
quadratic expressions must be the same.
Comparing coefficients of x2, we obtain p = 1.
This means that

x2 + rx+ 5x+ 5r = x2 + 3x+ t

Comparing coefficients of x, we obtain r + 5 = 3 and so r = −2.
This means that

x2 + 3x− 10 = x2 + 3x+ t

Comparing constant terms, we obtain t = −10.
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3. (a) Suppose that the volume of the jug is V L.
Then 1

4
V + 24 = 5

8
V .

Multiplying by 8, we obtain 2V + 24 · 8 = 5V which gives 3V = 192 and so V = 64.
Therefore, the volume of the jug is 64 L.

(b) Suppose that Stephanie starts with n soccer balls.
Since Stephanie can divide the n balls into fifths and into elevenths, then n is a multiple
of both 5 and 11.
Since 5 and 11 are both prime numbers, then n must be a multiple of 5 · 11 = 55.
Thus, n = 55k for some positive integer k.
In this case, 2

5
n = 2

5
· 55k = 22k and 6

11
n = 6

11
· 55k = 30k.

When Stephanie has given these balls away, she is left with 55k − 22k − 30k = 3k balls.
Since 3k is a multiple of 9, then k is a multiple of 3.
Therefore, the smallest possible number of balls is obtained when k = 3, which means
that Stephanie started with n = 55 · 3 = 165 soccer balls.

(c) Suppose that the number of students in the Junior section is j and the number of students
in the Senior section is s.
The number of left-handed Junior students is 60% of j, or 0.6j.
The number of right-handed Junior students is 40% of j, or 0.4j.
The number of left-handed Senior students is 10% of s, or 0.1s.
The number of right-handed Senior students is 90% of s, or 0.9s.
Since the total numbers of left-handed and right-students are equal, we obtain the equa-
tion 0.6j + 0.1s = 0.4j + 0.9s which gives 0.2j = 0.8s or j = 4s.
This means that there are 4 times as many Junior students as Senior students, which
means that 4

5
of the students are Junior and 1

5
are Senior.

Therefore, 80% of the students in the math club are in the Junior section.

4. (a) Let P be the point with coordinates (7, 0) and let Q be the point with coordinates (0, 5).

y

x
B (4, 0)A (0, 0) P (7, 0)

C (7, 2)

D (7, 5)E (3, 5)Q (0, 5)

F (0, 3)

Then APDQ is a rectangle with width 7 and height 5, and so it has area 7 · 5 = 35.
Hexagon ABCDEF is formed by removing two triangles from rectangle APDQ, namely
4BPC and 4EQF .
Each of 4BPC and 4EQF is right-angled, because each shares an angle with rectangle
APDQ.
Each of 4BPC and 4EQF has a base of length 3 and a height of 2.
Thus, their combined area is 2 · 1

2
· 3 · 2 = 6.

This means that the area of hexagon ABCDEF is 35− 6 = 29.
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(b) Since 4PQS is right-angled at P , then by the Pythagorean Theorem,

SQ2 = SP 2 + PQ2 = (x+ 3)2 + x2

Since 4QRS is right-angled at Q, then by the Pythagorean Theorem, we obtain

RS2 = SQ2 +QR2

(x+ 8)2 = ((x+ 3)2 + x2) + 82

x2 + 16x+ 64 = x2 + 6x+ 9 + x2 + 64

0 = x2 − 10x+ 9

0 = (x− 1)(x− 9)

and so x = 1 or x = 9.
(We can check that if x = 1, 4PQS has sides of lengths 4, 1 and

√
17 and 4QRS has

sides of lengths
√

17, 8 and 9, both of which are right-angled, and if x = 9, 4PQS has
sides of lengths 12, 9 and 15 and 4QRS has sides of lengths 15, 8 and 17, both of which
are right-angled.)
In terms of x, the perimeter of PQRS is x+ 8 + (x+ 8) + (x+ 3) = 3x+ 19.
Thus, the possible perimeters of PQRS are 22 (when x = 1) and 46 (when x = 9).



2022 Euclid Contest Solutions Page 5

5. (a) If r is a term in the sequence and s is the next term, then s = 1 +
1

1 + r
.

This means that s− 1 =
1

1 + r
and so

1

s− 1
= 1 + r which gives r =

1

s− 1
− 1.

Therefore, since a3 =
41

29
, then

a2 =
1

a3 − 1
− 1 =

1

(41/29)− 1
− 1 =

1

12/29
− 1 =

29

12
− 1 =

17

12

Further, since a2 =
17

12
, then

a1 =
1

a2 − 1
− 1 =

1

(17/12)− 1
− 1 =

1

5/12
− 1 =

12

5
− 1 =

7

5

(b) Initially, the water in the hollow tube forms a cylinder with radius 10 mm and height
h mm. Thus, the volume of the water is π(10 mm)2(h mm) = 100πh mm3.
After the rod is inserted, the level of the water rises to 64 mm. Note that this does not
overflow the tube, since the tube’s height is 100 mm.
Up to the height of the water, the tube is a cylinder with radius 10 mm and height 64
mm.
Thus, the volume of the tube up to the height of the water is

π(10 mm)2(64 mm) = 6400π mm3

This volume consists of the water that is in the tube (whose volume, which has not
changed, is 100πh mm3) and the rod up to a height of 64 mm.

Since the radius of the rod is 2.5 mm, the volume of the rod up to a height of 64 mm is
π(2.5 mm)2(64 mm) = 400π mm3.
Comparing volumes, 6400π mm3 = 100πh mm3 + 400π mm3 and so 100h = 6000 which
gives h = 60.

6. (a) We note that
2x+ 1

x
=

2x

x
+

1

x
= 2 +

1

x
.

Therefore,
2x+ 1

x
= 4 exactly when 2 +

1

x
= 4 or

1

x
= 2 and so x =

1

2
.

Alternatively, we could solve
2x+ 1

x
= 4 directly to obtain 2x+1 = 4x, which gives 2x = 1

and so x =
1

2
.

Thus, to determine the value of f(4), we substitute x =
1

2
into the given equation

f

(
2x+ 1

x

)
= x+ 6 and obtain f(4) =

1

2
+ 6 =

13

2
.
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(b) Since the graph passes through (3, 5), (5, 4) and (11, 3), we can substitute these three
points and obtain the following three equations:

5 = loga(3 + b) + c

4 = loga(5 + b) + c

3 = loga(11 + b) + c

Subtracting the second equation from the first and the third equation from the second,
we obtain:

1 = loga(3 + b)− loga(5 + b)

1 = loga(5 + b)− loga(11 + b)

Equating right sides and manipulating, we obtain the following equivalent equations:

loga(5 + b)− loga(11 + b) = loga(3 + b)− loga(5 + b)

2 loga(5 + b) = loga(3 + b) + loga(11 + b)

loga

(
(5 + b)2

)
= loga ((3 + b)(11 + b)) (using log laws)

(5 + b)2 = (3 + b)(11 + b) (raising both sides to the power of a)

25 + 10b+ b2 = 33 + 14b+ b2

−8 = 4b

b = −2

Since b = −2, the equation 1 = loga(3 + b)− loga(5 + b) becomes 1 = loga 1− loga 3.
Since loga 1 = 0 for every admissible value of a, then loga 3 = −1 which gives a = 3−1 = 1

3
.

Finally, the equation 5 = loga(3 + b) + c becomes 5 = log1/3(1) + c and so c = 5.

Therefore, a = 1
3
, b = −2, and c = 5, which gives y = log1/3(x− 2) + 5.

Checking:

• When x = 3, we obtain y = log1/3(3− 2) + 5 = log1/3 1 + 5 = 0 + 5 = 5.

• When x = 5, we obtain y = log1/3(5− 2) + 5 = log1/3 3 + 5 = −1 + 5 = 4.

• When x = 11, we obtain y = log1/3(11− 2) + 5 = log1/3 9 + 5 = −2 + 5 = 3.
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7. (a) The probability that the integer n is chosen is log100

(
1 +

1

n

)
.

The probability that an integer between 81 and 99, inclusive, is chosen equals the sum of
the probabilities that the integers 81, 82, . . ., 98, 99 are selected, which equals

log100

(
1 +

1

81

)
+ log100

(
1 +

1

82

)
+ · · ·+ log100

(
1 +

1

98

)
+ log100

(
1 +

1

99

)
Since the second probability equals 2 times the first probability, the following equations
are equivalent:

log100

(
1 +

1

81

)
+ log100

(
1 +

1

82

)
+ · · ·+ log100

(
1 +

1

98

)
+ log100

(
1 +

1

99

)
= 2 log100

(
1 +

1

n

)
log100

(
82

81

)
+ log100

(
83

82

)
+ · · ·+ log100

(
99

98

)
+ log100

(
100

99

)
= 2 log100

(
1 +

1

n

)
Using logarithm laws, these equations are further equivalent to

log100

(
82

81
· 83

82
· · · · · 99

98
· 100

99

)
= log100

(
1 +

1

n

)2

log100

(
100

81

)
= log100

(
1 +

1

n

)2

Since logarithm functions are invertible, we obtain
100

81
=

(
1 +

1

n

)2

.

Since n > 0, then 1 +
1

n
=

√
100

81
=

10

9
, and so

1

n
=

1

9
, which gives n = 9.

(b) Since
AC

AD
=

3

4
, then we let AC = 3t and AD = 4t for some real number t > 0.

B D

A

C

4t
3t

12

Using the cosine law in 4ACD, the following equations are equivalent:

AD2 = AC2 + CD2 − 2 · AC · CD · cos(∠ACD)

(4t)2 = (3t)2 + 12 − 2(3t)(1)(−3
5
)

16t2 = 9t2 + 1 + 18
5
t

80t2 = 45t2 + 5 + 18t

35t2 − 18t− 5 = 0

(7t− 5)(5t+ 1) = 0

Since t > 0, then t = 5
7
.

Thus, AC = 3t = 15
7

.

Using the cosine law in 4ACB and noting that

cos(∠ACB) = cos(180◦ − ∠ACD) = − cos(∠ACD) = 3
5
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the following equations are equivalent:

AB2 = AC2 +BC2 − 2 · AC ·BC · cos(∠ACB)

=
(
15
7

)2
+ 22 − 2(15

7
)(2)(3

5
)

= 225
49

+ 4− 36
7

= 225
49

+ 196
49
− 252

49

= 169
49

Since AB > 0, then AB = 13
7

.

8. (a) The parabola with equation y = ax2 + 2 is symmetric about the y-axis.
Thus, its vertex occurs when x = 0 (which gives y = a · 02 + 2 = 2) and so V has
coordinates (0, 2).
To find the coordinates of B and C, we use the equations of the parabola and line to
obtain

ax2 + 2 = −x+ 4a

ax2 + x+ (2− 4a) = 0

Using the quadratic formula,

x =
−1±

√
12 − 4a(2− 4a)

2a
=
−1±

√
1− 8a+ 16a2

2a

Since 1−8a+16a2 = (4a−1)2 and 4a−1 > 0 (since a > 1
2
), then

√
1− 8a+ 16a2 = 4a−1

and so

x =
−1± (4a− 1)

2a

which means that x =
4a− 2

2a
=

2a− 1

a
= 2− 1

a
or x =

−4a

2a
= −2.

We can use the equation of the line to obtain the y-coordinates of B and C.
When x = −2 (corresponding to point B), we obtain y = −(−2) + 4a = 4a+ 2.

When x = 2− 1

a
(corresponding to point C), we obtain y = −

(
2− 1

a

)
+4a = 4a−2+

1

a
.

Let P and Q be the points on the horizontal line through V so that BP and CQ are
perpendicular to PQ.

y

x

B

C

VP Q
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Then the area of 4V BC is equal to the area of trapezoid PBCQ minus the areas of
right-angled 4BPV and right-angled 4CQV .
Since B has coordinates (−2, 4a+ 2), P has coordinates (−2, 2), V has coordiantes (0, 2),

Q has coordinates

(
2− 1

a
, 2

)
, and C has coordinates

(
2− 1

a
, 4a− 2 +

1

a

)
, then

BP = (4a+ 2)− 2 = 4a

CQ =

(
4a− 2 +

1

a

)
− 2 = 4a− 4 +

1

a

PV = 0− (−2) = 2

QV = 2− 1

a
− 0 = 2− 1

a

PQ = PV +QV = 2 + 2− 1

a
= 4− 1

a

Therefore, the area of trapezoid PBCQ is

1

2
(BP + CQ)(PQ) =

1

2

(
4a+ 4a− 4 +

1

a

)(
4− 1

a

)
=

(
4a− 2 +

1

2a

)(
4− 1

a

)

Also, the area of 4BPV is
1

2
·BP · PV =

1

2
(4a)(2) = 4a.

Furthermore, the area of 4CQV is

1

2
· CQ ·QV =

1

2

(
4a− 4 +

1

a

)(
2− 1

a

)
=

(
2a− 2 +

1

2a

)(
2− 1

a

)
From the given information,(

4a− 2 +
1

2a

)(
4− 1

a

)
− 4a−

(
2a− 2 +

1

2a

)(
2− 1

a

)
=

72

5

Multiplying both sides by 2a2, which we distribute through the factors on the left side as
2a · a, we obtain

(8a2 − 4a+ 1)(4a− 1)− 8a3 − (4a2 − 4a+ 1)(2a− 1) =
144

5
a2

Multiplying both sides by 5, we obtain

5(8a2 − 4a+ 1)(4a− 1)− 40a3 − 5(4a2 − 4a+ 1)(2a− 1) = 144a2

Expanding and simplifying, we obtain

(160a3 − 120a2 + 40a− 5)− 40a3 − (40a3 − 60a2 + 30a− 5) = 144a2

80a3 − 204a2 + 10a = 0

2a(40a2 − 102a+ 5) = 0

2a(20a− 1)(2a− 5) = 0

and so a = 0 or a =
1

20
or a =

5

2
. Since a >

1

2
, then a =

5

2
.
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(b) We prove that there cannot be such a triangle.
We prove this by contradiction. That is, we suppose that there is such a triangle and
prove that there is then a logical contradiction.
Suppose that 4ABC is not equilateral, has side lengths that form a geometric sequence,
and angles whose measures form an arithmetic sequence.
Suppose that 4ABC has side lengths BC = a, AC = ar, and AB = ar2, for some real
numbers a > 0 and r > 1. (These lengths form a geometric sequence, and we can assume
that this sequence is increasing, and that the sides are labelled in this particular order.)
Since BC < AC < AB, then the opposite angles have the same relationships, namely
∠BAC < ∠ABC < ∠ACB.
Suppose that ∠BAC = θ, ∠ABC = θ + δ, and ∠ACB = θ + 2δ for some angles θ and δ.
(In other words, these angles form an arithmetic sequence.
Since these three angles are the angles in a triangle, then their sum is 180◦, and so

θ + (θ + δ) + (θ + 2δ) = 180◦

3θ + 3δ = 180◦

θ + δ = 60◦

In other words, ∠ABC = 60◦.

B A

C

60°

a ar

ar 2

60°+ δ

60°– δ

We could proceed using the cosine law:

AC2 = BC2 + AB2 − 2 ·BC · AB · cos(∠ABC)

(ar)2 = a2 + (ar2)2 − 2a(ar2) cos(60◦)

a2r2 = a2 + a2r4 − 2a2r2 · 1
2

a2r2 = a2 + a2r4 − a2r2

0 = a2r4 − 2a2r2 + a2

0 = a2(r4 − 2r2 + 1)

0 = a2(r2 − 1)2

This tells us that a = 0 (which is impossible) or r2 = 1 (and thus r = ±1, which is
impossible).
Therefore, we have reached a logical contradiction and so such a triangle cannot exist.

Alternatively, we could proceed using the sine law, noting that

∠BAC = θ = (θ + δ)− δ = 60◦ − δ
∠ACB = θ + 2δ = (θ + δ) + δ = 60◦ + δ

By the sine law,
BC

sin(∠BAC)
=

AC

sin(∠ABC)
=

AB

sin(∠ACB)

from which we obtain

a

sin(60◦ − δ)
=

ar

sin(60◦)
=

ar2

sin(60◦ + δ)
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Since a 6= 0, from the first two parts,

r =
ar

a
=

sin 60◦

sin(60◦ − δ)

Since ar 6= 0, from the second two parts,

r =
ar2

ar
=

sin(60◦ + δ)

sin 60◦

Equating expressions for r, we obtain successively

sin 60◦

sin(60◦ − δ)
=

sin(60◦ + δ)

sin 60◦

sin2 60◦ = sin(60◦ − δ) sin(60◦ + δ)(√
3
2

)2
= (sin 60◦ cos δ − cos 60◦ sin δ)(sin 60◦ cos δ + cos 60◦ sin δ)

3
4

=
(√

3
2

cos δ − 1
2

sin δ
)(√

3
2

cos δ + 1
2

sin δ
)

3
4

= 3
4

cos2 δ − 1
4

sin2 δ
3
4

= 3
4

cos2 δ + 3
4

sin2 δ − sin2 δ
3
4

= 3
4
(cos2 δ + sin2 δ)− sin2 δ

3
4

= 3
4
− sin2 δ

sin2 δ = 0

which means that δ = 0◦. (Any other angle δ with sin δ = 0 would not produce angles in
a triangle.)
Therefore, all three angles in the triangle are 60◦, which means that the triangle is equi-
lateral, which it cannot be.
Therefore, we have reached a logical contradiction and so such a triangle cannot exist.
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9. (a) The (4, 2)-sawtooth sequence consists of the terms

1, 2, 3, 4, 3, 2, 1, 2, 3, 4, 3, 2, 1

whose sum is 31.

(b) Solution 1
Suppose that m ≥ 2.
The (m, 3)-sawtooth sequence consists of an initial 1 followed by 3 teeth, each of which
goes from 2 to m to 1.
Consider one of these teeth whose terms are

2, 3, 4, . . . ,m− 1,m,m− 1,m− 2,m− 3, . . . , 2, 1

When we write the ascending portion directly above the descending portion, we obtain

2, 3, 4, . . . , m− 1, m,
m− 1, m− 2, m− 3, . . . , 2, 1

From this presentation, we can see m−1 pairs of terms, the sum of each of which is m+1.
(Note that 2 + (m− 1) = 3 + (m− 2) = 4 + (m− 3) = · · · = (m− 1) + 2 = m+ 1 and as
we move from left to right, the terms on the top increase by 1 at each step and the terms
on the bottom decrease by 1 at each step, so their sum is indeed constant.)
Therefore, the sum of the numbers in one of the teeth is (m− 1)(m+ 1) = m2 − 1.
This means that the sum of the terms in the (m, 3)-sawtooth sequence is 1 + 3(m2 − 1),
which equals 3m2 − 2.

Solution 2
Suppose that m ≥ 2.
The (m, 3)-sawtooth sequence consists of an initial 1 followed by 3 teeth, each of which
goes from 2 to m to 1.
Consider one of these teeth whose terms are

2, 3, 4, . . . ,m− 1,m,m− 1,m− 2,m− 3, . . . , 2, 1

This tooth includes one 1, two 2s, two 3s, and so on, until we reach two (m− 1)s, and one
m.
The sum of these numbers is

1(1) + 2(2) + 2(3) + · · ·+ 2(m− 1) +m

which can be rewritten as

2(1+2+3+ · · ·+(m−1)+m)−1−m = 2 · 1
2
m(m+1)−m−1 = m2 +m−m−1 = m2−1

Therefore, the sum of the numbers in one of the teeth is (m− 1)(m+ 1) = m2 − 1.
This means that the sum of the terms in the (m, 3)-sawtooth sequence is 1 + 3(m2 − 1),
which equals 3m2 − 2.
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(c) From (b), the sum of the terms in each tooth is m2 − 1.
Thus, the sum of the terms in the (m,n)-sawtooth sequence is 1 + n(m2 − 1).
For this to equal 145, we have n(m2 − 1) = 144.
This means that n and m2 − 1 form a divisor pair of 144.
As m ranges from 2 to 12, the values of m2 − 1 are

3, 8, 15, 24, 35, 48, 63, 80, 99, 120, 143

(When m = 13, we get m2− 1 = 168 and so when m ≥ 13, the value of m2− 1 is too large
to be a divisor of 144.)
Of these, 3, 8, 24, 48 are divisors of 144 (corresponding to m = 2, 3, 5, 7), and give corre-
sponding divisors 48, 18, 6, 3.
Therefore, the pairs (m,n) for which the sum of the terms is 145 are

(m,n) = (2, 48), (3, 18), (5, 6), (7, 3)

(d) In an (m,n)-sawtooth sequence, the sum of the terms is n(m2 − 1) + 1.
In each tooth, there are (m − 1) + (m − 1) = 2m − 2 terms (from 2 to m, inclusive, and
from m− 1 to 1, inclusive).
This means that there are n(2m− 2) + 1 terms in the sequence.

Thus, the average of the terms in the sequence is
n(m2 − 1) + 1

n(2m− 2) + 1
.

We need to prove that this is not an integer for all pairs of positive integers (m,n) with
m ≥ 2.

Suppose that
n(m2 − 1) + 1

n(2m− 2) + 1
= k for some integer k. We will show, by contradiction, that

this is not possible.

Since
n(m2 − 1) + 1

n(2m− 2) + 1
= k, then

m2n− n+ 1

2mn− 2n+ 1
= k

m2n− n+ 1 = 2mnk − 2nk + k

m2n− 2mnk + (2nk − n− k + 1) = 0

We treat this as a quadratic equation in m.
Since m is an integer, then this equation has integer roots, and so its discriminant must
be a perfect square.
The discriminant of this quadratic equation is

∆ = (−2nk)2 − 4n(2nk − n− k + 1)

= 4n2k2 − 8n2k + 4n2 + 4nk − 4n

= 4n2(k2 − 2k + 1) + 4n(k − 1)

= 4n2(k − 1)2 + 4n(k − 1)

= (2n(k − 1))2 + 2(2n(k − 1)) + 1− 1

= (2n(k − 1) + 1)2 − 1

We note that (2n(k−1)+1)2 is a perfect square and ∆ is supposed to be a perfect square.
But these perfect squares differ by 1, and the only two perfect squares that differ by 1 are
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1 and 0.
(To justify this last fact, we could look at the equation a2 − b2 = 1 where a and b are
non-negative integers, and factor this to obtain (a + b)(a − b) = 1 which would give
a+ b = a− b = 1 from which we get a = 1 and b = 0.)
Since (2n(k − 1) + 1)2 = 1 and 2n(k − 1) + 1 is non-negative, then 2n(k − 1) + 1 = 1 and
so 2n(k − 1) = 0.
Since n is positive, then k − 1 = 0 or k = 1.
Therefore, the only possible way in which the average is an integer is if the average is 1.
In this case, we get

m2n− 2mn+ (2n− n− 1 + 1) = 0

m2n− 2mn+ n = 0

n(m2 − 2m+ 1) = 0

n(m− 1)2 = 0

Since n and m are positive integers with m ≥ 2, then n(m − 1)2 6= 0, which is a contra-
diction.
Therefore, the average of the terms in an (m,n)-sawtooth sequence cannot be an integer.
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10. (a) Assume that the first topping is placed on the top half of the pizza. (We can rotate the
pizza so that this is the case.)
Assume that the second topping is placed on the half of the pizza that is above the
horizontal diameter that makes an angle of θ clockwise with the horizontal as shown. In
other words, the topping covers the pizza from θ to θ + 180◦.

T1
T1

T1
T2

T2
θ

We may assume that 0◦ ≤ θ ≤ 360◦.
When 0◦ ≤ θ ≤ 90◦, the angle of the sector covered by both toppings is at least 90◦ (and
so is at least a quarter of the circle).
When 90◦ < θ ≤ 180◦, the angle of the sector covered by both toppings is less than 90◦

(and so is less than a quarter of the circle).
When θ moves past 180◦, the left-hand portion of the upper half circle starts to be covered
with both toppings again. When 180◦ ≤ θ < 270◦, the angle of the sector covered by both
toppings is less than 90◦ (and so is less than a quarter of the circle).
When 270◦ ≤ θ ≤ 360◦, the angle of the sector covered by both toppings at least 90◦ (and
so is at least a quarter of the circle).
Therefore, if θ is chosen randomly between 0◦ and 360◦, the combined length of the intervals
in which at least 1

4
of the pizza is covered with both toppings is 180◦.

Therefore, the probability is
180◦

360◦
, or

1

2
.

(b) Suppose that the first topping is placed on the top half of the pizza. (Again, we can rotate
the pizza so that this is the case.)
Assume that the second topping is placed on the half of the pizza that is above the
diameter that makes an angle of θ clockwise with the horizontal as shown. In other words,
the topping covers the pizza from θ to θ + 180◦.
We may assume that 0◦ ≤ θ ≤ 180◦. If 180◦ ≤ θ ≤ 360◦, the resulting pizza can be seen
as a reflection of the one shown.

T1

T1
T2

T2
θ

T1

T1
T2

T2
θ

Consider the third diameter added, shown dotted in the diagram above. Suppose that its
angle with the horizontal is α. (In the diagram, α < 90◦.) We assume that the topping is
added on the half pizza clockwise beginning at the angle of α, and that this topping stays
in the same relative position as the diameter sweeps around the circle.
For what angles α will there be a portion of the pizza covered with all three toppings?
If 0◦ ≤ α < 180◦, there will be a portion covered with three toppings; this portion is above
the right half of the horizontal diameter.
If 180◦ ≤ α < 180◦ + θ, the third diameter will pass through the two regions with angle
θ and the third topping will be below this diameter, so there will not be a region covered
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with three toppings.
If 180◦ + θ ≤ α ≤ 360◦, the third topping starts to cover the leftmost part of the region
currently covered with two toppings, and so a region is covered with three toppings.
Therefore, for an angle θ with 0◦ ≤ θ ≤ 180◦, a region of the pizza is covered with three
toppings when 0◦ ≤ α < 180◦ and when 180◦ + θ ≤ α ≤ 360◦.
To determine the desired probability, we graph points (θ, α). A particular choice of diam-
eters corresponds to a choice of angles θ and α with 0◦ ≤ θ ≤ 180◦ and 0◦ ≤ α ≤ 360◦,
which corresponds to a point on the graph below.
The probability that we are looking for then equals the area of the region of this graph
where three toppings are in a portion of the pizza divided by the total allowable area of
the graph.
The shaded region of the graph corresponds to instances where a portion of the pizza will
be covered by three toppings.

α

θ

180º

180º

360º α = θ + 180º

This shaded region consists of the entire portion of the graph where 0◦ ≤ α ≤ 180◦

(regardless of θ) as well as the region above the line with equation α = θ + 180◦ (that is,
the region with θ + 180◦ ≤ α ≤ 360◦).
Since the slope of the line is 1, it divides the upper half of the region, which is a square,
into two pieces of equal area.
Therefore, 3

4
of the graph is shaded, which means that the probability that a region of the

pizza is covered by all three toppings is
3

4
.

(c) The main idea of this solution is that the toppings all overlap exactly when there is one
topping with the property that all other toppings “begin” somewhere in that toppings
semi-circle. In the rest of this solution, we determine the probability using this fact and
then justify this fact.

Suppose that, for 1 ≤ j ≤ N , topping j is put on the semi-circle that starts at an angle of
θj clockwise from the horizontal left-hand radius and continues to an angle of θj + 180◦,
where 0◦ ≤ θj < 360◦. By establishing these variables and this convention, we are fixing
both the angle of the diameter and the semi-circle defined by this diameter on which the
topping is placed.
Suppose that there is some region of the pizza with non-zero area that is covered by all N
toppings.
This region will be a sector with two bounding radii, each of which must be half of a
diameter that defines one of the toppings.
Suppose that the radius at the clockwise “end” of the sector is the end of the semi-circle
where topping X is placed, and that the radius at the counter-clockwise “beginning” of
the sector is the start of the semi-circle where topping Y is placed.
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TX ends

All toppingsTY begins

TX begins

TY ends

This means that each of the other N − 2 toppings begins between (in the clockwise sense)
the points where topping X begins and where topping Y begins.
Consider the beginning angle for topping X, θX .
To say that the other N − 1 toppings begin at some point before topping X ends is the
same as saying that each θj with j 6= X is between θX and θX + 180◦.
Here, we can allow for the possibility that θX + 180◦ is greater than 360◦ by saying that
an angle equivalent to θj (which is either θj or θj + 360◦) is between θX and θX + 180◦.
For each j 6= X, the angle θj is randomly, uniformly and independently chosen on the

circle, so there is a probability of
1

2
that this angle (or its equivalent) will be in the semi-

circle between θX and θX + 180◦.
Since there are N − 1 such angles, the probability that all are between θX and θX + 180◦

is
1

2N−1 .

Since there are N possible selections for the first topping that can end the common sector,

then the desired probability will be
N

2N−1 as long as we can show that no set of angles can

give two different sectors that are both covered with all toppings.
To show this last fact, we suppose without loss of generality that

0◦ = θ1 < θ2 < θ3 < · · · < θN−1 < θN < 180◦

(We can relabel the toppings if necessary to obtain this order and rotate the pizza so that
topping 1 begins at 0◦.)
We need to show that it is not possible to have a Z for which θZ , θZ+1, . . . , θN , θ1, θ2, . . . , θZ−1
all lie in a semi-circle starting with θZ .
Since θZ < 180◦ and θ1 can be thought of as 360◦, then this is not possible as θ1 and the
angles after it are all not within 180◦ of θZ .
Therefore, it is not possible to have two such regions with the same set of angles, and so

the desired probability is
N

2N−1 .
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1. (a) Since (a− 1) + (2a− 3) = 14, then 3a = 18 and so a = 6.

(b) Since (c2 − c) + (2c− 3) = 9, then c2 + c− 3 = 9 and so c2 + c− 12 = 0.
Factoring, we obtain (c+ 4)(c− 3) = 0 and so c = 3 or c = −4.

(c) Solution 1
Manipulating algebraically, we obtain the following equivalent equations:

1

x2
+

3

2x2
= 10

2 + 3 = 20x2 (multiplying through by 2x2, given that x 6= 0)

5 = 20x2

x2 =
1

4

and so x = ±1

2
.

Solution 2
Manipulating algebraically, we obtain the following equivalent equations:

1

x2
+

3

2x2
= 10

2

2x2
+

3

2x2
= 10

5

2x2
= 10

5 = 20x2 (since x 6= 0)

x2 =
1

4

and so x = ±1

2
.

2. (a) Using a calculator, we see that

(103 + 1)2 = 10012 = 1 002 001

The sum of the digits of this integer is 1 + 2 + 1 which equals 4.
To determine this integer without using a calculator, we can let x = 103.
Then

(103 + 1)2 = (x+ 1)2

= x2 + 2x+ 1

= (103)2 + 2(103) + 1

= 1 002 001
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(b) Before the price increase, the total cost of 2 small cookies and 1 large cookie is
2 · $1.50 + $2.00 = $5.00.
10% of $1.50 is 0.1 · $1.50 = $0.15. After the price increase, 1 small cookie costs
$1.50 + $0.15 = $1.65.
5% of $2.00 is 0.05 · $2.00 = $0.10. After the price increase, 1 large cookie costs
$2.00 + $0.10 = $2.10.
After the price increase, the total cost of 2 small cookies and 1 large cookie is
2 · $1.65 + $2.10 = $5.40.

The percentage increase in the total cost is
$5.40− $5.00

$5.00
× 100% =

40

500
× 100% = 8%.

(c) Suppose that Rayna’s age is x years.
Since Qing is twice as old as Rayna, Qing’s age is 2x years.
Since Qing is 4 years younger than Paolo, Paolo’s age is 2x+ 4 years.
Since the average of their ages is 13 years, we obtain

x+ (2x) + (2x+ 4)

3
= 13

This gives 5x+ 4 = 39 and so 5x = 35 or x = 7.
Therefore, Rayna is 7 years old, Qing is 14 years old, and Paolo is 18 years old.

(Checking, the average of 7, 14 and 18 is
7 + 14 + 18

3
=

39

3
= 13.)

3. (a) The length of PQ is equal to
√

(0− 5)2 + (12− 0)2 =
√

(−5)2 + 122 = 13.
In a similar way, we can see that QR = RS = SP = 13.
Therefore, the perimeter of PQRS is 4 · 13 = 52.
(We can also see that if O is the origin, then 4POQ, 4POS, 4ROQ, and 4ROS are
congruent because OQ = OS and OP = OR, which means that PQ = QR = RS = SP .)

(b) Solution 1
Suppose that B has coordinates (r, s) and C has coordinates (t, u).
Since M(3, 9) is the midpoint of A(0, 8) and B(r, s), then 3 is the average of 0 and r (which
gives r = 6) and 9 is the average of 8 and s (which gives s = 10).
Since N(7, 6) is the midpoint of B(6, 10) and C(t, u), then 7 is the average of 6 and t
(which gives t = 8) and 6 is the average of 10 and u (which gives u = 2).

The slope of the line segment joining A(0, 8) and C(8, 2) is
8− 2

0− 8
which equals −3

4
.

Solution 2
Since M is the midpoint of AB and N is the midpoint of BC, then MN is parallel to AC.
Therefore, the slope of AC equals the slope of the line segment joining M(3, 9) to N(7, 6),

which is
9− 6

3− 7
or −3

4
.

(c) Since V (1, 18) is on the parabola, then 18 = −2(12) + 4(1) + c and so c = 18 + 2− 4 = 16.
Thus, the equation of the parabola is y = −2x2 + 4x+ 16.
The y-intercept occurs when x = 0, and so y = 16. Thus, D has coordinates (0, 16).
The x-intercepts occur when y = 0. Here,

−2x2 + 4x+ 16 = 0

−2(x2 − 2x− 8) = 0

−2(x− 4)(x+ 2) = 0
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and so x = 4 and x = −2.
This means that E and F , in some order, have coordinates (4, 0) and (−2, 0).
Therefore, 4DEF has base EF of length 4 − (−2) = 6 and height 16 (vertical distance
from the x-axis to the point D).
Finally, the area of 4DEF is 1

2
· 6 · 16 = 48.

4. (a) We obtain successively

3(8x) + 5(8x) = 261

8(8x) = 261

8x+1 = 261

(23)x+1 = 261

23(x+1) = 261

Thus, 3(x+ 1) = 61 and so 3x+ 3 = 61 which gives 3x = 58 or x = 58
3

.

(b) Since the list 3n2, m2, 2(n+1)2 consists of three consecutive integers written in increasing
order, then

2(n+ 1)2 − 3n2 = 2

2n2 + 4n+ 2− 3n2 = 2

−n2 + 4n = 0

−n(n− 4) = 0

and so n = 0 or n = 4.
If n = 0, the list becomes 0, m2, 2. This means that m2 = 1 and so m = ±1.
If n = 4, we have 3n2 = 3 · 16 = 48 and 2(n+ 1)2 = 2 · 25 = 50 giving the list 48, m2, 50.
This means that m2 = 49 and so m = ±7.
Thus, the possible values for m are 1, −1, 7, −7.

5. (a) Solution 1
Suppose that S0 has coordinates (a, b).
Step 1 moves (a, b) to (a,−b).
Step 2 moves (a,−b) to (a,−b+ 2).
Step 3 moves (a,−b+ 2) to (−a,−b+ 2).
Thus, S1 has coordinates (−a,−b+ 2).
Step 1 moves (−a,−b+ 2) to (−a, b− 2).
Step 2 moves (−a, b− 2) to (−a, b).
Step 3 moves (−a, b) to (a, b).
Thus, S2 has coordinates (a, b), which are the same coordinates as S0.
Continuing this process, S4 will have the same coordinates as S2 (and thus as S0) and S6

will have the same coordinates as S4, S2 and S0.
Since the coordinates of S6 are (−7,−1), the coordinates of S0 are also (−7,−1).

Solution 2
We work backwards from S6(−7,−1).
To do this, we undo the Steps of the process P by applying them in reverse order.
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Since Step 3 reflects a point in the y-axis, its inverse does the same.
Since Step 2 translates a point 2 units upwards, its inverse translates a point 2 units
downwards.
Since Step 1 reflects a point in the x-axis, its inverse does the same.
Applying these inverse steps to S6(−7,−1), we obtain (7,−1), then (7,−3), then (7, 3).
Thus, S5 has coordinates (7, 3).
Applying the inverse steps to S5(7, 3), we obtain (−7, 3), then (−7, 1), then (−7,−1).
Thus, S4 has coordinates (−7,−1), which are the same coordinates as S6.
If we apply these steps two more times, we will see that S2 is the same point as S4.
Two more applications tell us that S0 is the same point as S2.
Therefore, the coordinates of S0 are the same as the coordinates of S6, which are (−7,−1).

(b) We begin by determining the length of AB in terms of x.
Since ABDE is a rectangle, BD = AE = 2x.
Since 4BCD is equilateral, ∠DBC = 60◦.
Join A to D.

A B

C

DE

Since AD and BC are parallel, ∠ADB = ∠DBC = 60◦.
Consider 4ADB. This is a 30◦-60◦-90◦ triangle since ∠ABD is a right angle.

Using ratios of side lengths,
AB

BD
=

√
3

1
and so AB =

√
3BD = 2

√
3x, which is the answer

to (i).

Next, we determine
AC

AD
.

Now,
AD

BD
=

2

1
and so AD = 2BD = 4x.

Suppose that M is the midpoint of AE and N is the midpoint of BD.
Since AE = BD = 2x, then AM = ME = BN = ND = x.
Join M to N and N to C and A to C.

A B

C

DE

N
M

Since ABDE is a rectangle, then MN is parallel to AB and so MN is perpendicular to
both AE and BD.
Also, MN = AB = 2

√
3x.

Since 4BCD is equilateral, its median CN is perpendicular to BD.
Since MN and NC are perpendicular to BD, MNC is actually a straight line segment
and so MC = MN +NC.
Now 4BNC is also a 30◦-60◦-90◦ triangle, and so NC =

√
3BN =

√
3x.

This means that MC = 2
√

3x+
√

3x = 3
√

3x.
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Finally, 4AMC is right-angled at M and so

AC =
√
AM2 +MC2 =

√
x2 + (3

√
3x)2 =

√
x2 + 27x2 =

√
28x2 = 2

√
7x

since x > 0.

This means that
AC

AD
=

2
√

7x

4x
=

√
7

2
=

√
7

4
, which means that the integers r = 7 and

s = 4 satisfy the conditions for (ii).

6. (a) Solution 1
Since the sequence t1, t2, t3, . . . , tn−2, tn−1, tn is arithmetic, then

t1 + tn = t2 + tn−1 = t3 + tn−2

This is because, if d is the common difference, we have t2 = t1 + d and tn−1 = tn − d, as
well as having t3 = t1 + 2d and tn−2 = tn − 2d.
Since the sum of all n terms is 1000, using one formula for the sum of an arithmetic
sequence gives

n

2
(t1 + tn) = 1000

n(t1 + tn) = 2000

n(t3 + tn−2) = 2000

n(5 + 95) = 2000

and so n = 20.

Solution 2
Suppose that the arithmetic sequence with n terms has first term a and common differ-
ence d.
Then t3 = a+ 2d = 5 and tn−2 = a+ (n− 3)d = 95.
Since the sum of the n terms equals 1000, then

n

2
(2a+ (n− 1)d) = 1000

Adding the equations a+ 2d = 5 and a+ (n− 3)d = 95, we obtain 2a+ (n− 1)d = 100.

Substituting, we get
n

2
(100) = 1000 from which we obtain n = 20.

(b) Since the sum of a geometric sequence with first term a, common ratio r and 4 terms is
6 + 6

√
2, then

a+ ar + ar2 + ar3 = 6 + 6
√

2

Since the sum of a geometric sequence with first term a, common ratio r and 8 terms is
30 + 30

√
2, then

a+ ar + ar2 + ar3 + ar4 + ar5 + ar6 + ar7 = 30 + 30
√

2

But

a+ ar + ar2 + ar3 + ar4 + ar5 + ar6 + ar7

= (a+ ar + ar2 + ar3) + r4(a+ ar + ar2 + ar3)

= (1 + r4)(a+ ar + ar2 + ar3)
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Therefore,

30 + 30
√

2 = (1 + r4)(6 + 6
√

2)

30 + 30
√

2

6 + 6
√

2
= 1 + r4

5 = 1 + r4

r4 = 4

r2 = 2 (since r2 > 0)

r = ±
√

2

If r =
√

2,

a+ ar + ar2 + ar3 = a+
√

2a+ a(
√

2)2 + a(
√

2)3 = a+
√

2a+ 2a+ 2
√

2a = a(3 + 3
√

2)

Since a+ ar+ ar2 + ar3 = 6 + 6
√

2, then a(3 + 3
√

2) = 6 + 6
√

2 and so a =
6 + 6

√
2

3 + 3
√

2
= 2.

If r = −
√

2,

a+ ar+ ar2 + ar3 = a−
√

2a+ a(−
√

2)2 + a(−
√

2)3 = a−
√

2a+ 2a− 2
√

2a = a(3− 3
√

2)

Since a+ ar + ar2 + ar3 = 6 + 6
√

2, then a(3− 3
√

2) = 6 + 6
√

2 and so

a =
6 + 6

√
2

3− 3
√

2
=

2 + 2
√

2

1−
√

2
=

(2 + 2
√

2)(1 +
√

2)

(1−
√

2)(1 +
√

2)
=

2 + 2
√

2 + 2
√

2 + 4

1− 2
= −6− 4

√
2

Therefore, the possible values of a are a = 2 and a = −6− 4
√

2.

An alternate way of arriving at the equation 1 + r4 = 5 is to use the formula for the sum
of a geometric sequence twice to obtain

a(1− r4)
1− r

= 6 + 6
√

2
a(1− r8)

1− r
= 30 + 30

√
2

assuming that r 6= 1. (Can you explain why r 6= 1 and r4 6= 1 without knowing already that
r = ±

√
2?)

Dividing the second equation by the first, we obtain

a(1− r8)
1− r

· 1− r
a(1− r4)

=
30 + 30

√
2

6 + 6
√

2

which gives
1− r8

1− r4
= 5

Since 1− r8 = (1 + r4)(1− r4), we obtain 1 + r4 = 5. We then can proceed as above.
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7. (a) Victor stops when there are either 2 green balls on the table or 2 red balls on the table.
If the first 2 balls that Victor removes are the same colour, Victor will stop.
If the first 2 balls that Victor removes are different colours, Victor does not yet stop, but
when he removes a third ball, its colour must match the colour of one of the first 2 balls
and so Victor does stop.
Therefore, the probability that he stops with at least 1 red ball and 1 green ball on the
table is equal to the probability that the first 2 balls that he removes are different colours.
Also, the probability that the first 2 balls that he removes are different colours is equal to
1 minus the probability that the first 2 balls that he removes are the same colour.
The probability that the first two balls that Victor draws are both green is 3

7
· 2
6

because
for the first ball there are 7 balls in the bag, 3 of which are green and for the second ball
there are 6 balls in the bag, 2 of which are green.
The probability that the first two balls that Victor draws are both red is 4

7
· 3
6

because for
the first ball there are 7 balls in the bag, 4 of which are red and for the second ball there
are 6 balls in the bag, 3 of which are red.
Thus, the probability that the first two balls that Victor removes are the same colour is

3
7
· 2
6

+ 4
7
· 3
6

= 1
7

+ 2
7

= 3
7

This means that the desired probability is 1− 3
7

= 4
7
.

(b) Using the definition of f , the following equations are equivalent:

f(a) = 0

2a2 − 3a+ 1 = 0

(a− 1)(2a− 1) = 0

Therefore, f(a) = 0 exactly when a = 1 or a = 1
2
.

Thus, f(g(sin θ)) = 0 exactly when g(sin θ) = 1 or g(sin θ) = 1
2
.

Using the definition of g,

• g(b) = 1 exactly when log 1
2
b = 1, which gives b =

(
1
2

)1
= 1

2
, and

• g(b) = 1/2 exactly when log 1
2
b = 1/2, which gives b =

(
1
2

)1/2
= 1√

2
.

Therefore, f(g(sin θ)) = 0 exactly when sin θ = 1
2

or sin θ = 1√
2
.

Since 0 ≤ θ ≤ 2π, the solutions are θ = 1
6
π, 5

6
π, 1

4
π, 3

4
π.

8. (a) Suppose that the integers in the first row are, in order, a, b, c, d, e.
Using these, we calculate the integer in each of the boxes below the top row in terms of
these variables, using the rule that each integer is the product of the integers in the two
boxes above:

a b c d e
ab bc cd de

ab2c bc2d cd2e
ab3c3d bc3d3e

ab4c6d4e

Therefore, ab4c6d4e = 9 953 280 000.
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Next, we determine the prime factorization of the integer 9 953 280 000:

9 953 280 000 = 104 · 995 328

= 24 · 54 · 23 · 124 416

= 27 · 54 · 23 · 15 552

= 210 · 54 · 23 · 1944

= 213 · 54 · 23 · 243

= 216 · 54 · 35

= 216 · 35 · 54

Thus, ab4c6d4e = 216 · 35 · 54.
Since the right side is not divisible by 7, none of a, b, c, d, e can equal 7.
Thus, a, b, c, d, e are five distinct integers chosen from {1, 2, 3, 4, 5, 6, 8}.
The only one of these integers divisible by 5 is 5 itself.
Since 216 · 35 · 54 includes exactly 4 factors of 5, then either b = 5 or d = 5. No other
placement of the 5 can give exactly 4 factors of 5.

Case 1: b = 5
Here, ac6d4e = 216 · 35 and a, c, d, e are four distinct integers chosen from {1, 2, 3, 4, 6, 8}.
Since ac6d4e includes exactly 5 factors of 3 and the possible values of a, c, d, e that are
divisible by 3 are 3 and 6, then either d = 3 and one of a and e is 6, or d = 6 and one of
a and e is 3. No other placements of the multiples of 3 can give exactly 5 factors of 3.

Case 1a: b = 5, d = 3, a = 6

Here, a · c6 · d4 · e = 6 · c6 · 34 · e = 2 · 35 · c6 · e.
This gives c6e = 215 and c and e are distinct integers from {1, 2, 4, 8}.
Trying the four possible values of c shows that c = 4 and e = 8 is the only solution in this
case. Here, (a, b, c, d, e) = (6, 5, 4, 3, 8).

Case 1b: b = 5, d = 3, e = 6 We obtain (a, b, c, d, e) = (8, 5, 4, 3, 6).

Case 1c: b = 5, d = 6, a = 3

Here, a · c6 · d4 · e = 3 · c6 · 64 · e = 24 · 35 · c6 · e.
This gives c6e = 212 and c and e are distinct integers from {1, 2, 4, 8}.
Trying the four possible values of c shows that c = 4 and e = 1 is the only solution in this
case. Here, (a, b, c, d, e) = (3, 5, 4, 6, 1).

Case 1d: b = 5, d = 6, e = 3 We obtain (a, b, c, d, e) = (1, 5, 4, 6, 3).

Case 2: d = 5: A similar analysis leads to 4 further quintuples (a, b, c, d, e).

Therefore, there are 8 ways in which the integers can be chosen and placed in the top row
to obtain the desired integer in the bottom box.
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(b) Let N =
(1!)(2!)(3!) · · · (398!)(399!)(400!)

200!
.

For each integer k from 1 to 200, inclusive, we rewrite (2k)! as 2k · (2k − 1)!.
Therefore, (2k − 1)!(2k)! = (2k − 1)! · 2k · (2k − 1)! = 2k((2k − 1)!)2.
(In particular, (1!)(2!) = 2(1!)2, (3!)(4!) = 4(3!)2, and so on.)
Thus,

N =
2(1!)2 · 4(3!)2 · · · · · 398(397!)2 · 400(399!)2

200!

Re-arranging the numerator of the expression, we obtain

N =
(1!)2(3!)2 · · · (397!)2(399!)2 · (2 · 4 · · · · · 398 · 400)

200!

We can now re-write 2 · 4 · · · · · 398 · 400 as (2 · 1) · (2 · 2) · · · · · (2 · 199) · (2 · 200).
Since there are 200 sets of parentheses, we obtain

N =
(1!)2(3!)2 · · · (397!)2(399!)2 · 2200 · (1 · 2 · · · · · 199 · 200)

200!

Since 1 · 2 · · · · · 199 · 200 = 200!, we can conclude that

N = 2200(1!)2(3!)2 · · · (397!)2(399!)2

Therefore, √
N = 2100(1!)(3!) · · · (397!)(399!)

which is a product of integers and thus an integer itself.
Since

√
N is an integer, N is a perfect square, as required.

9. (a) When a = 5 and b = 4, we obtain a2 + b2 − ab = 52 + 42 − 5 · 4 = 21.
Therefore, we want to find all pairs of integers (K,L) with K2 + 3L2 = 21.
If L = 0, then L2 = 0, which gives K2 = 21 which has no integer solutions.
If L = ±1, then L2 = 1, which gives K2 = 18 which has no integer solutions.
If L = ±2, then L2 = 4, which gives K2 = 9 which gives K = ±3.
If L = ±3, then L2 = 9. Since 3L2 = 27 > 21, then there are no real solutions for K.
Similarly, if L2 > 9, there are no real solutions for K.
Therefore, the solutions are (K,L) = (3, 2), (−3, 2), (3,−2), (−3,−2).

(b) Suppose that K and L are integers.
Then

(K + L)2 + (K − L)2 − (K + L)(K − L)

= (K2 + 2KL+ L2) + (K2 − 2KL+ L2)− (K2 − L2)

= K2 + 3L2

Therefore, the integers a = K+L and b = K−L satisfy the equationK2+3L2 = a2+b2−ab,
and so for all integers K and L, there is at least one pair of integers (a, b) that satisfy the
equation.

How could we come up with this? One way to do this would be trying some small values
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of K and L, calculating K2 + 3L2 and using this to make a guess, which can then be
proven algebraically as above. In particular, here are some values:

K L K2 + 3L2 = a2 + b2 − ab a b
1 1 4 2 0
2 1 7 3 1
3 1 12 4 2
1 2 13 3 −1
2 2 16 4 0
3 2 21 5 1

The columns for a and b might lead us to guess that a = K +L and b = K −L, which we
proved above does in fact work.

(c) Suppose that a and b are integers.

If a is even, then
a

2
is an integer and so(a

2
− b
)2

+ 3
(a

2

)2
=
a2

4
− 2 · a

2
· b+ b2 +

3a2

4
= a2 + b2 − ab

Thus, if K =
a

2
− b and L =

a

2
, we have K2 + 3L2 = a2 + b2 − ab.

If b is even, then
b

2
is an integer and so a similar algebraic argument shows that(

b

2
− a
)2

+ 3

(
b

2

)2

= a2 + b2 − ab

and so if K =
b

2
− a and L =

b

2
, we have K2 + 3L2 = a2 + b2 − ab.

If a and b are both odd, then a+ b and a− b are both even, which means that
a+ b

2
and

a− b
2

are both integers, and so(
a+ b

2

)2

+3

(
a− b

2

)2

=
a2 + 2ab+ b2

4
+

3a2 − 6ab+ 3b2

4
=

4a2 + 4b2 − 4ab

4
= a2+b2−ab

Thus, if K =
a+ b

2
and L =

a− b
2

, we have K2 + 3L2 = a2 + b2 − ab.
Therefore, in all cases, for all integers a and b, there is at least one pair of integers (K,L)
with K2 + 3L2 = a2 + b2 − ab.
As in (b), trying some small cases might help us make a guess of possible expressions for
K and L in terms of a and b:

a b K2 + 3L2 = a2 + b2 − ab K L
1 1 1 1 0
2 1 3 0 1
3 1 7 2 1
4 1 13 1 2
1 2 3 0 1
2 2 4 1 1
3 2 7 2 1
4 2 12 3 1
5 3 19 4 1
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While there might not initially seem to be useful patterns here, re-arranging the rows and
adding some duplicates might help show a pattern:

a b K2 + 3L2 = a2 + b2 − ab K L
2 1 3 0 1
4 1 13 1 2
2 2 4 1 1
4 2 12 3 1

1 2 3 0 1
3 2 7 2 1
4 2 12 3 1

1 1 1 1 0
3 1 7 2 1
5 3 19 4 1

10. (a) We label the centres of the outer circles, starting with the circle labelled Z and proceeding
clockwise, as A, B, C, D, E, F , G, H, J , and K, and the centre of the circle labelled Y
as L.

A

B C D

E

F

G

HJK

L

Join L to each of A, B, C, D, E, F , G, H, J , and K. Join A to B, B to C, C to D, D
to E, E to F , F to G, G to H, H to J , J to K, and K to A.
When two circles are tangent, the distance between their centres equals the sum of their
radii.
Thus,

BC = CD = DE = EF = FG = GH = HJ = JK = 2 + 1 = 3

BL = DL = FL = HL = KL = 2 + 4 = 6

CL = EL = GL = JL = 1 + 4 = 5

AB = AK = r + 2

AL = r + 4

By side-side-side congruence, the following triangles are congruent:

4BLC,4DLC,4DLE,4FLE,4FLG,4HLG,4HLJ,4KLJ

Similarly, 4ALB and 4ALK are congruent by side-side-side.
Let ∠ALB = θ and let ∠BLC = α.
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By congruent triangles, ∠ALK = θ and

∠BLC = ∠DLC = ∠DLE = ∠FLE = ∠FLG = ∠HLG = ∠HLJ = ∠KLJ = α

The angles around L add to 360◦ and so 2θ + 8α = 360◦ which gives θ + 4α = 180◦ and
so θ = 180◦ − 4α.
Since θ = 180◦ − 4α, then cos θ = cos(180◦ − 4α) = − cos 4α.
Consider 4ALB and 4BLC.

A

B C

L

3

56
r + 2

r + 4
θ
α

By the cosine law in 4ALB,

AB2 = AL2 +BL2 − 2 · AL ·BL · cos θ

(r + 2)2 = (r + 4)2 + 62 − 2(r + 4)(6) cos θ

12(r + 4) cos θ = r2 + 8r + 16 + 36− r2 − 4r − 4

cos θ =
4r + 48

12(r + 4)

cos θ =
r + 12

3r + 12

By the cosine law in 4BLC,

BC2 = BL2 + CL2 − 2 ·BL · CL · cosα

32 = 62 + 52 − 2(6)(5) cosα

60 cosα = 36 + 25− 9

cosα =
52

60

cosα =
13

15

Since cosα =
13

15
, then

cos 2α = 2 cos2 α− 1

= 2 · 169

225
− 1

=
338

225
− 225

225

=
113

225
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and

cos 4α = 2 cos2 2α− 1

= 2 · 1132

2252
− 1

=
25 538

50 625
− 50 625

50 625

= −25 087

50 625

Finally,

cos θ = − cos 4α

r + 12

3r + 12
=

25 087

50 625

r + 12

r + 4
=

25 087

16 875

(r + 4) + 8

r + 4
=

25 087

16 875

1 +
8

r + 4
=

25 087

16 875

8

r + 4
=

8212

16 875

2

r + 4
=

2053

16 875

r + 4

2
=

16 875

2053

r + 4 =
33 750

2053

r =
25 538

2053

Therefore, the positive integers s = 25 538 and t = 2053 satisfy the required conditions.

(b) Let the centre of the middle circle be O, and the centres of the other circles be P , Q, R,
and S, as shown.
Join O to P , Q, R, and S, and join P to Q, Q to R, R to S, and S to P .
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c

b

P Q

RS

O
a

a

a

a
a

a

b

b
b

b

b
c

c
c

Using a similar argument as in (a), we see that

OP = OR = a+ c

OQ = OS = b+ c

PQ = QR = RS = SP = a+ b

By side-side-side congruence, 4OPQ, 4OPS, 4ORQ, and 4ORS are congruent.
This means that ∠POQ = ∠POS = ∠ROQ = ∠ROS.
Since ∠POQ+ ∠POS + ∠ROQ+ ∠ROS = 360◦ (these angles surround O), then

∠POQ =
1

4
· 360◦ = 90◦

This means that 4OPQ is right-angled at O.
By the Pythagorean Theorem, PQ2 = OP 2 +OQ2 and so (a+ b)2 = (a+ c)2 + (b+ c)2.
Manipulating algebraically, the following equations are equivalent:

(a+ b)2 = (a+ c)2 + (b+ c)2

a2 + 2ab+ b2 = a2 + 2ac+ c2 + b2 + 2bc+ c2

2ab = 2ac+ 2bc+ 2c2

ab = ac+ bc+ c2

ab− ac− bc = c2

ab− ac− bc+ c2 = 2c2

a(b− c)− c(b− c) = 2c2

(a− c)(b− c) = 2c2

Therefore, if a, b and c are real numbers for which the diagram can be constructed, then
a, b and c satisfy this last equation.
Also, if real numbers a, b and c satisfy the final equation, then (a+ b)2 = (a+ c)2 +(b+ c)2

(because these equations were equivalent) and so the triangle with side lengths a + b,
a+ c and b+ c is right-angled with hypotenuse a+ b (because the Pythagorean Theorem
works in both directions), which means that four such triangles can be assembled to form
a rhombus PQRS with side lengths a+ b and centre O, which means that the five circles
can be drawn by marking off the appropriate lengths a, b and c and drawing the circles as
in the original diagram.
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In other words, the diagram can be drawn exactly when (a− c)(b− c) = 2c2.

Suppose that c is a fixed positive integer.
Determining the value of f(c) is thus equivalent to counting the number of pairs of positive
integers (a, b) with c < a < b and (a− c)(b− c) = 2c2.
Since a and b are integers with a > c and b > c, the integers a− c and b− c are positive
and form a positive divisor pair of the integer 2c2.
Since a < b, we have a− c < b− c and so a− c and b− c are distinct integers.
Also, since c > 0,

√
2c2 =

√
2c which is not an integer since c is an integer, which means

that 2c2 is not a perfect square.
Therefore, every pair (a, b) corresponds to a positive divisor pair of 2c2 (namely, a− c and
b− c).
Similarly, every divisor pair e and g of 2c2 with e > g gives a pair of positive integers (a, b)
with a < b by setting a = e+ c and b = g + c.
In other words, f(c) is exactly the number of positive divisor pairs of 2c2. (Again, we note
that 2c2 is not a perfect square.)
Therefore, we want to determine all positive integers c for which the integer 2c2 has an
even number of divisor pairs, which means that we want to determine all positive integers
c for which the number of positive divisors of 2c2 is a multiple of 4 (because each positive
divisor pair corresponds to 2 positive divisors and 2 times an even integer is a multiple
of 4).

Suppose that the prime factorization of c is

c = 2rpe11 p
e2
2 · · · p

ek
k

for some integer k ≥ 0, integer r ≥ 0, odd prime numbers p1, p2, . . ., pk, and positive
integers e1, e2, . . ., ek.
Then

2c2 = 22r+1p2e11 p2e22 · · · p
2ek
k

and so 2c2 has
(2r + 2)(2e1 + 1)(2e2 + 1) · · · (2ek + 1)

positive divisors.
The first factor in this product is even and each factor after the first is odd.
Therefore, this product is a multiple of 4 exactly when 2r + 2 is a multiple of 4.
This is true exactly when 2r + 2 = 4s for some positive integer s and so 2r = 4s − 2 or
r = 2s− 1.
In other words, the number of positive divisors of 2c2 is a multiple of 4 exactly when r is
an odd integer.

Finally, this means that the positive integers for which f(c) are even are exactly those
positive integers that have exactly an odd number of factors of 2 in their prime factoriza-
tion.
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1. (a) Solution 1

If x 6= −2, then
3x+ 6

x+ 2
=

3(x+ 2)

x+ 2
= 3.

In other words, for every x 6= −2, the expression is equal to 3.

Therefore, when x = 11, we get
3x+ 6

x+ 2
= 3.

Solution 2

When x = 11, we obtain
3x+ 6

x+ 2
=

3(11) + 6

11 + 2
=

39

13
= 3.

(b) Solution 1
The point at which a line crosses the y-axis has x-coordinate 0.
Because A has x-coordinate −1 and B has x-coordinate 1, then the midpoint of AB is on
the y-axis and is on the line through A and B, so is the point at which this line crosses
the x-axis.
The midpoint of A(−1, 5) and B(1, 7) is

(
1
2
(−1 + 1), 1

2
(5 + 7)

)
or (0, 6).

Therefore, the line that passes through A(−1, 5) and B(1, 7) has y-intercept 6.

Solution 2

The line through A(−1, 5) and B(1, 7) has slope
7− 5

1− (−1)
=

2

2
= 1.

Since the line passes through B(1, 7), its equation can be written as y − 7 = 1(x − 1) or
y = x+ 6.
The line with equation y = x+ 6 has y-intercept 6.

(c) First, we find the coordinates of the point at which the lines with equations y = 3x + 7
and y = x+ 9 intersect.
Equating values of y, we obtain 3x+ 7 = x+ 9 and so 2x = 2 or x = 1.
When x = 1, we get y = x+ 9 = 10.
Thus, these two lines intersect at (1, 10).
Since all three lines pass through the same point, the line with equation y = mx + 17
passes through (1, 10).
Therefore, 10 = m · 1 + 17 which gives m = 10− 17 = −7.

2. (a) Suppose that m has hundreds digit a, tens digit b, and ones (units) digit c.
From the given information, a, b and c are distinct, each of a, b and c is less than 10,
a = bc, and c is odd (since m is odd).
The integer m = 623 satisfies all of these conditions. Since we are told there is only one
such number, then 623 must be the only answer.
Why is this the only possible value of m?
We note that we cannot have b = 1 or c = 1, otherwise a = c or a = b.
Thus, b ≥ 2 and c ≥ 2.
Since c ≥ 2 and c is odd, then c can equal 3, 5, 7, or 9.
Since b ≥ 2 and a = bc, then if c equals 5, 7 or 9, a would be larger than 10, which is not
possible.
Thus, c = 3.
Since b ≥ 2 and b 6= c, then b = 2 or b ≥ 4.
If b ≥ 4 and c = 3, then a > 10, which is not possible.
Therefore, we must have c = 3 and b = 2, which gives a = 6.
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(b) Since Eleanor has 100 marbles which are black and gold in the ratio 1 : 4, then 1
5

of her
marbles are black, which means that she has 1

5
· 100 = 20 black marbles.

When more gold marbles are added, the ratio of black to gold is 1 : 6, which means that
she has 6 · 20 = 120 gold marbles.
Eleanor now has 20 + 120 = 140 marbles, which means that she added 140 − 100 = 40
gold marbles.

(c) First, we see that
n2 + n+ 15

n
=
n2

n
+
n

n
+

15

n
= n+ 1 +

15

n
.

This means that
n2 + n+ 15

n
is an integer exactly when n+ 1 +

15

n
is an integer.

Since n+ 1 is an integer, then
n2 + n+ 15

n
is an integer exactly when

15

n
is an integer.

The expression
15

n
is an integer exactly when n is a divisor of 15.

Since n is a positive integer, then the possible values of n are 1, 3, 5, and 15.

3. (a) First, we note that a triangle with one right angle and one angle with measure 45◦ is
isosceles.
This is because the measure of the third angle equals 180◦− 90◦− 45◦ = 45◦ which means
that the triangle has two equal angles.
In particular, 4CDE is isosceles with CD = DE and 4EFG is isosceles with EF = FG.
Since DE = EF = 1 m, then CD = FG = 1 m.
Join C to G.

A

C

B

D F

G

H

E

45°

45°45°
1 m 1 m

1 m1 m

Consider quadrilateral CDFG. Since the angles at D and F are right angles and since
CD = GF , it must be the case that CDFG is a rectangle.
This means that CG = DF = 2 m and that the angles at C and G are right angles.
Since ∠CGF = 90◦ and ∠DCG = 90◦, then ∠BGC = 180◦ − 90◦ − 45◦ = 45◦ and
∠BCG = 90◦.
This means that 4BCG is also isosceles with BC = CG = 2 m.
Finally, BD = BC + CD = 2 m + 1 m = 3 m.

(b) We apply the process two more times:

x y
Before Step 1 24 3
After Step 1 27 3
After Step 2 81 3
After Step 3 81 4

x y
Before Step 1 81 4
After Step 1 85 4
After Step 2 340 4
After Step 3 340 5

Therefore, the final value of x is 340.
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(c) The parabola with equation y = kx2 + 6x+ k has two distinct x-intercepts exactly when
the discriminant of the quadratic equation kx2 + 6x+ k = 0 is positive.
Here, the disciminant equals ∆ = 62 − 4 · k · k = 36− 4k2.
The inequality 36− 4k2 > 0 is equivalent to k2 < 9.
Since k is an integer and k 6= 0, then k can equal −2,−1, 1, 2.
(If k ≥ 3 or k ≤ −3, we get k2 ≥ 9 so no values of k in these ranges give the desired result.)

4. (a) Since
a

b
<

4

7
and

4

7
< 1, then

a

b
< 1.

Since a and b are positive integers, then a < b.
Since the difference between a and b is 15 and a < b, then b = a+ 15.

Therefore, we have
5

9
<

a

a+ 15
<

4

7
.

We multiply both sides of the left inequality by 9(a + 15) (which is positive) to obtain
5(a+ 15) < 9a from which we get 5a+ 75 < 9a and so 4a > 75.

From this, we see that a >
75

4
= 18.75.

Since a is an integer, then a ≥ 19.
We multiply both sides of the right inequality by 7(a + 15) (which is positive) to obtain
7a < 4(a+ 15) from which we get 7a < 4a+ 60 and so 3a < 60.
From this, we see that a < 20.
Since a is an integer, then a ≤ 19.

Since a ≥ 19 and a ≤ 19, then a = 19, which means that
a

b
=

19

34
.

(b) The first 6 terms of a geometric sequence with first term 10 and common ratio
1

2
are

10, 5,
5

2
,
5

4
,
5

8
,

5

16
.

Here, the ratio of its 6th term to its 4th term is
5/16

5/4
which equals

1

4
. (We could have

determined this without writing out the sequence, since moving from the 4th term to the

6th involves multiplying by
1

2
twice.)

The first 6 terms of an arithmetic sequence with first term 10 and common difference d
are 10, 10 + d, 10 + 2d, 10 + 3d, 10 + 4d, 10 + 5d.

Here, the ratio of the 6th term to the 4th term is
10 + 5d

10 + 3d
.

Since these ratios are equal, then
10 + 5d

10 + 3d
=

1

4
, which gives 4(10 + 5d) = 10 + 3d and so

40 + 20d = 10 + 3d or 17d = −30 and so d = −30

17
.
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5. (a) Let a = f(20). Then f(f(20)) = f(a).
To calculate f(f(20)), we determine the value of a and then the value of f(a).
By definition, a = f(20) is the number of prime numbers p that satisfy 20 ≤ p ≤ 30.
The prime numbers between 20 and 30, inclusive, are 23 and 29, so a = f(20) = 2.
Thus, f(f(20)) = f(a) = f(2).
By definition, f(2) is the number of prime numbers p that satisfy 2 ≤ p ≤ 12.
The prime numbers between 2 and 12, inclusive, are 2, 3, 5, 7, 11, of which there are 5.
Therefore, f(f(20)) = 5.

(b) Since (x− 1)(y − 2) = 0, then x = 1 or y = 2.
Suppose that x = 1. In this case, the remaining equations become:

(1− 3)(z + 2) = 0

1 + yz = 9

or

−2(z + 2) = 0

yz = 8

From the first of these equations, z = −2.
From the second of these equations, y(−2) = 8 and so y = −4.
Therefore, if x = 1, the only solution is (x, y, z) = (1,−4,−2).
Suppose that y = 2. In this case, the remaining equations become:

(x− 3)(z + 2) = 0

x+ 2z = 9

From the first equation x = 3 or z = −2.
If x = 3, then 3 + 2z = 9 and so z = 3.
If z = −2, then x+ 2(−2) = 9 and so x = 13.
Therefore, if y = 2, the solutions are (x, y, z) = (3, 2, 3) and (x, y, z) = (13, 2,−2).
In summary, the solutions to the system of equations are

(x, y, z) = (1,−4,−2), (3, 2, 3), (13, 2,−2)

We can check by substitution that each of these triples does indeed satisfy each of the
equations.
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6. (a) Draw a perpendicular from S to V on BC.
Since ASV B is a quadrilateral with three right angles, then it has four right angles and
so is a rectangle.
Therefore, BV = AS = r, since AS is a radius of the top semi-circle, and SV = AB = 4.
Join S and T to P . Since the two semi-circles are tangent at P , then SPT is a straight
line, which means that ST = SP + PT = r + r = 2r.

A

CB

D

F

E

P

S

T
6

r

r

4

V

Consider right-angled 4SV T . We have SV = 4 and ST = 2r.
Also, V T = BC −BV − TC = 6− r − r = 6− 2r.
By the Pythagorean Theorem,

SV 2 + V T 2 = ST 2

42 + (6− 2r)2 = (2r)2

16 + 36− 24r + 4r2 = 4r2

52 = 24r

Thus, r = 52
24

= 13
6

.

(b) Since4ABE is right-angled at A and is isosceles with AB = AE = 7
√

2, then4ABE is a

45◦-45◦-90◦ triangle, which means that ∠ABE = 45◦ and BE =
√

2AB =
√

2 · 7
√

2 = 14.

Since 4BCD is right-angled at C with
DB

DC
=

8x

4x
= 2, then 4BCD is a 30◦-60◦-90◦

triangle, which means that ∠DBC = 30◦.

Since ∠ABC = 135◦, then ∠EBD = ∠ABC−∠ABE−∠DBC = 135◦−45◦−30◦ = 60◦.
Now consider 4EBD. We have EB = 14, BD = 8x, DE = 8x− 6, and ∠EBD = 60◦.
Using the cosine law, we obtain the following equivalent equations:

DE2 = EB2 +BD2 − 2 · EB ·BD · cos(∠EBD)

(8x− 6)2 = 142 + (8x)2 − 2(14)(8x) cos(60◦)

64x2 − 96x+ 36 = 196 + 64x2 − 2(14)(8x) · 1
2

−96x = 160− 14(8x)

112x− 96x = 160

16x = 160

x = 10

Therefore, the only possible value of x is x = 10.
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7. (a) Solution 1
Since the function g is linear and has positive slope, then it is one-to-one and so invertible.
This means that g−1(g(a)) = a for every real number a and g(g−1(b)) = b for every real
number b.
Therefore, g(f(g−1(g(a)))) = g(f(a)) for every real number a.
This means that

g(f(a)) = g(f(g−1(g(a))))

= 2(g(a))2 + 16g(a) + 26

= 2(2a− 4)2 + 16(2a− 4) + 26

= 2(4a2 − 16a+ 16) + 32a− 64 + 26

= 8a2 − 6

Furthermore, if b = f(a), then g−1(g(f(a))) = g−1(g(b)) = b = f(a).
Therefore,

f(a) = g−1(g(f(a))) = g−1(8a2 − 6)

Since g(x) = 2x− 4, then y = 2g−1(y)− 4 and so g−1(y) = 1
2
y + 2.

Therefore,
f(a) = 1

2
(8a2 − 6) + 2 = 4a2 − 1

and so f(π) = 4π2 − 1.

Solution 2
Since the function g is linear and has positive slope, then it is one-to-one and so invertible.
To find a formula for g−1(y), we start with the equation g(x) = 2x − 4, convert to

y = 2g−1(y)−4 and then solve for g−1(y) to obtain 2g−1(y) = y+4 and so g−1(y) =
y + 4

2
.

We are given that g(f(g−1(x))) = 2x2 + 16x+ 26.
We can apply the function g−1 to both sides to obtain successively:

f(g−1(x)) = g−1(2x2 + 16x+ 26)

f(g−1(x)) =
(2x2 + 16x+ 26) + 4

2
(knowing a formula for g−1)

f(g−1(x)) = x2 + 8x+ 15

f

(
x+ 4

2

)
= x2 + 8x+ 15 (knowing a formula for g−1)

f

(
x+ 4

2

)
= x2 + 8x+ 16− 1

f

(
x+ 4

2

)
= (x+ 4)2 − 1

We want to determine the value of f(π).

Thus, we can replace
x+ 4

2
with π, which is equivalent to replacing x+ 4 with 2π.

Thus, f(π) = (2π)2 − 1 = 4π2 − 1.
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(b) Solution 1
Using logarithm laws, the given equations are equivalent to

log2(sinx) + log2(cos y) = −3

2

log2(sinx)− log2(cos y) =
1

2

Adding these two equations, we obtain 2 log2(sinx) = −1 which gives log2(sinx) = −1

2

and so sinx = 2−1/2 =
1

21/2
=

1√
2

.

Since 0◦ ≤ x < 180◦, then x = 45◦ or x = 135◦.

Since log2(sinx) + log2(cos y) = −3

2
and log2(sinx) = −1

2
, then log2(cos y) = −1, which

gives cos y = 2−1 =
1

2
.

Since 0◦ ≤ y < 180◦, then y = 60◦.
Therefore, (x, y) = (45◦, 60◦) or (x, y) = (135◦, 60◦).

Solution 2

First, we note that 21/2 =
√

2 and 2−3/2 =
1

23/2
=

1

2121/2
=

1

2
√

2
.

From the given equations, we obtain

sinx cos y = 2−3/2 =
1

2
√

2
sinx

cos y
= 21/2 =

√
2

Multiplying these two equations together, we obtain (sinx)2 =
1

2
which gives sinx = ± 1√

2
.

Since 0◦ ≤ x < 180◦, it must be the case that sin x ≥ 0 and so sinx =
1√
2

.

Since 0◦ ≤ x < 180◦, we obtain x = 45◦ or x = 135◦.

Since sin x cos y =
1

2
√

2
and sin x =

1√
2

, we obtain cos y =
1

2
.

Since 0◦ ≤ y < 180◦, then y = 60◦.
Therefore, (x, y) = (45◦, 60◦) or (x, y) = (135◦, 60◦).
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8. (a) Solution 1
Let x be the probability that Bianca wins the tournament.
Because Alain, Bianca and Chen are equally matched and because their roles in the tour-
nament are identical, then the probability that each of them wins will be the same.
Thus, the probability that Alain wins the tournament is x and the probability that Chen
wins the tournament is x.
Let y be the probability that Dave wins the tournament.
Since exactly one of Alain, Bianca, Chen, and Dave wins the tournament, then 3x+ y = 1

and so x =
1− y

3
. We can calculate y in terms of p.

In order for Dave to win the tournament, he needs to win two matches.
No matter who Dave plays, his probability of winning each match is p.
Thus, the probability that he wins his two consecutive matches is p2 and so the probability
that he wins the tournament is y = p2.

Thus, the probability that Bianca wins the tournament is
1− p2

3
.

(We could rewrite this as
−p2 + 0p+ 1

3
to match the desired form.)

Solution 2
Let x be the probability that Bianca wins the tournament.
There are three possible pairings for the first two matches:

(i) Bianca versus Alain, and Chen versus Dave

(ii) Bianca versus Chen, and Alain versus Dave

(iii) Bianca versus Dave, and Alain versus Chen

Each of these three pairings occurs with probability 1
3
.

In (i), Bianca wins either if Bianca beats Alain, Chen beats Dave, and Bianca beats Chen,
or if Bianca beats Alain, Dave beats Chen, and Bianca beats Dave.
Since Bianca beats Alain with probability 1

2
, Chen beats Dave with probability 1− p, and

Bianca beats Chen with probability 1
2
, then the first possibility has probability 1

2
·(1−p)· 1

2
.

Since Bianca beats Alain with probability 1
2
, Dave beats Chen with probability p, and

Bianca beats Dave with probability 1 − p, then the second possibility has probability
1
2
· p · (1− p).

Therefore, the probability of Bianca winning, given that possibility (i) occurs, is 1
2
· (1 −

p) · 1
2

+ 1
2
· p · (1− p).

In (ii), Bianca wins either if Bianca beats Chen, Alain beats Dave, and Bianca beats Alain,
or if Bianca beats Alain, Dave beats Alain, and Bianca beats Dave.
The combined probability of these is 1

2
· (1− p) · 1

2
+ 1

2
· p · (1− p).

In (iii), Bianca wins either if Bianca beats Dave, Alain beats Chen, and Bianca beats
Alain, or if Bianca beats Dave, Chen beats Alain, and Bianca beats Chen.
The combined probability of these is (1− p) · 1

2
· 1
2

+ (1− p) · 1
2
· 1
2
.

Therefore,

x = 1
3

(
1
4
(1− p) + 1

2
p(1− p) + 1

4
(1− p) + 1

2
p(1− p) + 1

4
(1− p) + 1

4
(1− p)

)
= 1

3
(p(1− p) + (1− p))

= 1
3
(p− p2 + 1− p)

Thus, the probability that Bianca wins the tournament is
1− p2

3
.
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(b) Throughout this solution, we will mostly not include units, but will assume that all lengths
are in kilometres, all times are in seconds, and all speeds are in kilometres per second.
We place the points in the coordinate plane with B at (0, 0), A on the negative x-axis,
and C on the positive x-axis.
We put A at (−1, 0) and C at (2, 0).
Suppose that P has coordinates (x, y) and that the distance from P to B is d km.

y

x
C (2, 0)A (–1, 0) B

P (x, y)

Since the sound arrives at A 1
2

s after arriving at B and sound travels at 1
3

km/s, then A
is (1

2
s) · (1

3
km/s) = 1

6
km farther from P than B is.

Thus, the distance from P to A is (d+ 1
6
) km.

Since the sound arrives at C an additional 1 second later, then C is an additional 1
3

km
farther, and so is (d+ 1

6
) km + (1

3
km) = (d+ 1

2
) km from P .

Since the distance from P to B is d km, then (x− 0)2 + (y − 0)2 = d2.

Since the distance from P to A is (d+ 1
6
) km, then (x+ 1)2 + (y − 0)2 = (d+ 1

6
)2.

Since the distance from P to C is (d+ 1
2
) km, then (x− 2)2 + (y − 0)2 = (d+ 1

2
)2.

When these equations are expanded and simplified, we obtain

x2 + y2 = d2

x2 + 2x+ 1 + y2 = d2 + 1
3
d+ 1

36

x2 − 4x+ 4 + y2 = d2 + d+ 1
4

Subtracting the first equation from the second, we obtain

2x+ 1 = 1
3
d+ 1

36

Subtracting the first equation from the third, we obtain

−4x+ 4 = d+ 1
4

Therefore,

2(2x+ 1) + (−4x+ 4) = 2(1
3
d+ 1

36
) + (d+ 1

4
)

6 = 2
3
d+ 1

18
+ d+ 1

4

216 = 24d+ 2 + 36d+ 9 (multiplying by 36)

205 = 60d

d = 41
12

Therefore, the distance from B to P is 41
12

km.



2020 Euclid Contest Solutions Page 11

9. (a) After each round, each L shape is divided into 4 smaller L shapes.
This means that the number of L shapes increases by a factor of 4 after each round.
After 1 round, there are 4 L shapes.
After 2 rounds, there are 42 = 16 L’s of the smallest size.
After 3 rounds, there are 43 = 64 L’s of the smallest size.

(b) There are four orientations of L shapes of a given size: , , , .
When an L of each orientation is subdivided, the following figures are obtained:

From these figures, we can see that after each subsequent round,

• Each produces 2 , 0 , 1 , and 1 of the smallest size.

• Each produces 0 , 2 , 1 , and 1 .

• Each produces 1 , 1 , 2 , and 0 .

• Each produces 1 , 1 , 0 , and 2 .

After 1 round, there are 2 , 0 , 1 , and 1 .
After 2 rounds, the number of L’s of each orientation are as follows:

• : 2 · 2 + 0 · 0 + 1 · 1 + 1 · 1 = 6

• : 2 · 0 + 0 · 2 + 1 · 1 + 1 · 1 = 2

• : 2 · 1 + 0 · 1 + 1 · 2 + 1 · 0 = 4

• : 2 · 1 + 0 · 1 + 1 · 0 + 1 · 2 = 4

After 3 rounds, the number of L’s of each orientation are as follows:

• : 6 · 2 + 2 · 0 + 4 · 1 + 4 · 1 = 20

• : 6 · 0 + 2 · 2 + 4 · 1 + 4 · 1 = 12

• : 6 · 1 + 2 · 1 + 4 · 2 + 4 · 0 = 16

• : 6 · 1 + 2 · 1 + 4 · 0 + 4 · 2 = 16

Where do these numbers come from?

For example, to determine the number of after 2 rounds, we look at the number of L’s

of each orientation after round 1 (2, 0, 1, 1) and ask how many each of these produces

at the next level. Since the four types each produce 2, 0, 1, and 1 , then the total

number of after 2 rounds equals 2 · 2 + 0 · 0 + 1 · 1 + 1 · 1 which equals 6.

As a second example, to determine the number of after 3 rounds, we note that after 2
rounds the number of L’s of the four different orientations are 6, 2, 4, 4 and that each L

of each of the four types produces 0, 2, 1, 1 . This means that the total number of
after 3 rounds is 6 · 0 + 2 · 2 + 4 · 1 + 4 · 1 = 12.
Putting all of this together, the number of L’s of the smallest size in the same orientation
as the original L is 20.
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(c) In (b), we determined the number of L’s of the smallest size in each orientation after 1, 2
and 3 rounds.
We continue to determine the number of L’s of the smallest size after 4 rounds.
After 4 rounds, the number of L’s of each orientation are as follows:

• : 20 · 2 + 12 · 0 + 16 · 1 + 16 · 1 = 72

• : 20 · 0 + 12 · 2 + 16 · 1 + 16 · 1 = 56

• : 20 · 1 + 12 · 1 + 16 · 2 + 16 · 0 = 64

• : 20 · 1 + 12 · 1 + 16 · 0 + 16 · 2 = 64

This gives us the following tables of the numbers of L’s of the smallest size in each orien-
tation after 1, 2, 3, and 4 rounds:

After Round
1 2 0 1 1
2 6 2 4 4
3 20 12 16 16
4 72 56 64 64

We re-write these numbers in the third row as 16 + 4, 16 − 4, 16, 16 and the numbers in
the fourth row as 64 + 8, 64− 8, 64, 64.
Based on this, we might guess that the numbers of L’s of the smallest size in each orien-
tation after n rounds are 4n−1 + 2n−1, 4n−1 − 2n−1, 4n−1, 4n−1.
If this guess is correct, then, after 2020 rounds, the number of L’s of the smallest size in
the same orientation as the original L is 42019 + 22019.
We prove that these guesses are right by using an inductive process.
First, we note that the table above shows that our guess is correct when n = 1, 2, 3, 4.
Next, if we can show that our guess being correct after a given number of rounds implies
that it is correct after the next round, then it will be correct after every round. This
is because being correct after 4 rounds will mean that it is correct after 5 rounds, being
correct after 5 rounds will mean that it is correct after 6 rounds, and so on to be correct
after any number of rounds.
Suppose, then, that after k rounds the numbers of L’s of the smallest size in each orienta-
tion are 4k−1 + 2k−1, 4k−1 − 2k−1, 4k−1, 4k−1.
After k + 1 rounds (that is, after the next round), the number of L’s of each orientation
is:

• : (4k−1 +2k−1) ·2+(4k−1−2k−1) ·0+4k−1 ·1+4k−1 ·1 = 4 ·4k−1 +2 ·2k−1 = 4k +2k

• : (4k−1 +2k−1) ·0+(4k−1−2k−1) ·2+4k−1 ·1+4k−1 ·1 = 4 ·4k−1−2 ·2k−1 = 4k−2k

• : (4k−1 + 2k−1) · 1 + (4k−1 − 2k−1) · 1 + 4k−1 · 2 + 4k−1 · 0 = 4 · 4k−1 = 4k

• : (4k−1 + 2k−1) · 1 + (4k−1 − 2k−1) · 1 + 4k−1 · 0 + 4k−1 · 2 = 4 · 4k−1 = 4k

Since k = (k + 1) − 1, these expressions match our guess. This means that our guess is
correct after every number of rounds.
Therefore, after 2020 rounds, the number of L’s of the smallest size in the same orientation
as the original L is 42019 + 22019.
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10. (a) Here, the pairwise sums of the numbers a1 ≤ a2 ≤ a3 ≤ a4 are s1 ≤ s2 ≤ s3 ≤ s4 ≤ s5 ≤ s6.
The six pairwise sums of the numbers in the list can be expressed as

a1 + a2, a1 + a3, a1 + a4, a2 + a3, a2 + a4, a3 + a4

Since a1 ≤ a2 ≤ a3 ≤ a4, then the smallest sum must be the sum of the two smallest
numbers. Thus, s1 = a1 + a2.
Similarly, the largest sum must be the sum of the two largest numbers, and so s6 = a3+a4.
Since a1 ≤ a2 ≤ a3 ≤ a4, then the second smallest sum is a1 + a3. This is because a1 + a3
is no greater than each of the four sums a1 + a4, a2 + a3, a2 + a4, and a3 + a4:

Since a3 ≤ a4, then a1 + a3 ≤ a1 + a4.
Since a1 ≤ a2, then a1 + a3 ≤ a2 + a3.
Since a1 ≤ a2 and a3 ≤ a4, then a1 + a3 ≤ a2 + a4.
Since a1 ≤ a4, then a1 + a3 ≤ a3 + a4.

Thus, s2 = a1 + a3.
Using a similar argument, s5 = a2 + a4.
So far, we have s1 = a1 + a2 and s2 = a1 + a3 and s5 = a2 + a4 and s6 = a3 + a4.
This means that s3 and s4 equal a1 + a4 and a2 + a3 in some order.
It turns out that either order is possible.

Case 1: s3 = a1 + a4 and s4 = a2 + a3
Here, a1 + a2 = 8 and a1 + a3 = 104 and a2 + a3 = 110.
Adding these three equations gives

(a1 + a2) + (a1 + a3) + (a2 + a3) = 8 + 104 + 110

and so 2a1 + 2a2 + 2a3 = 222 or a1 + a2 + a3 = 111.
Since a2 + a3 = 110, then a1 = (a1 + a2 + a3)− (a2 + a3) = 111− 110 = 1.
Since a1 = 1 and a1 + a2 = 8, then a2 = 7.
Since a1 = 1 and a1 + a3 = 104, then a3 = 103.
Since a3 = 103 and a3 + a4 = 208, then a4 = 105.
Thus, (a1, a2, a3, a4) = (1, 7, 103, 105).

Case 2: s3 = a2 + a3 and s4 = a1 + a4
Here, a1 + a2 = 8 and a1 + a3 = 104 and a2 + a3 = 106.
Using the same process, a1 + a2 + a3 = 109.
From this, we obtain (a1, a2, a3, a4) = (3, 5, 101, 107).

Therefore, Kerry’s two possible lists are 1, 7, 103, 105 and 3, 5, 101, 107.
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(b) Suppose that the values of s1, s2, s3, s4, s5, s6, s7, s8, s9, s10 are fixed, but unknown.
In terms of the numbers a1 ≤ a2 ≤ a3 ≤ a4 ≤ a5, the ten pairwise sums are

a1 + a2, a1 + a3, a1 + a4, a1 + a5, a2 + a3, a2 + a4, a2 + a5, a3 + a4, a3 + a5, a4 + a5

These will equal s1, s2, s3, s4, s5, s6, s7, s8, s9, s10 in some order.
Using a similar analysis to that in (a), the smallest sum is a1 + a2 and the largest sum is
a4 + a5. Thus, s1 = a1 + a2 and s10 = s4 + s5.
Also, the second smallest sum will be s2 = a1 + a3 and the second largest sum will be
s9 = a3 + a5.
We let

S = s1 + s2 + s3 + s4 + s5 + s6 + s7 + s8 + s9 + s10

Note that S has a fixed, but unknown, value.
Even though we do not know the order in which these pairwise sums are assigned to s1
through s10, the value of S will equal the sum of these ten pairwise expressions.
In other words, S = 4a1 + 4a2 + 4a3 + 4a4 + 4a5, since each of the numbers in the list
occurs in four sums.
Thus, a1 + a2 + a3 + a4 + a5 = 1

4
S and so (a1 + a2) + a3 + (a4 + a5) = 1

4
S.

This means that s1 + a3 + s10 = 1
4
S and so a3 = 1

4
S − s1 − s10.

Since the values of s1, s10 and S are fixed, then we are able to determine the value of a3
from the list of sums s1 through s10.
Using the value of a3, the facts that s2 = a1 + a3 and s9 = a3 + a5, and that s2 and s9 are
known, we can determine a1 and a5.
Finally, using s1 = a1 +a2 and s10 = a4 +a5 and the values of a1 and a5, we can determine
a2 and a4.
Therefore, given the ten sums s1 through s10, we can determine the values of a3, a1, a5,
a2, a4 and so there is only one possibility for the list a1, a2, a3, a4, a5. (Can you write out
expressions for each of a1 through a5 in terms of s1 through s10 only?)

(c) Suppose that the lists a1, a2, a3, a4 and b1, b2, b3, b4 produce the same list of sums s1, s2,
s3, s4, s5, s6. (Examples of such lists can be found in (a).)
Let x be a positive integer. Consider the following list with 8 entries:

a1, a2, a3, a4, b1 + x, b2 + x, b3 + x, b4 + x

From this list, there are three categories of pairwise sums:

(i) ai + aj, 1 ≤ i < j ≤ 4: these give the sums s1 through s6

(ii) (bi + x) + (bj + x), 1 ≤ i < j ≤ 4: each of these is 2x greater than the six sums s1
through s6 because the pairwise sums bi + bj give the six sums s1 through s6

(iii) ai + (bj + x), 1 ≤ i ≤ 4 and 1 ≤ j ≤ 4

Consider also the list with 8 entries:

a1 + x, a2 + x, a3 + x, a4 + x, b1, b2, b3, b4

From this list, there are again three categories of pairwise sums:

(i) bi + bj, 1 ≤ i < j ≤ 4: these give the sums s1 through s6

(ii) (ai + x) + (aj + x), 1 ≤ i < j ≤ 4: each of these is 2x greater than the six sums s1
through s6 because the pairwise sums ai + aj give the six sums s1 through s6

(iii) (ai + x) + bj, 1 ≤ i ≤ 4 and 1 ≤ j ≤ 4
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Thus, the 28 pairwise sums in each case are the same. In each case, there are 6 sums in
(i), 6 sums in (ii), and 16 sums in (iii).
If we choose the initial lists to have the same pairwise sums and choose the value of x to
be large enough so that ai + x is not equal to any bj and bi + x is not equal to any aj, we
obtain two different lists of 8 numbers that each produce the same list of 28 sums.
For example, if we choose a1, a2, a3, a4 to be 1, 7, 103, 105 and b1, b2, b3, b4 to be 3, 5, 101, 107
and x = 10 000, we get the lists

1, 7, 103, 105, 10 003, 10 005, 10 101, 10 107

and
3, 5, 101, 107, 10 001, 10 007, 10 103, 10 105

Using a similar analysis to that above, if the lists a1, a2, a3, a4, a5, a6, a7, a8 and b1, b2,
b3, b4, b5, b6, b7, b8 have the same set of pairwise sums, then the lists

a1, a2, a3, a4, a5, a6, a7, a8, b1 + y, b2 + y, b3 + y, b4 + y, b5 + y, b6 + y, b7 + y, b8 + y

and

a1 + y, a2 + y, a3 + y, a4 + y, a5 + y, a6 + y, a7 + y, a8 + y, b1, b2, b3, b4, b5, b6, b7, b8

will also have the same pairwise sums.
Therefore, setting y = 1 000 000, we see that the lists

1, 7, 103, 105, 10 003, 10 005, 10 101, 10 107, 1 000 003, 1 000 005, 1 000 101, 1 000 107,

1 010 001, 1 010 007, 1 010 103, 1 010 105

and

3, 5, 101, 107, 10 001, 10 007, 10 103, 10 105, 1 000 001, 1 000 007, 1 000 103, 1 000 105,

1 010 003, 1 010 005, 1 010 101, 1 010 107

have the same list of sums s1, s2, . . . , s120, as required.
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1. (a) Solution 1
Since 3

4
of a jar has a volume of 300 mL, then 1

4
of a jar has a volume of (300 mL)÷ 3 or

100 mL.

Solution 2
Since 3

4
of a jar has a volume of 300 mL, then the volume of the entire jar is 4

3
(300 mL)

or 400 mL.
In this case, the volume of 1

4
of the jar is (400 mL)÷ 4 = 100 mL.

(b) We note that since
24

a
> 3 > 0, then a is positive.

Since 3 <
24

a
and a > 0, then a <

24

3
= 8.

Since
24

a
< 4 and a > 0, then a >

24

4
= 6.

Since 6 < a < 8 and a is an integer, then a = 7.

Note that it is indeed true that 3 <
24

7
< 4.

(c) Since x and x2 appear in the denominators of the equation, then x 6= 0.
Multiplying by x2 and manipulating, we obtain successively

1

x2
− 1

x
= 2

1− x = 2x2

0 = 2x2 + x− 1

0 = (2x− 1)(x+ 1)

and so x =
1

2
or x = −1.

Checking in the original equation we obtain,

1

(1/2)2
− 1

1/2
=

1

1/4
− 1

1/2
= 4− 2 = 2

and
1

(−1)2
− 1

−1
=

1

1
+ 1 = 2

and so the solutions to the equation are x =
1

2
and x = −1.

2. (a) Since the radius of the large circle is 2, its area is π · 22 = 4π.
Since the radius of each small circle is 1, the area of each small circle is π · 12 = π.
Since the two small circles are tangent to each other and to the large circle, then their
areas do not overlap and are contained entirely within the large circle.
Since the shaded region consists of the part of the large circle that is outside the two small
circles, then the shaded area is 4π − π − π = 2π.

(b) Mo starts at 10:00 a.m. and finishes at 11:00 a.m. and so runs for 1 hour.
Mo runs at 6 km/h, and so runs 6 km in 1 hour.
Thus, Kari also runs 6 km.

Since Kari runs at 8 km/h, then Kari runs for
6 km

8 km/h
=

3

4
h which is 45 minutes.

Since Kari finishes at 11:00 a.m., then Kari started at 10:15 a.m.
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(c) The equation x+ 3y = 7 can be rearranged to 3y = −x+ 7 and y = −1
3
x+ 7

3
.

Therefore, the line with this equation has slope −1
3
.

Since the two lines are parallel and the line with equation y = mx + b has slope m, then
m = −1

3
.

Thus, the equation of the second line can be re-written as y = −1
3
x+ b.

Since (9, 2) lies on this line, then 2 = −1
3
· 9 + b and so 2 = −3 + b, which gives b = 5.

3. (a) Michelle’s list consists of 8 numbers and so its average is

5 + 10 + 15 + 16 + 24 + 28 + 33 + 37

8
=

168

8
= 21

Daphne’s list thus consists of 7 numbers (one fewer than in Michelle’s list) with an average
of 20 (1 less than that of Michelle).
The sum of 7 numbers whose average is 20 is 7 · 20 = 140.
Since the sum of Michelle’s numbers was 168, then Daphne removed the number equal to
168− 140 which is 28.

(b) Since 16 = 24 and 32 = 25, then the given equation is equivalent to the following equations

(24)15/x = (25)4/3

260/x = 220/3

This means that
60

x
=

20

3
=

60

9
and so x = 9.

(c) Using exponent laws, the following equations are equivalent:

22022 + 2a

22019
= 72

22022−2019 + 2a−2019 = 72

23 + 2a−2019 = 72

8 + 2a−2019 = 72

2a−2019 = 64

2a−2019 = 26

which means that a− 2019 = 6 and so a = 2025.

4. (a) Solution 1
Since 4CDB is right-angled at B, then ∠DCB = 90◦ − ∠CDB = 30◦.
This means that 4CDB is a 30◦-60◦-90◦ triangle.
Using the ratios of side lengths in a 30◦-60◦-90◦ triangle, CD : DB = 2 : 1.
Since DB = 10, then CD = 20.
Since ∠CDB = 60◦, then ∠ADC = 180◦ − ∠CDB = 120◦.
Since the angles in 4ADC add to 180◦, then ∠DAC = 180◦ − ∠ADC − ∠ACD = 30◦.
This means that 4ADC is isosceles with AD = CD.
Therefore, AD = CD = 20.
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Solution 2
Since 4CDB is right-angled at B, then ∠DCB = 90◦ − ∠CDB = 30◦.
Since 4ACB is right-angled at B, then ∠CAB = 90◦−∠ACB = 90◦− (30◦ + 30◦) = 30◦.
This means that each of 4CDB and 4ACB is a 30◦-60◦-90◦ triangle.
Using the ratios of side lengths in a 30◦-60◦-90◦ triangle, CB : DB =

√
3 : 1.

Since DB = 10, then CB = 10
√

3.
Similarly, AB : CB =

√
3 : 1.

Since CB = 10
√

3, then AB =
√

3 · 10
√

3 = 30.
Finally, this means that AD = AB −DB = 30− 10 = 20.

(b) Since the points A(d,−d) and B(−d + 12, 2d − 6) lie on the same circle centered at the
origin, O, then OA = OB.
Since distances are always non-negative, the following equations are equivalent:√

(d− 0)2 + (−d− 0)2 =
√

((−d+ 12)− 0)2 + ((2d− 6)− 0)2

d2 + (−d)2 = (−d+ 12)2 + (2d− 6)2

d2 + d2 = d2 − 24d+ 144 + 4d2 − 24d+ 36

2d2 = 5d2 − 48d+ 180

0 = 3d2 − 48d+ 180

0 = d2 − 16d+ 60

0 = (d− 10)(d− 6)

and so d = 10 or d = 6.
We can check that the points A(10,−10) and B(2, 14) are both of distance

√
200 from the

origin and the points A(6,−6) and B(6, 6) are both of distance
√

72 from the origin.

5. (a) First, we note that
√

50 = 5
√

2.
Next, we note that

√
2 + 4

√
2 = 5

√
2 and 2

√
2 + 3

√
2 = 5

√
2.

From the first of these, we obtain
√

2 +
√

32 =
√

50.
From the second of these, we obtain

√
8 +
√

18 =
√

50.
Thus, (a, b) = (2, 32) and (a, b) = (8, 18) are solutions to the original equation.
(We are not asked to justify why these are the only two solutions.)

(b) From the second equation, we note that d 6= 0.
Rearranging this second equation, we obtain c = kd.
Substituting into the first equation, we obtain kd+ d = 2000 or (k + 1)d = 2000.
Since k ≥ 0, note that k + 1 ≥ 1.
This means that if (c, d) is a solution, then k + 1 is a divisor of 2000.
Also, if k + 1 is a divisor of 2000, then the equation (k + 1)d = 2000 gives us an integer
value of d (which is non-zero) from which we can find an integer value of c using the first
equation.
Therefore, the values of k that we want to count correspond to the positive divisors of
2000.
Since 2000 = 10 · 10 · 20 = 24 · 53, then 2000 has (4 + 1)(3 + 1) = 20 positive divisors.
This comes from the fact that if p and q are distinct prime numbers then the positive
integer pa · qb has (a+ 1)(b+ 1) positive divisors.
We could list these divisors as

1, 2, 4, 5, 8, 10, 16, 20, 25, 40, 50, 80, 100, 125, 200, 250, 400, 500, 1000, 2000
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if we did not know the earlier formula.
Since 2000 has 20 positive divisors, then there are 20 values of k for which the system of
equations has at least one integer solution.

For example, if k + 1 = 8, then k = 7. This gives the system c + d = 2000 and
c

d
= 7

which has solution (c, d) = (1750, 250).

6. (a) Solution 1
The angles in a polygon with n sides have a sum of (n− 2) · 180◦.
This means that the angles in a pentagon have a sum of 3 ·180◦ or 540◦, which means that

each interior angle in a regular pentagon equals
1

5
· 540◦ or 108◦.

Also, each interior angle in a regular polygon with n sides equals
n− 2

n
· 180◦. (This is

the general version of the statement in the previous sentence.)
Consider the portion of the regular polygon with n sides that lies outside the pentagon and
join the points from which the angles that measure a◦ and b◦ emanate to form a hexagon.

a°

b°

c°

This polygon has 6 sides, and so the sum of its 6 angles is 4 · 180◦.
Four of its angles are the original angles from the n-sided polygon, so each equals
n− 2

n
· 180◦.

The remaining two angles have measures a◦ + c◦ and b◦ + d◦.
We are told that a◦ + b◦ = 88◦.
Also, the angles that measure c◦ and d◦ are two angles in a triangle whose third angle is
108◦.
Thus, c◦ + d◦ = 180◦ − 108◦ = 72◦.
Therefore,

4 · n− 2

n
· 180◦ + 88◦ + 72◦ = 4 · 180◦

160◦ =

(
4− 4(n− 2)

n

)
· 180◦

160◦ =
4n− (4n− 8)

n
· 180◦

160◦

180◦ =
8

n
8

9
=

8

n

and so the value of n is 9.
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Solution 2
The angles in a polygon with n sides have a sum of (n− 2) · 180◦.
This means that the angles in a pentagon have a sum of 3 ·180◦ or 540◦, which means that

each interior angle in a regular pentagon equals
1

5
· 540◦ or 108◦.

Also, each interior angle in a regular polygon with n sides equals
n− 2

n
· 180◦. (This is

the general version of the statement in the previous sentence.)
Consider the portion of the regular polygon with n sides that lies outside the pentagon.

a°

b°

This polygon has 7 sides, and so the sum of its 7 angles is 5 · 180◦.
Four of its angles are the original angles from the n-sided polygon, so each equals
n− 2

n
· 180◦.

Two of its angles are the angles equal to a◦ and b◦, whose sum is 88◦.
Its seventh angle is the reflex angle corresponding to the pentagon’s angle of 108◦, which
equals 360◦ − 108◦ or 252◦.
Therefore,

4 · n− 2

n
· 180◦ + 88◦ + 252◦ = 5 · 180◦

340◦ =

(
5− 4(n− 2)

n

)
· 180◦

340◦ =
5n− (4n− 8)

n
· 180◦

340◦

180◦ =
n+ 8

n
17

9
=
n+ 8

n
17n = 9(n+ 8)

17n = 9n+ 72

8n = 72

and so the value of n is 9.
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(b) Since the lengths of AD, AB and BC form a geometric sequence, we suppose that these
lengths are a, ar and ar2, respectively, for some real numbers a > 0 and r > 0.
Since the angles at A and B are both right angles, we assign coordinates to the diagram,
putting B at the origin (0, 0), C on the positive x-axis at (ar2, 0), A on the positive y-axis
at (0, ar), and D at (a, ar).

A (0, ar)

C (ar 
2, 0)B (0, 0)

D (a, ar)

P

y

x

Therefore, the slope of the line segment joining B(0, 0) and D(a, ar) is
ar − 0

a− 0
= r.

Also, the slope of the line segment joining A(0, ar) and C(ar2, 0) is
ar − 0

0− ar2
= −1

r
.

Since the product of the slopes of these two line segments is −1, then the segments are
perpendicular, as required.

7. (a) Using logarithm and exponent laws, we obtain the following equivalent equations:

2 log2(x− 1) = 1− log2(x+ 2)

2 log2(x− 1) + log2(x+ 2) = 1

log2

(
(x− 1)2

)
+ log2(x+ 2) = 1

log2

(
(x− 1)2(x+ 2)

)
= 1

(x− 1)2(x+ 2) = 21

(x2 − 2x+ 1)(x+ 2) = 2

x3 − 3x+ 2 = 2

x3 − 3x = 0

x(x2 − 3) = 0

and so x = 0 or x =
√

3 or x = −
√

3.
Note that if x = 0, then x− 1 = −1 < 0 and so log2(x− 1) is not defined. Thus, x 6= 0.
Note that if x = −

√
3, then x− 1 = −

√
3− 1 < 0 and so log2(x− 1) is not defined. Thus,

x 6= −
√

3.
If x =

√
3, we can verify that both logarithms in the original equation are defined and

that the original equation is true. We could convince ourselves of this with a calculator
or we could algebraically verify that raising 2 to the power of both sides gives the same
number, so the expressions must actually be equal.
Therefore, x =

√
3 is the only solution.
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(b) Let a = f(f(x)).
Thus, the equation f(f(f(x))) = 3 is equivalent to f(a) = 3.
Since f(a) = a2− 2a, then we obtain the equation a2− 2a = 3 which gives a2− 2a− 3 = 0
and (a− 3)(a+ 1) = 0.
Thus, a = 3 or a = −1 which means that f(f(x)) = 3 or f(f(x)) = −1.
Let b = f(x).
Thus, the equations f(f(x)) = 3 and f(f(x)) = −1 become f(b) = 3 and f(b) = −1.
If f(b) = 3, then b = f(x) = 3 or b = f(x) = −1 using similar reasoning to above when
f(a) = 3.
If f(b) = −1, then b2 − 2b = −1 and so b2 − 2b+ 1 = 0 or (b− 1)2 = 0 which means that
b = f(x) = 1.
Thus, f(x) = 3 or f(x) = −1 or f(x) = 1.
If f(x) = 3, then x = 3 or x = −1 as above.
If f(x) = −1, then x = 1 as above.
If f(x) = 1, then x2 − 2x = 1 and so x2 − 2x− 1 = 0.
By the quadratic formula,

x =
−(−2)±

√
(−2)2 − 4(1)(−1)

2(1)
=

2±
√

8

2
= 1±

√
2

Therefore, the solutions to the equation f(f(f(x))) = 3 are x = 3, 1,−1, 1 +
√

2, 1−
√

2.

8. (a) Since ∠AOB = ∠BOC = ∠COD = ∠DOA and these angles form a complete circle
around O, then ∠AOB = ∠BOC = ∠COD = ∠DOA = 1

4
· 360◦ = 90◦.

Join point O to P , B, Q, C, S, D, T , and A.

C

A

B

D

P Q

ST

Since P , Q, S, and T are points of tangency, then the radii meet the sides of ABCD at
right angles at these points.
Since AO = 3 and OT = 1 and ∠OTA = 90◦, then by the Pythagorean Theorem,
AT =

√
AO2 −OT 2 =

√
8 = 2

√
2.

Since 4OTA is right-angled at T , then ∠TAO + ∠AOT = 90◦.
Since ∠DOA = 90◦, then ∠AOT + ∠DOT = 90◦.
Thus, ∠TAO = ∠DOT .
This means that 4ATO is similar to 4OTD.

Thus,
DT

OT
=
OT

AT
and so DT =

OT 2

AT
=

1

2
√

2
.

Since DS and DT are tangents to the circle from the same point, then DS = DT =
1

2
√

2
.
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(b) Since 0 < x <
π

2
, then 0 < cosx < 1 and 0 < sinx < 1.

This means that 0 <
3

2
cosx <

3

2
and 0 <

3

2
sinx <

3

2
. Since 3 < π, then 0 <

3

2
cosx <

π

2

and 0 <
3

2
sinx <

π

2
.

If Y and Z are angles with 0 < Y <
π

2
and 0 < Z <

π

2
, then cosY = sinZ exactly when

Y +Z =
π

2
. To see this, we could picture points R and S on the unit circle corresponding

to the angles Y and Z; the x-coordinate of R is equal to the y-coordinate of S exactly
when the angles Y and Z are complementary.
Therefore, the following equations are equivalent:

cos

(
3

2
cosx

)
= sin

(
3

2
sinx

)
3

2
cosx+

3

2
sinx =

π

2

cosx+ sinx =
π

3

(sinx+ cosx)2 =
π2

9

sin2 x+ 2 sinx cosx+ sin2 x =
π2

9

2 sinx cosx+ (sin2 x+ cos2 x) =
π2

9

sin 2x+ 1 =
π2

9

sin 2x =
π2 − 9

9

Therefore, the only possible value of sin 2x is
π2 − 9

9
.
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9. (a) By definition, f(2, 5) =
2

5
+

5

2
+

1

2 · 5
=

2 · 2 + 5 · 5 + 1

2 · 5
=

4 + 25 + 1

10
=

30

10
= 3.

(b) By definition, f(a, a) =
a

a
+
a

a
+

1

a2
= 2 +

1

a2
.

For 2 +
1

a2
to be an integer, it must be the case that

1

a2
is an integer.

For
1

a2
to be an integer and since a2 is an integer, a2 needs to be a divisor of 1.

Since a2 is positive, then a2 = 1.
Since a is a positive integer, then a = 1.
Thus, the only positive integer a for which f(a, a) is an integer is a = 1.

(c) Suppose that a and b are positive integers for which f(a, b) is an integer.
Assume that k = f(a, b) is not a multiple of 3.
We will show that there must be a contradiction, which will lead to the conclusion that k
must be a multiple of 3.

By definition, k = f(a, b) =
a

b
+
b

a
+

1

ab
.

Multiplying by ab, we obtain kab = a2+b2+1, which we re-write as a2−(kb)a+(b2+1) = 0.
We treat this as a quadratic equation in a with coefficients in terms of the variables b and k.
Solving for a in terms of b and k using the quadratic formula, we obtain

a =
kb±

√
(−kb)2 − 4(1)(b2 + 1)

2
=
kb±

√
k2b2 − 4b2 − 4

2

Since a is an integer, then the discriminant k2b2 − 4b2 − 4 must be a perfect square.
Re-writing the discriminant, we obtain

k2b2 − 4b2 − 4 = b2(k2 − 4)− 4 = b2(k − 2)(k + 2)− 4

Since k is not a multiple of 3, then it is either 1 more than a multiple of 3 or it is 2 more
than a multiple of 3.
If k is 1 more than a multiple of 3, then k + 2 is a multiple of 3.
If k is 2 more than a multiple of 3, then k − 2 is a multiple of 3.
In either case, (k−2)(k+2) is a multiple of 3, say (k−2)(k+2) = 3m for some integer m.
This means that the discriminant can be re-written again as

b2(3m)− 4 = 3(b2m− 2) + 2

In other words, the discriminant is itself 2 more than a multiple of 3.
However, every perfect square is either a multiple of 3 or one more than a multiple of 3:

Suppose that r is an integer and consider r2.
The integer r can be written as one of 3q, 3q + 1, 3q + 2, for some integer q.
These three cases give

(3q)2 = 9q2 = 3(3q2)

(3q + 1)2 = 9q2 + 6q + 1 = 3(3q2 + 2q) + 1

(3q + 2)2 = 9q2 + 12q + 4 = 3(3q2 + 4q + 1) + 1

and so r2 is either a multiple of 3 or 1 more than a multiple of 3.
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We have determined that the discriminant is a perfect square and is 2 more than a multiple
of 3. This is a contradiction.
This means that our initial assumption must be incorrect, and so k = f(a, b) must be a
multiple of 3.

(d) Solution 1
We find additional pairs of positive integers (a, b) with f(a, b) = 3.
Suppose that f(a, b) = 3.

This is equivalent to the equations
a

b
+
b

a
+

1

ab
= 3 and a2 + b2 − 3ab+ 1 = 0.

Then

f(b, 3b− a)− 3 =
b

3b− a
+

3b− a
b

+
1

b(3b− a)
− 3

=
b2 + (3b− a)2 + 1− 3b(3b− a)

b(3b− a)

=
b2 + (3b− a)(3b− a) + 1− 3b(3b− a)

b(3b− a)

=
b2 − a(3b− a) + 1

b(3b− a)

=
b2 + a2 − 3ab+ 1

b(3b− a)

= 0

Therefore, if f(a, b) = 3, then f(b, 3b− a) = 3.
The equation f(1, 2) = 3 gives f(2, 3(2)− 1) = f(2, 5) = 3.
The equation f(2, 5) = 3 gives f(5, 3(5)− 2) = f(5, 13) = 3.
The equation f(5, 13) = 3 gives f(13, 3(13)− 5) = f(13, 34) = 3.
The equation f(13, 34) = 3 gives f(34, 3(34)− 13) = f(34, 89) = 3.
The equation f(34, 89) = 3 gives f(89, 3(89)− 34) = f(89, 233) = 3.
Thus, the pairs (a, b) = (5, 13), (13, 34), (34, 89), (89, 233) satisfy the requirements.

Solution 2
From (a), we know that f(2, 5) = 3.
Since the function f(a, b) is symmetric in a and b (that is, a and b can be switched without
changing the value of the function), then f(5, 2) = 3.
Consider the equation f(5, b) = 3. We know that b = 2 is a solution, but is there another
solution?

By definition, f(5, b) =
5

b
+
b

5
+

1

5b
.

Thus, f(5, b) = 3 gives the following equivalent equations:

5

b
+
b

5
+

1

5b
= 3

25 + b2 + 1 = 15b

b2 − 15b+ 26 = 0

(b− 2)(b− 13) = 0

and so b = 2 or b = 13. This means that f(5, 13) = 3 and so (a, b) = (5, 13) has the
property that f(a, b) is an integer.
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From f(5, 13) = 3, we get f(13, 5) = 3.
As above, we consider the equation f(13, b) = 3, for which b = 5 is a solution.
We obtain the equivalent equations

13

b
+

b

13
+

1

13b
= 3

169 + b2 + 1 = 39b

b2 − 39b+ 170 = 0

(b− 5)(b− 34) = 0

and so b = 5 or b = 34. This means that f(13, 34) = 3 and so (a, b) = (13, 34) has the
property that f(a, b) is an integer.
Continuing in a similar manner, we can also find that f(34, 89) and f(89, 233) are both
integers.
Thus, the pairs (a, b) = (5, 13), (13, 34), (34, 89), (89, 233) satisfy the requirements.

Solution 3
Note that

f(5, 13) =
5

13
+

13

5
+

1

5 · 13
=

52 + 132 + 1

65
=

195

65
= 3

f(13, 34) =
13

34
+

34

13
+

1

13 · 34
=

132 + 342 + 1

442
=

1326

442
= 3

f(34, 89) =
34

89
+

89

34
+

1

34 · 89
=

342 + 892 + 1

3026
=

9078

3026
= 3

f(89, 233) =
89

233
+

233

89
+

1

89 · 233
=

892 + 2332 + 1

20737
=

62 211

20 737
= 3

and so the pairs (a, b) = (5, 13), (13, 34), (34, 89), (89, 233) satisfy the requirements.

Where do these pairs come from?
We define the Fibonacci sequence F1, F2, F3, F4, . . . by F1 = F2 = 1 and Fn = Fn−1 +Fn−2

when n ≥ 3.
Thus, the Fibonacci sequence begins 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, . . ..
The pairs (a, b) found above are of the form (F2k−1, F2k+1) for integers k ≥ 3.
We note that

f(F2k−1, F2k+1) =
F2k−1

F2k+1

+
F2k+1

F2k−1

+
1

F2k−1F2k+1

=
(F2k−1)

2 + (F2k+1)
2 + 1

F2k−1F2k+1

=
(F2k−1)

2 + (F2k + F2k−1)
2 + 1

F2k−1(F2k + F2k−1)

=
2(F2k−1)

2 + 2F2kF2k−1 + (F2k)2 + 1

(F2k−1)2 + F2kF2k−1

=
2(F2k−1)

2 + 2F2kF2k−1

(F2k−1)2 + F2kF2k−1

+
(F2k)2 + 1

(F2k−1)2 + F2kF2k−1

= 2 +
(F2k)2 + 1

F2k−1F2k+1
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This means that f(F2k−1, F2k+1) = 3 if and only if
(F2k)2 + 1

F2k−1F2k+1

= 1, or equivalently if and

only if (F2k)2 + 1 = F2k−1F2k+1, or (F2k)2 − F2k−1F2k+1 = −1.
We note that (F2)

2− F1F3 = 12− 1 · 2 = −1 and (F4)
2−F3F5 = 32− 2 · 5 = −1 so this is

true when k = 1 and k = 2.
Furthermore, we note that

(F2k+2)
2 − F2k+1F2k+3 = (F2k+2)

2 − F2k+1(F2k+2 + F2k+1)

= (F2k+2)
2 − F2k+1F2k+2 − (F2k+1)

2

= F2k+2(F2k+2 − F2k+1)− (F2k+1)
2

= F2k+2F2k − (F2k+1)
2

= (F2k+1 + F2k)F2k − (F2k+1)
2

= (F2k)2 + F2k+1F2k − (F2k+1)
2

= (F2k)2 + F2k+1(F2k − F2k+1)

= (F2k)2 + F2k+1(−F2k−1)

= (F2k)2 − F2k+1F2k−1

which means that since (F4)
2 − F3F5 = −1, then (F6)

2 − F5F7 = −1, which means that
(F8)

2 − F7F9 = −1, and so on.
Continuing in this way, (F2k)2 − F2k−1F2k+1 = −1 for all positive integers k ≥ 1, which in
turn means that f(F2k−1, F2k+1) = 3, as required.
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10. (a) On her first two turns, Brigitte either chooses two cards of the same colour or two cards
of different colours. If she chooses two cards of different colours, then on her third turn,
she must choose a card that matches one of the cards that she already has.
Therefore, the game ends on or before Brigitte’s third turn.
Thus, if Amir wins, he wins on his second turn or on his third turn. (He cannot win on
his first turn.)

For Amir to win on his second turn, the second card he chooses must match the first card
that he chooses.
On this second turn, there will be 5 cards in his hand, of which 1 matches the colour of
the first card that he chose.
Therefore, the probability that Amir wins on his second turn is 1

5
.

Note that there is no restriction on the first card that he chooses or the first card that
Brigitte chooses.

For Amir to win on his third turn, the following conditions must be true: (i) the colour
of the second card that he chooses is different from the colour of the first card that he
chooses, (ii) the colour of the second card that Brigitte chooses is different from the colour
of the first card that she chooses, and (iii) the colour of the third card that Amir chooses
matches the colour of one of the first two cards.
The probability of (i) is 4

5
, since he must choose any card other than the one that matches

the first one.
The probability of (ii) is 2

3
, since Brigitte must choose either of the cards that does not

match her first card.
The probability of (iii) is 2

4
, since Amir can choose either of the 2 cards that matches one

of the first two cards that he chose.
Again, the cards that Amir and Brigitte choose on their first turns do not matter.
Thus, the probability that Amir wins on his third turn is 4

5
· 2
3
· 2
4

which equals 4
15

.

Finally, the probabilty that Amir wins the game is thus 1
5

+ 4
15

which equals 7
15

.
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(b) Suppose that, after flipping the first 13 coins, the probability that there is an even number
of heads is p.
Then the probability that there is an odd number of heads is 1− p.
When the 14th coin is flipped, the probability of heads is h14 and the probability of not
heads is 1− h14.
After the 14th coin is flipped, there can be an even number of heads if the first 13 include
an even number of heads and the 14th is not heads, or if the first 13 include an odd number
of heads and the 14th is heads.
The probability of this is p(1− h14) + (1− p)h14.
Therefore,

p(1− h14) + (1− p)h14 = 1
2

2p− 2ph14 + 2h14 − 2ph14 = 1

0 = 4ph14 − 2p− 2h14 + 1

0 = 2p(2h14 − 1)− (2h14− 1)

0 = (2p− 1)(2h14 − 1)

Therefore, either h14 = 1
2

or p = 1
2
.

If h14 = 1
2
, we have proven the result.

If h14 6= 1
2
, then p = 1

2
.

This would mean that the probability of getting an even number of heads when the first
13 coins are flipped is 1

2
.

We could repeat the argument above to conclude that either h13 = 1
2

or the probability of
obtaining an even number of heads when the first 12 coins are flipped is 1

2
.

Continuing in this way, either one of h14, h13, . . . , h3, h2 will equal 1
2
, or the probability of

obtaining an even number of heads when 1 coin is flipped is 1
2
.

This last statement is equivalent to saying that the probability of obtaining a head with
the first coin is 1

2
(that is, h1 = 1

2
).

Therefore, at least one of h1, h2, . . . , h13, h14 must equal 1
2
.
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(c) For the sum of the two digits printed to be 2, each digit must equal 1.
Thus, S(2) = p1q1.
For the sum of the two digits printed to be 12, each digit must equal 6.
Thus, S(12) = p6q6.
For the sum of the two digits printed to be 7, the digits must be 1 and 6, or 2 and 5, or 3
and 4, or 4 and 3, or 5 and 2, or 6 and 1.
Thus, S(7) = p1q6 + p2q5 + p3q4 + p4q3 + p5q2 + p6q1.
Since S(2) = S(12), then p1q1 = p6q6.
Since S(2) > 0 and S(12) > 0, then p1, q1, p6, q6 > 0.
If p1 = p6, then we can divide both sides of p1q1 = p6q6 by p1 = p6 to obtain q1 = q6.
If q1 = q6, then we can divide both sides of p1q1 = p6q6 by q1 = q6 to obtain p1 = p6.
Therefore, if we can show that either p1 = p6 or q1 = q6, our result will be true.
Suppose that p1 6= p6 and q1 6= q6.
Since S(2) = 1

2
S(7) and S(12) = 1

2
S(7), then

S(7)− 1
2
S(7)− 1

2
S(7) = 0

S(7)− S(2)− S(12) = 0

p1q6 + p2q5 + p3q4 + p4q3 + p5q2 + p6q1 − p1q1 − p6q6 = 0

p1q6 + p6q1 − p1q1 − p6q6 + (p2q5 + p3q4 + p4q3 + p5q2) = 0

(p1 − p6)(q6 − q1) + (p2q5 + p3q4 + p4q3 + p5q2) = 0

p2q5 + p3q4 + p4q3 + p5q2 = −(p1 − p6)(q6 − q1)
p2q5 + p3q4 + p4q3 + p5q2 = (p1 − p6)(q1 − q6)

Since p2, p3, p4, p5, q2, q3, q4, q5 ≥ 0, then p2q5 + p3q4 + p4q3 + p5q2 ≥ 0.
From this, (p1 − p6)(q1 − q6) ≥ 0.
Since p1 6= p6, then either p1 > p6 or p1 < p6.
If p1 > p6, then p1 − p6 > 0 and so (p1 − p6)(q1 − q6) ≥ 0 tells us that q1 − q6 > 0 which
means q1 > q6.
But we know that p1q1 = p6q6 and p1, q1, p6, q6 > 0 so we cannot have p1 > p6 and q1 > q6.
If p1 < p6, then p1 − p6 < 0 and so (p1 − p6)(q1 − q6) ≥ 0 tells us that q1 − q6 < 0 which
means q1 < q6.
But we know that p1q1 = p6q6 and p1, q1, p6, q6 > 0 so we cannot have p1 < p6 and q1 < q6.
This is a contradiction.
Therefore, since we cannot have p1 > p6 or p1 < p6, it must be the case that p1 = p6 which
means that q1 = q6, as required.
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1. (a) When x = 11,

x+ (x+ 1) + (x+ 2) + (x+ 3) = 4x+ 6 = 4(11) + 6 = 50

Alternatively,

x+ (x+ 1) + (x+ 2) + (x+ 3) = 11 + 12 + 13 + 14 = 50

(b) We multiply the equation
a

6
+

6

18
= 1 by 18 to obtain 3a+ 6 = 18.

Solving, we get 3a = 12 and so a = 4.

(c) Solution 1
Since the cost of one chocolate bar is $1.00 more than that of a pack of gum, then if we
replace a pack of gum with a chocolate bar, then the price increases by $1.00.
Starting with one chocolate bar and two packs of gum, we replace the two packs of gum
with two chocolate bars.
This increases the price by $2.00 from $4.15 to $6.15.
In other words, three chocolate bars cost $6.15, and so one chocolate bar costs 1

3
($6.15)

or $2.05.

Solution 2
Let the cost of one chocolate bar be $x.
Let the cost of one pack of gum be $y.
Since the cost of one chocolate bar and two packs of gum is $4.15, then x+ 2y = 4.15.
Since one chocolate bar costs $1.00 more than one pack of gum, then x = y + 1.
Since x = y + 1, then y = x− 1.
Since x+ 2y = 4.15, then x+ 2(x− 1) = 4.15.
Solving, we obtain x+ 2x− 2 = 4.15 or 3x = 6.15 and so x = 2.05.
In other words, the cost of one chocolate bar is $2.05.

2. (a) Suppose that the five-digit integer has digits abcde.
The digits a, b, c, d, e are 1, 3, 5, 7, 9 in some order.
Since abcde is greater than 80 000, then a ≥ 8, which means that a = 9.
Since 9bcde is less than 92 000, then b < 2, which means that b = 1.
Since 91cde has units (ones) digit 3, then e = 3.
So far, the integer is 91cd3, which means that c and d are 5 and 7 in some order.
Since the two-digit integer cd is divisible by 5, then it must be 75.
This means that the the five-digit integer is 91753.

(b) By the Pythagorean Theorem in 4ADB,

AD2 = AB2 −BD2 = 132 − 122 = 169− 144 = 25

Since AD > 0, then AD =
√

25 = 5.
By the Pythagorean Theorem in 4CDB,

CD2 = BC2 −BD2 = (12
√

2)2 − 122 = 122(2)− 122 = 122

Since CD > 0, then CD = 12.
Therefore, AC = AD +DC = 5 + 12 = 17.
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(c) Solution 1
The area of the shaded region equals the area of square OABC minus the area of 4OCD.
Since square OABC has side length 6, then its area is 62 or 36.
Also, OC = 6.
Since the equation of the line is y = 2x, then its slope is 2.

Since the slope of the line is 2, then
OC

CD
= 2.

Since OC = 6, then CD = 3.
Thus, the area of 4OCD is 1

2
(OC)(CD) = 1

2
(6)(3) = 9.

Finally, the area of shaded region must be 36− 9 = 27.

Solution 2
Since square OABC has side length 6, then OA = AB = CB = OC = 6.

Since the slope of the line is 2, then
OC

CD
= 2.

Since OC = 6, then CD = 3.
Since CB = 6 and CD = 3, then DB = CB − CD = 3.
The shaded region is a trapezoid with parallel sides DB = 3 and OA = 6 and height
AB = 6.
Therefore, the area of the shaded region is 1

2
(DB +OA)(AB) = 1

2
(3 + 6)(6) = 27.

3. (a) Calculating,
(√

4 +
√

4
)4

=
(√

4 + 2
)4

=
(√

6
)4

=
((√

6
)2)2

= 62 = 36.

(b) Since y is an integer, then 8− y2 is an integer.
Therefore,

√
23− x is an integer which means that 23− x is a perfect square.

Since x is a positive integer, then 23−x < 23 and so 23−x must be a perfect square that
is less than 23.
We make a table listing the possible values of 23 − x and the resulting values of x,√

23− x = 8− y2, y2, and y:

23− x x
√

23− x = 8− y2 y2 y
16 7 4 4 ±2

9 14 3 5 ±
√

5

4 19 2 6 ±
√

6

1 22 1 7 ±
√

7

0 23 0 8 ±
√

8

Since x and y are positive integers, then we must have (x, y) = (7, 2).
(We note that since we were told that there is only one such pair, we did not have to
continue the table beyond the first row.)
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(c) Since the line with equation y = mx + 2 passes through (1, 5), then 5 = m + 2 and so
m = 3.
Since the parabola with equation y = ax2 +5x−2 passes through (1, 5), then 5 = a+5−2
and so a = 2.
To find the coordinates of Q, we determine the second point of intersection of y = 3x+ 2
and y = 2x2 + 5x− 2 by equating values of y:

2x2 + 5x− 2 = 3x+ 2

2x2 + 2x− 4 = 0

x2 + x− 2 = 0

(x+ 2)(x− 1) = 0

Therefore, x = 1 or x = −2.
Since P has x-coordinate 1, then Q has x-coordinate −2.
Since Q lies on the line with equation y = 3x+ 2, we have y = 3(−2) + 2 = −4.
In summary, (i) m = 3, (ii) a = 2, and (iii) the coordinates of Q are (−2,−4).

4. (a) Since 80 = 24 · 5, its positive divisors are 1, 2, 4, 5, 8, 10, 16, 20, 40, 80.
For an integer n to share exactly two positive common divisors with 80, these divisors
must be either 1 and 2 or 1 and 5. (1 is a common divisor of any two integers. The second
common divisor must be a prime number since any composite divisor will cause there to
be at least one more common divisor which is prime.)
Since 1 ≤ n ≤ 30 and n is a multiple of 2 or of 5, then the possible values of n come from
the list

2, 4, 5, 6, 8, 10, 12, 14, 15, 16, 18, 20, 22, 24, 25, 26, 28, 30

We remove the multiples of 4 from this list (since they would share at least the divisors
1, 2, 4 with 80) and the multiples of 10 from this list (since they would share at least the
divisors 1, 2, 5, 10 with 80).
This leaves the list

2, 5, 6, 14, 15, 18, 22, 25, 26

The common divisors of any number from this list and 80 are either 1 and 2 or 1 and 5.
There are 9 such integers.

(b) We start with f(50) and apply the given rules for the function until we reach f(1):

f(50) = f(25) (since 50 is even and 1
2
(50) = 25)

= f(24) + 1 (since 25 is odd and 25− 1 = 24)

= f(12) + 1 (1
2
(24) = 12)

= f(6) + 1 (1
2
(12) = 6)

= f(3) + 1 (1
2
(6) = 3)

= (f(2) + 1) + 1 (3− 1 = 2)

= f(1) + 1 + 1 (1
2
(2) = 1)

= 1 + 1 + 1 (f(1) = 1)

= 3

Therefore, f(50) = 3.
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5. (a) Since the hexagon has perimeter 12 and has 6 sides, then each side has length 2.
Since equilateral 4PQR has perimeter 12, then its side length is 4.
Consider equilateral triangles with side length 2.
Six of these triangles can be combined to form a regular hexagon with side length 2 and
four of these can be combined to form an equilateral triangle with side length 4.

60° 60° 60° 60°

60°
60°

60°60°
60°

60°

60°60°

60°

60°60°

60° 60°

60°

60° 60°

60°

60° 60°

60°

60° 60°

60°
60°

60°60°

2

2

2

2

2

2

2 2

2

2 2

2

Note that the six equilateral triangles around the centre of the hexagon give a total central
angle of 6 · 60◦ = 360◦ (a complete circle) and the three equilateral triangles along each
side of the large equilateral triangle make a straight angle of 180◦ (since 3 · 60◦ = 180◦).
Also, the length of each side of the hexagon is 2 and the measure of each internal angle is
120◦, which means that the hexagon is regular. Similarly, the triangle is equilateral.
Since the triangle is made from four identical smaller triangles and the hexagon is made
from six of these smaller triangles, the ratio of the area of the triangle to the hexagon is
4 : 6 which is equivalent to 2 : 3.

(b) Since sector AOB is 1
6

of a circle with radius 18, its area is 1
6
(π · 182) or 54π.

For the line AP to divide this sector into two pieces of equal area, each piece has area
1
2
(54π) or 27π.

We determine the length of OP so that the area of 4POA is 27π.
Since sector AOB is 1

6
of a circle, then ∠AOB = 1

6
(360◦) = 60◦.

Drop a perpendicular from A to T on OB.

O A

B

P
T

The area of 4POA is 1
2
(OP )(AT ).

4AOT is a 30◦-60◦-90◦ triangle.

Since AO = 18, then AT =
√
3
2

(AO) = 9
√

3.

For the area of 4POA to equal 27π, we have 1
2
(OP )(9

√
3) = 27π which gives

OP =
54π

9
√

3
=

6π√
3

= 2
√

3π.

(Alternatively, we could have used the fact that the area of4POA is 1
2
(OA)(OP ) sin(∠POA).)
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6. (a) Let θ = 10k◦.

The given inequalities become 0◦ < θ < 180◦ and
5 sin θ − 2

sin2 θ
≥ 2.

When 0◦ < θ < 180◦, sin θ 6= 0.
This means that we can can multiply both sides by sin2 θ > 0 and obtain the equivalent
inequalities:

5 sin θ − 2

sin2 θ
≥ 2

5 sin θ − 2 ≥ 2 sin2 θ

0 ≥ 2 sin2 θ − 5 sin θ + 2

0 ≥ (2 sin θ − 1)(sin θ − 2)

Since sin θ ≤ 1, then sin θ − 2 ≤ −1 < 0 for all θ.
Therefore, (2 sin θ − 1)(sin θ − 2) ≤ 0 exactly when 2 sin θ − 1 ≥ 0.
Note that 2 sin θ − 1 ≥ 0 exactly when sin θ ≥ 1

2
.

Therefore, the original inequality is true exactly when 1
2
≤ sin θ ≤ 1.

Note that sin 30◦ = sin 150◦ = 1
2

and 0◦ < θ < 180◦.
When θ = 0◦, sin θ = 0.
From θ = 0◦ to θ = 30◦, sin θ increases from 0 to 1

2
.

From θ = 30◦ to θ = 150◦, sin θ increases from 1
2

to 1 and then decreases to 1
2
.

From θ = 150◦ to θ = 180◦, sin θ decreases from 1
2

to 0.
Therefore, the original inequality is true exactly when 30◦ ≤ θ ≤ 150◦ which is equivalent
to 30◦ ≤ 10k◦ ≤ 150◦ and to 3 ≤ k ≤ 15.
The integers k in this range are k = 3, 4, 5, 6, . . . , 12, 13, 14, 15, of which there are 13.
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(b) Suppose that Karuna and Jorge meet for the first time after t1 seconds and for the second
time after t2 seconds.
When they meet for the first time, Karuna has run partway from A to B and Jorge has
run partway from B to A.

A B

Karuna

Jorge

At this instant, the sum of the distances that they have run equals the total distance from
A to B.
Since Karuna runs at 6 m/s for these t1 seconds, she has run 6t1 m.
Since Jorge runs at 5 m/s for these t1 seconds, he has run 5t1 m.
Therefore, 6t1 + 5t1 = 297 and so 11t1 = 297 or t1 = 27.

When they meet for the second time, Karuna has run from A to B and is running back
to A and Jorge has run from B to A and is running back to B. This is because Jorge gets
to A halfway through his run before Karuna gets back to A at the end of her run.

A B

Karuna

Jorge

Since they each finish running after 99 seconds, then each has 99− t2 seconds left to run.
At this instant, the sum of the distances that they have left to run equals the total distance
from A to B.
Since Karuna runs at 6 m/s for these (99− t2) seconds, she has to run 6(99− t2) m.
Since Jorge runs at 7.5 m/s for these (99− t2) seconds, he has to run 7.5(99− t2) m.
Therefore, 6(99− t2) + 7.5(99− t2) = 297 and so 13.5(99− t2) = 297 or 99− t2 = 22 and
so t2 = 77.

Alternatively, to calculate the value of t2, we note that when Karuna and Jorge meet for
the second time, they have each run the distance from A to B one full time and are on
their return trips.
This means that they have each run the full distance from A to B once and the distances
that they have run on their return trip add up to another full distance from A to B, for
a total distance of 3 · 297 m = 891 m.
Karuna has run at 6 m/s for t2 seconds, for a total distance of 6t2 m.
Jorge ran the first 297 m at 5 m/s, which took 297

5
s and ran the remaining (t2 − 297

5
)

seconds at 7.5 m/s, for a total distance of
(
297 + 7.5(t2 − 297

5
)
)

m.
Therefore,

6t2 + 297 + 7.5(t2 − 297
5

) = 891

13.5t2 = 891− 297 + 7.5 · 297
5

13.5t2 = 1039.5

t2 = 77

Therefore, Karuna and Jorge meet after 27 seconds and after 77 seconds.
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7. (a) Solution 1

Among a group of n people, there are
n(n− 1)

2
ways of choosing a pair of these people:

There are n people that can be chosen first.
For each of these n people, there are n− 1 people that can be chosen second.
This gives n(n− 1) orderings of two people.
Each pair is counted twice (given two people A and B, we have counted both the

pair AB and the pair BA), so the total number of pairs is
n(n− 1)

2
.

We label the four canoes W, X, Y, and Z.
First, we determine the total number of ways to put the 8 people in the 4 canoes.

We choose 2 people to put in W. There are
8 · 7

2
pairs. This leaves 6 people for the

remaining 3 canoes.

Next, we choose 2 people to put in X. There are
6 · 5

2
pairs. This leaves 4 people for the

remaining 2 canoes.

Next, we choose 2 people to put in Y. There are
4 · 3

2
pairs. This leaves 2 people for the

remaining canoe.
There is now 1 way to put the remaining people in Z.
Therefore, there are

8 · 7
2
· 6 · 5

2
· 4 · 3

2
=

8 · 7 · 6 · 5 · 4 · 3
23

= 7 · 6 · 5 · 4 · 3

ways to put the 8 people in the 4 canoes.

Now, we determine the number of ways in which no two of Barry, Carrie and Mary will
be in the same canoe.
There are 4 possible canoes in which Barry can go.
There are then 3 possible canoes in which Carrie can go, because she cannot go in the
same canoe as Barry.
There are then 2 possible canoes in which Mary can go, because she cannot go in the same
canoe as Barry or Carrie.
This leaves 5 people left to put in the canoes.
There are 5 choices of the person that can go with Barry, and then 4 choices of the person
that can go with Carrie, and then 3 choices of the person that can go with Mary.
The remaining 2 people are put in the remaining empty canoe.
This means that there are 4 · 3 · 2 · 5 · 4 · 3 ways in which the 8 people can be put in 4
canoes so that no two of Barry, Carrie and Mary are in the same canoe.

Therefore, the probability that no two of Barry, Carrie and Mary are in the same canoe

is
4 · 3 · 2 · 5 · 4 · 3

7 · 6 · 5 · 4 · 3
=

4 · 3 · 2
7 · 6

=
24

42
=

4

7
.
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Solution 2
Let p be the probability that two of Barry, Carrie and Mary are in the same canoe.
The answer to the original problem will be 1− p.
Let q be the probability that Barry and Carrie are in the same canoe.
By symmetry, the probability that Barry and Mary are in the same canoe also equals q
as does the probability that Carrie and Mary are in the same canoe.
This means that p = 3q.
So we calculate q.
To do this, we put Barry in a canoe. Since there are 7 possible people who can go in the
canoe with him, then the probability that Carrie is in the canoe with him equals 1

7
. The

other 6 people can be put in the canoes in any way.
This means that the probability that Barry and Carrie are in the same canoe is q = 1

7
.

Therefore, the probability that no two of Barry, Carrie and Mary are in the same canoe
is 1− 3 · 1

7
or 4

7
.

(b) Solution 1
Suppose that WY makes an angle of θ with the horizontal.

y

xO

Z

Y

45°
45°

X

W
θ – 45°

Since the slope of WY is 2, then tan θ = 2, since the tangent of an angle equals the slope
of a line that makes this angle with the horizontal.
Since tan θ = 2 > 1 = tan 45◦, then θ > 45◦.
Now WY bisects ∠ZWX, which is a right-angle.
Therefore, ∠ZWY = ∠YWX = 45◦.
Therefore, WX makes an angle of θ+ 45◦ with the horizontal and WZ makes an angle of
θ − 45◦ with the horizontal. Since θ > 45◦, then θ − 45◦ > 0 and θ + 45◦ > 90◦.
We note that since WZ and XY are parallel, then the slope of XY equals the slope of
WZ.
To calculate the slopes of WX and WZ, we can calculate tan(θ + 45◦) and tan(θ − 45◦).

Using the facts that tan(A + B) =
tanA+ tanB

1− tanA tanB
and tan(A − B) =

tanA− tanB

1 + tanA tanB
,

we obtain:

tan(θ + 45◦) =
tan θ + tan 45◦

1− tan θ tan 45◦
=

2 + 1

1− (2)(1)
= −3

tan(θ − 45◦) =
tan θ − tan 45◦

1− tan θ tan 45◦
=

2− 1

1 + (2)(1)
=

1

3

Therefore, the sum of the slopes of WX and XY is −3 +
1

3
= −8

3
.
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Solution 2
Consider a square WXY Z whose diagonal WY has slope 2.
Translate this square so that W is at the origin (0, 0). Translating a shape in the plane
does not affect the slopes of any line segments.
Let the coordinates of Y be (2a, 2b) for some non-zero numbers a and b.

Since the slope of WY is 2, then
2b− 0

2a− 0
= 2 and so 2b = 4a or b = 2a.

Thus, the coordinates of Y can be written as (2a, 4a).
Let C be the centre of square WXY Z.
Then C is the midpoint of WY , so C has coordinates (a, 2a).
We find the slopes of WX and XY by finding the coordinates of X.
Consider the segment XC.
Since the diagonals of a square are perpendicular, then XC is perpendicular to WC.
Since the slope of WC is 2, then the slopes of XC and ZC are −1

2
.

Since the diagonals of a square are equal in length and C is the midpoint of both diagonals,
then XC = WC.
Since WC and XC are perpendicular and equal in length, then the “rise/run triangle”
above XC will be a 90◦ rotation of the “rise/run triangle” below WC.

y

x
Z

Y(2a, 4a)

X

W a

a

2a

2a

C

This is because these triangles are congruent (each is right-angled, their hypotenuses are
of equal length, and their remaining angles are equal) and their hypotenuses are perpen-
dicular.
In this diagram, we have assumed that X is to the left of W and Z is to the right of W .
Since the slopes of parallel sides are equal, it does not matter which vertex is labelled X
and which is labelled Z. We would obtain the same two slopes, but in a different order.
To get from W (0, 0) to C(a, 2a), we go up 2a and right a.
Thus, to get from C(a, 2a) to X, we go left 2a and up a.
Therefore, the coordinates of X are (a− 2a, 2a+ a) or (−a, 3a).

Thus, the slope of WX is
3a− 0

−a− 0
= −3.

Since XY is perpendicular to WX, then its slope is the negative reciprocal of −3, which

is
1

3
.

The sum of the slopes of WX and XY is −3 +
1

3
= −8

3
.
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8. (a) Since the base of a logarithm must be positive and cannot equal 1, then x > 0 and x 6= 1
2

and x 6= 1
3
.

This tells us that log 2x and log 3x exist and do not equal 0, which we will need shortly
when we apply the change of base formula.
We note further that 48 = 24 · 3 and 162 = 34 · 2 and 3

√
3 = 31/3 and 3

√
2 = 21/3.

Using logarithm rules, the following equations are equivalent:

log2x(48
3
√

3) = log3x(162
3
√

2)

log(24 · 3 · 31/3)

log 2x
=

log(34 · 2 · 21/3)

log 3x
(change of base formula)

log(24 · 34/3)

log 2 + log x
=

log(34 · 24/3)

log 3 + log x
(log ab = log a+ log b)

log(24) + log(34/3)

log 2 + log x
=

log(34) + log(24/3)

log 3 + log x
(log ab = log a+ log b)

4 log 2 + 4
3

log 3

log 2 + log x
=

4 log 3 + 4
3

log 2

log 3 + log x
(log(ac) = c log a)

Cross-multiplying, we obtain

(4 log 2 + 4
3

log 3)(log 3 + log x) = (4 log 3 + 4
3

log 2)(log 2 + log x)

Expanding the left side, we obtain

4 log 2 log 3 + 4
3
(log 3)2 + (4 log 2 + 4

3
log 3) log x

Expanding the right side, we obtain

4 log 3 log 2 + 4
3
(log 2)2 + (4 log 3 + 4

3
log 2) log x

Simplifying and factoring, we obtain the following equivalent equations:

4
3
(log 3)2 − 4

3
(log 2)2 = log x(4 log 3 + 4

3
log 2− 4 log 2− 4

3
log 3)

4
3
(log 3)2 − 4

3
(log 2)2 = log x

(
8
3

log 3− 8
3

log 2
)

(log 3)2 − (log 2)2 = 2 log x(log 3− log 2)

log x =
(log 3)2 − (log 2)2

2(log 3− log 2)

log x =
(log 3− log 2)(log 3 + log 2)

2(log 3− log 2)

log x =
log 3 + log 2

2
log x = 1

2
log 6

log x = log(
√

6)

and so x =
√

6.
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(b) Let BC = x, PB = b, and BQ = a.
Since BC = x, then AD = PS = QR = x.
Since BC = x and BQ = a, then QC = x− a.
Since AB = 718 and PB = b, then AP = 718− b.
Note that PQ = SR = 250.
Let ∠BQP = θ.
Since 4PBQ is right-angled at B, then
∠BPQ = 90◦ − θ.
Since BQC is a straight angle and ∠PQR = 90◦, then
∠RQC = 180◦ − 90◦ − θ = 90◦ − θ.
Since APB is a straight angle and ∠SPQ = 90◦, then
∠APS = 180◦ − 90◦ − (90◦ − θ) = θ.
Since 4SAP and 4QCR are each right-angled and
have another angle in common with 4PBQ, then these
three triangles are similar.

A B

D C

P

Q

R

S

b

a

x – a

x – a

b

a
250

250

718 – b

718 – b

θ

θ

θ

θ

x

x

Continuing in the same way, we can show that 4RDS is also similar to these three trian-
gles.
Since RS = PQ, then 4RDS is actually congruent to 4PBQ (angle-side-angle).
Similarly, 4SAP is congruent to 4QCR.
In particular, this means that AS = x− a, SD = a, DR = b, and RC = 718− b.

Since 4SAP and 4PBQ are similar, then
SA

PB
=
AP

BQ
=
SP

PQ
.

Thus,
x− a
b

=
718− b

a
=

x

250
.

Also, by the Pythagorean Theorem in 4PBQ, we obtain a2 + b2 = 2502.
By the Pythagorean Theorem in 4SAP ,

x2 = (x− a)2 + (718− b)2

x2 = x2 − 2ax+ a2 + (718− b)2

0 = −2ax+ a2 + (718− b)2 (∗)

Since a2 + b2 = 2502, then a2 = 2502 − b2.

Since
718− b

a
=

x

250
, then ax = 250(718− b).

Therefore, substituting into (∗), we obtain

0 = −2(250)(718− b) + 2502 − b2 + (718− b)2

b2 = 2502 − 2(250)(718− b) + (718− b)2

b2 = ((718− b)− 250)2 (since y2 − 2yz + z2 = (y − z)2)

b2 = (468− b)2

b = 468− b (since b 6= b− 468)

2b = 468

b = 234

Therefore, a2 = 2502−b2 = 2502−2342 = (250+234)(250−234) = 484 ·16 = 222 ·42 = 882

and so a = 88.

Finally, x =
250(718− b)

a
=

250 · 484

88
= 1375. Therefore, BC = 1375.



2018 Euclid Contest Solutions Page 14

9. (a) Here is a tiling of a 3× 8 rectangle:

There are many other tilings.

(b) First, we note that it is possible to tile each of a 3× 2 and a 2× 3 rectangle:

Next, we note that it is not possible to tile a 6× 1 rectangle because each of the triominos
needs a width of at least 2 to be placed.
Finally, we show that it is possible to tile a 6×W rectangle for every integer W ≥ 2.
To do this, we show that such a 6 ×W rectangle can be made up from 3 × 2 and 2 × 3
rectangles. Since each of these types of rectangles can be tiled with triominos, then the
larger rectangle can be tiled with triominos by combining these tilings.

Case 1: W is even
Suppose that W = 2k for some positive integer k.
We build a 6× 2k rectangle by placing k 6× 2 rectangles side by side.
Each 6× 2 rectangle is built by stacking two 3× 2 rectangles on top of each other.

...

2 2 2

3

3

Therefore, each such rectangle can be tiled.

Case 2: W is odd, W ≥ 3
Suppose that W = 2k + 1 for some positive integer k.
We build a 6 × (2k + 1) rectangle by building a 6 × 3 rectangle and then putting k − 1
6×2 rectangles next to it. Note that k−1 ≥ 0 since k ≥ 1 and that 2k+ 1 = 3 + 2(k−1).
The 6× 3 rectangle is built by stacking three 2× 3 rectangles on top of each other.
Each 6× 2 rectangle is built by stacking two 3× 2 rectangles on top of each other.

...

2

2

2

2 2 23
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Therefore, each such rectangle can be tiled.

Thus, a 6×W rectangle can be tiled with triominos exactly when W ≥ 2.

(c) Suppose that (H,W ) is a pair of integers with H ≥ 4 and W ≥ 4.
Since the area of each triomino is 3, then the area of any rectangle that can be tiled must
be a multiple of 3 since it is completely covered by triominos with area 3.
Since the area of an H ×W rectangle is HW , then we need HW to be a multiple of 3,
which means that at least one of H and W is a multiple of 3.
Since a rectangle that is a × b can be tiled if and only if a rectangle that is b × a can be
tiled (we see this by rotating the tilings by 90◦ as we did with the 3×2 and 2×3 rectangles
above), then we may assume without loss of generality that H is divisible by 3.
We show that if H is divisible by 3, then every H ×W rectangle with H ≥ 4 and W ≥ 4
can be tiled.

Case 1: H is divisible by 3, H is even
Here, H is a multiple of 6, say H = 6m for some positive integer m.
Since W ≥ 4, we know that a 6×W rectangle can be tiled.
By stacking m 6×W rectangles on top of each other, we obtain a 6m×W rectangle.
Since each 6×W rectangle can be tiled, then the 6m×W rectangle can be tiled.

Case 2: H is divisible by 3, H is odd, W is even
Suppose that H = 3q for some odd positive integer q and W = 2r for some positive
integer r.
To tile a 3q × 2r rectangle, we combine qr 3× 2 rectangles in q rows and r columns:

...

...

...

...

Therefore, every rectangle in this case can be tiled. (Note that in this case the fact that
q was odd was not important.)

Case 3: H is divisible by 3, H is odd, W is odd
Since H ≥ 4 and W ≥ 4, the rectangle with the smallest values of H and W is 9×5 which
can be tiled as shown:

(There are also other ways to tile this rectangle.)
Since H is an odd multiple of 3 and H ≥ 4, we can write H = 9 + 6s for some integer
s ≥ 0.
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Since W is odd and W ≥ 5, we can write W = 5 + 2t for some integer t ≥ 0.
Thus, the H ×W rectangle is (9 + 6s)× (5 + 2t).
We break this rectangle into three rectangles – one that is 9 × 5, one that is 9 × 2t, and
one that is 6s×W :

9 × 2t

6s × W

9 × 5

(If s = 0 or t = 0, there will be fewer than three rectangles.)
The 9× 5 rectangle can be tiled as we showed earlier.
If t > 0, the 9× 2t rectangle can be tiled as seen in Case 2.
If s > 0, the 6s×W rectangle can be tiled as seen in Case 1.
Therefore, the H ×W rectangle can be tiled.

Through these three cases, we have shown that any H ×W rectangle with H ≥ 4 and
W ≥ 4 can be tiled when H is a multiple of 3.
Since the roles of H and W can be interchanged and since at least one of H and W must
be a multiple of 3, then an H ×W rectangle with H ≥ 4 and W ≥ 4 can be tiled exactly
when at least one of H and W is a multiple of 3.

10. (a) We draw part of the array using the information that A0 = A1 = A2 = 0 and A3 = 1:

· · · A0 A1 A2 A3 A4 A5 · · ·
· · · B0 B1 B2 B3 B4 B5 · · ·

· · · 0 0 0 1 A4 A5 · · ·
· · · B0 B1 B2 B3 B4 B5 · · ·

Since A1 is the average of A0, B1 and A2, then A1 =
A0 +B1 + A2

3
or 3A1 = A0+B1+A2.

Thus, 3(0) = 0 +B1 + 0 and so B1 = 0.
Since A2 is the average of A1, B2 and A3, then 3A2 = A1+B2+A3 and so 3(0) = 0+B2+1
which gives B2 = −1.
Since B2 is the average of B1, A2 and B3, then 3B2 = B1+A2+B3 and so 3(−1) = 0+0+B3

which gives B3 = −3.
So far, this gives

· · · 0 0 0 1 A4 A5 · · ·
· · · B0 0 −1 −3 B4 B5 · · ·

Since A3 is the average of A2, B3 and A4, then 3A3 = A2 + B3 + A4 and so 3(1) =
0 + (−3) + A4 which gives A4 = 6.



2018 Euclid Contest Solutions Page 17

(b) We draw part of the array:

· · · Ak−1 Ak Ak+1 · · ·
· · · Bk−1 Bk Bk+1 · · ·

Then

3Sk = 3Ak + 3Bk

= 3

(
Ak−1 +Bk + Ak+1

3

)
+ 3

(
Bk−1 + Ak +Bk+1

3

)
= Ak−1 +Bk + Ak+1 +Bk−1 + Ak +Bk+1

= (Ak−1 +Bk−1) + (Ak +Bk) + (Ak+1 +Bk+1)

= Sk−1 + Sk + Sk+1

Since 3Sk = Sk−1 + Sk + Sk+1, then Sk+1 = 2Sk − Sk−1.

(c) Proof of statement (P)
Suppose that all of the entries in the array are positive integers.
Assume that not all of the entries in the array are equal.
Since all of the entries are positive integers, there must be a minimum entry. Let m be
the minimum of all of the entries in the array.
Choose an entry in the array equal to m, say Ar = m for some integer r. The same
argument can be applied with Br = m if there are no entries equal to m in the top row.
If not all of the entries Aj are equal to m, then by moving one direction or the other
along the row we will get to some point where At = m for some integer t but one of its
neighbours is not equal to m. (If this were not to happen, then all of the entries in both
directions would be equal to m.)
If all of the entries Aj are equal to m, then since not all of the entries in the array are
equal to m, then there will be an entry Bt which is not equal to m.
In other words, since not all of the entries in the array are equal, then there exists an
integer t for which At = m and not all of At−1, At+1, Bt are equal to m.
But 3m = 3At and 3At = At−1 +Bt + At+1 so 3m = At−1 +Bt + At+1.
Since not all of At−1, Bt and At+1 are equal to m and each is at least m, then one of these
entries will be greater than m.
This means that At−1 + Bt + At+1 ≥ m + m + (m + 1) = 3m + 1 > 3m, which is a
contradiction.
Therefore our assumption that not all of the entries are equal must be false, which means
that all of the entries are equal, which proves statement (P).

Proof of statement (Q)
Suppose that all of the entries are positive real numbers.
Assume that not all of the entries in the array are equal.
As in (b), define Sk = Ak +Bk for each integer k.
Also, define Dk = Ak −Bk for each integer k.

Step 1: Prove that the numbers Sk form an arithmetic sequence
From (b), Sk+1 = 2Sk − Sk−1.
Re-arranging, we see Sk+1 − Sk = Sk − Sk−1 for each integer k, which means that the
differences between consecutive pairs of terms are equal.
Since this is true for all integers k, then the difference between each pair of consecutive
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terms through the whole sequence is constant, which means that the sequence is an arith-
metic sequence.

Step 2: Prove that Sk is constant

Suppose that S0 = c. Since A0 > 0 and B0 > 0, then S0 = c > 0.
Since the terms Sk form an arithmetic sequence, then the sequence is either constant,
increasing or decreasing.
If the sequence of terms Sk is increasing, then the common difference d = S1 − S0 is
positive.
Note that S−1 = c− d, S−2 = c− 2d, and so on.
Since c and d are constant, then if we move far enough back along the sequence, eventually
St will be negative for some integer t. This is a contradiction since At > 0 and Bt > 0 and
St = At +Bt.
Thus, the sequence cannot be increasing.
If the sequence of terms Sk is decreasing, then the common difference d = S1 − S0 is
negative.
Note that S1 = c+ d, S2 = c+ 2d, and so on.
Since c and d are constant, then if we move far along the sequence, eventually St will be
negative for some integer t. This is also a contradiction since At > 0 and Bt > 0 and
St = At +Bt.
Thus, the sequence cannot be decreasing.
Therefore, since all of the entries are positive and the sequence Sk is arithmetic, then Sk

is constant, say Sk = c > 0 for all integers k.

Step 3: Determine range of possible values for Dk

We note that Sk = Ak +Bk = c for all integers k and Ak > 0 and Bk > 0.
Since Ak > 0, then Bk = Sk − Ak = c− Ak < c.
Similarly, Ak < c.
Therefore, 0 < Ak < c and 0 < Bk < c.
Since Dk = Ak −Bk, then Dk < c− 0 = c and Dk > 0− c = −c.
In other words, −c < Dk < c.

Step 4: Dk+1 = 4Dk −Dk−1
Using a similar approach to our solution to (b),

3Dk = 3Ak − 3Bk

3Dk = (Ak−1 +Bk + Ak+1)− (Bk−1 + Ak +Bk+1)

3Dk = (Ak+1 −Bk+1) + (Ak−1 −Bk−1)− (Ak −Bk)

3Dk = Dk+1 +Dk−1 −Dk

4Dk −Dk−1 = Dk+1

as required.

Step 5: Final contradiction
We want to show that Dk = 0 for all integers k.
This will show that Ak = Bk for all integers k.
Since Sk = Ak +Bk = c for all integers k, then this would show that Ak = Bk = 1

2
c for all

integers k, meaning that all entries in the array are equal.
Suppose that Dk 6= 0 for some integer k.
We may assume that D0 6= 0. (If D0 = 0, then because the array is infinite in both
directions, we can shift the numbering of the array so that a column where Dk 6= 0 is
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labelled column 0.)
Thus, D0 > 0 or D0 < 0.
We may assume that D0 > 0. (If D0 < 0, then we can switch the bottom and top rows of
the array so that D0 becomes positive.)
Suppose that D1 ≥ D0 > 0.
Then D2 = 4D1−D0 ≥ 4D1−D1 = 3D1. Since D1 > 0, this also means that D2 > D1 > 0.
Similarly, D3 = 4D2−D1 ≥ 4D2−D2 = 3D2 > D2 > 0. Since D2 ≥ 3D1, then D3 ≥ 9D1.
Continuing in this way, we see that D4 ≥ 27D1 and D5 ≥ 81D1 and so on, with
Dk ≥ 3k−1D1 for each positive integer k ≥ 2. Since the value of D1 is a fixed positive
real number and Dk < c for all integers k, this is a contradiction, because the sequence of
values 3k−1 grows without bound.
The other possibility is that D1 < D0.
Here, we re-arrange Dk+1 = 4Dk −Dk−1 to obtain Dk−1 = 4Dk −Dk+1.
Thus, D−1 = 4D0 −D1 > 4D0 −D0 = 3D0 > D0 > 0.
Extending this using a similar method, we see that D−j > 3jD0 for all positive integers j
which will lead to the same contradiction as above.
Therefore, a contradiction is obtained in all cases and so it cannot be the case that Dk 6= 0
for some integer k.

Since Dk = 0 and Sk = c for all integers k, then Ak = Bk = 1
2
c for all integers k, which

means that all entries in the array are equal.
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1. (a) Since 5(2) + 3(3) = 19, then the pair of positive integers that satisfies 5a + 3b = 19 is
(a, b) = (2, 3).

(b) We list the first several powers of 2 in increasing order:

n 1 2 3 4 5 6 7 8 9 10 11
2n 2 4 8 16 32 64 128 256 512 1024 2048

Each power of 2 can be found by multiplying the previous power by 2.
From the table, the smallest power of 2 greater than 5 is 23 = 8 and the largest power of
2 less than 2017 is 210 = 1024. Since 2n increases as n increases, there can be no further
powers in this range.
Therefore, the values of n for which 5 < 2n < 2017 are n = 3, 4, 5, 6, 7, 8, 9, 10.
There are 8 such values of n.

(c) Each of the 600 Euros that Jimmy bought cost $1.50.
Thus, buying 600 Euros cost 600× $1.50 = $900.
When Jimmy converted 600 Euros back into dollars, the rate was $1.00 = 0.75 Euro.

Therefore, Jimmy received 600 Euros× $1.00

0.75 Euros
=

$600

0.75
= $800.

Thus, Jimmy had $900− $800 = $100 less than he had before these two transactions.

2. (a) Since x 6= 0 and x 6= 1, we can multiply both sides of the given equation by x(x − 1) to

obtain
5x(x− 1)

x(x− 1)
=
x(x− 1)

x
+
x(x− 1)

x− 1
or 5 = (x− 1) + x.

Thus, 5 = 2x− 1 and so 2x = 6 or x = 3. This means that x = 3 is the only solution.
(We can substitute x = 3 into the original equation to verify that this is indeed a solution.)

(b) The sum of the entries in the second column is 20 + 4 + (−12) = 12.
This means that the sum of the entries in each row, in each column, and on each diagonal
is 12.
In the first row, we have 0 + 20 + a = 12 and so a = −8.
On the “top left to bottom right” diagonal, we have 0 + 4 + b = 12 and so b = 8.
In the third column, we have entries a = −8 and b = 8 whose sum is 0. Thus, the third
entry must be 12.
Finally, in the second row, we have c+ 4 + 12 = 12 and so c = −4.
In summary, a = −8, b = 8, and c = −4.
We can complete the magic square to obtain:

0 20 −8

−4 4 12

16 −12 8
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(c) (i) If 1002 − n2 = 9559, then n2 = 1002 − 9559 = 10 000− 9559 = 441.
Since n > 0, then n =

√
441 = 21.

(ii) From (i), 9559 = 1002 − 212.
Factoring the right side as a difference of squares, we see that

9559 = (100 + 21)(100− 21) = 121 · 79

Therefore, (a, b) = (121, 79) satisfies the conditions.
(In addition, the pairs (a, b) = (79, 121), (869, 11), (11, 869) satisfy the conditions. The
last two of these pairs cannot be obtained in the same way.)

3. (a) The area of quadrilateral ABCD is the sum of the areas of 4ABC and 4ACD.
Since 4ABC is right-angled at B, its area equals 1

2
(AB)(BC) = 1

2
(3)(4) = 6.

Since 4ABC is right-angled at B, then by the Pythagorean Theorem,

AC =
√
AB2 +BC2 =

√
32 + 42 =

√
25 = 5

because AC > 0. (We could have also observed that 4ABC must be a “3-4-5” triangle.)
Since 4ACD is right-angled at A, then by the Pythagorean Theorem,

AD =
√
CD2 − AC2 =

√
132 − 52 =

√
144 = 12

because AD > 0. (We could have also observed that4ACD must be a “5-12-13” triangle.)
Thus, the area of 4ACD equals 1

2
(AC)(AD) = 1

2
(5)(12) = 30.

Finally, the area of quadrilateral ABCD is thus 6 + 30 = 36.

(b) Let the width of each of the identical rectangles be a.
In other words, QP = RS = TW = WX = UV = V Y = a.
Let the height of each of the identical rectangles be b.
In other words, QR = PS = TU = WV = XY = b.
The perimeter of the whole shape equals

QP + PS + SX +XY + V Y + UV + TU + TR +QR

Substituting for known lengths, we obtain

a+ b+ SX + b+ a+ a+ b+ TR + b

or 3a+ 4b+ (SX + TR).
But SX + TR = (TR +RS + SX)−RS = (TW +WX)−RS = a+ a− a = a.
Therefore, the perimeter of the whole shape equals 4a+ 4b.
The perimeter of one rectangle is 2a+ 2b, which we are told equals 21 cm.
Finally, the perimeter of the whole shape is thus 2(2a+ 2b) which equals 42 cm.

(c) Solution 1
Suppose that the rectangular prism has dimensions a cm by b cm by c cm.
Suppose further that one of the faces that is a cm by b cm is the face with area 27 cm2

and that one of the faces that is a cm by c cm is the face with area 32 cm2. (Since every
pair of non-congruent faces shares exactly one side length, there is no loss of generality in
picking these particular variables for these faces.)
Therefore, ab = 27 and ac = 32.
Further, we are told that the volume of the prism is 144 cm3, and so abc = 144.
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Thus, bc =
a2b2c2

a2bc
=

(abc)2

(ab)(ac)
=

1442

(27)(32)
= 24.

(We could also note that abc = 144 means a2b2c2 = 1442 or (ab)(ac)(bc) = 1442 and so

bc =
1442

(27)(32)
.)

In other words, the third type of face of the prism has area 24 cm2.
Thus, since the prism has two faces of each type, the surface area of the prism is equal to
2(27 cm2 + 32 cm2 + 24 cm2) or 166 cm2.

Solution 2
Suppose that the rectangular prism has dimensions a cm by b cm by c cm.
Suppose further that one of the faces that is a cm by b cm is the face with area 27 cm2

and that one of the faces that is a cm by c cm is the face with area 32 cm2. (Since every
pair of non-congruent faces shares exactly one side length, there is no loss of generality in
picking these particular variables for these faces.)
Therefore, ab = 27 and ac = 32.
Further, we are told that the volume of the prism is 144 cm3, and so abc = 144.

Since abc = 144 and ab = 27, then c = 144
27

= 16
3

.

Since abc = 144 and ac = 32, then b = 144
32

= 9
2
.

This means that bc = 16
3
· 9
2

= 24.

In cm2, the surface area of the prism equals 2ab+ 2ac+ 2bc = 2(27) + 2(32) + 2(24) = 166.
Thus, the surface area of the prism is 166 cm2.

4. (a) Solution 1
We expand the right sides of the two equations, collecting like terms in each case:

y = a(x− 2)(x+ 4) = a(x2 + 2x− 8) = ax2 + 2ax− 8a

y = 2(x− h)2 + k = 2(x2 − 2hx+ h2) + k = 2x2 − 4hx+ (2h2 + k)

Since these two equations represent the same parabola, then the corresponding coefficients
must be equal. That is, a = 2 and 2a = −4h and −8a = 2h2 + k.
Since a = 2 and 2a = −4h, then 4 = −4h and so h = −1.
Since −8a = 2h2 + k and a = 2 and h = −1, then −16 = 2 + k and so k = −18.
Thus, a = 2, h = −1, and k = −18.

Solution 2
From the equation y = a(x − 2)(x + 4), we can find the axis of symmetry by calculating
the midpoint of the x-intercepts.
Since the x-intercepts are 2 and −4, the axis of symmetry is at x = 1

2
(2 + (−4)) = −1.

Since the vertex of the parabola lies on the axis of symmetry, then the x-coordinate of the
vertex is −1.
To find the y-coordinate of the vertex, we substitute x = −1 back into the equation
y = a(x− 2)(x+ 4) to obtain y = a(−1− 2)(−1 + 4) = −9a.
Thus, the vertex of the parabola is (−1,−9a).
Since the second equation for the same parabola is in vertex form, y = 2(x− h)2 + k, we
can see that the vertex is at (h, k) and a = 2.
Since a = 2, the vertex has coordinates (−1,−18), which means that h = −1 and k = −18.
Thus, a = 2, h = −1 and k = −18.
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(b) Let the common difference in this arithmetic sequence be d.
Since the first term in the sequence is 5, then the 5 terms are 5, 5+d, 5+2d, 5+3d, 5+4d.
From the given information, 52 + (5 + d)2 + (5 + 2d)2 = (5 + 3d)2 + (5 + 4d)2.
Manipulating, we obtain the following equivalent equations:

52 + (5 + d)2 + (5 + 2d)2 = (5 + 3d)2 + (5 + 4d)2

25 + (25 + 10d+ d2) + (25 + 20d+ 4d2) = (25 + 30d+ 9d2) + (25 + 40d+ 16d2)

75 + 30d+ 5d2 = 50 + 70d+ 25d2

0 = 20d2 + 40d− 25

0 = 4d2 + 8d− 5

0 = (2d+ 5)(2d− 1)

Therefore, d = −5
2

or d = 1
2
.

These give possible fifth terms of 5 + 4d = 5 + 4(−5
2
) = −5 and 5 + 4d = 5 + 4(1

2
) = 7.

(We note that, for these two values of d, the sequences are 5, 5
2
, 0,−5

2
,−5 and 5, 11

2
, 6, 13

2
, 7.)

5. (a) First, we determine the perfect squares between 1300 and 1400 and between 1400 and
1500.
Since

√
1300 ≈ 36.06, then the first perfect square larger than 1300 is 372 = 1369.

The next perfect squares are 382 = 1444 and 392 = 1521.
Since Dan was born between 1300 and 1400 in a year that was a perfect square, then Dan
was born in 1369.
Since Steve was born between 1400 and 1500 in a year that was a perfect square, then
Steve was born in 1444.
Suppose that on April 7 in some year, Dan was m2 years old and Steve was n2 years old
for some positive integers m and n. Thus, Dan was m2 years old in the year 1369 + m2

and Steve was n2 years old in the year 1444 + n2.
Since these represent the same years, then 1369 + m2 = 1444 + n2, or m2 − n2 = 1444−
1369 = 75.
In other words, we want to find two perfect squares less than 110 (since their ages are less
than 110) whose difference is 75.
The perfect squares less than 110 are 1, 4, 9, 16, 25, 36, 49, 64, 81, 100.
The two that differ by 75 are 100 and 25.
Thus, m2 = 100 and n2 = 25.
This means that the year in which the age of each of Dan and Steve was a perfect square
was the year 1369 + 100 = 1469.

(b) Solution 1
4ABC is right-angled exactly when one of the following statements is true:

• AB is perpendicular to BC, or

• AB is perpendicular to AC, or

• AC is perpendicular to BC.

Since A(1, 2) and B(11, 2) share a y-coordinate, then AB is horizontal.
For AB and BC to be perpendicular, BC must be vertical.
Thus, B(11, 2) and C(k, 6) must have the same x-coordinate, and so k = 11.
For AB and AC to be perpendicular, AC must be vertical.
Thus, A(1, 2) and C(k, 6) must have the same x-coordinate, and so k = 1.
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For AC to be perpendicular to BC, their slopes must have a product of −1.

The slope of AC is
6− 2

k − 1
, which equals

4

k − 1
.

The slope of BC is
6− 2

k − 11
, which equals

4

k − 11
.

Thus, AC and BC are perpendicular when
4

k − 1
· 4

k − 11
= −1.

Assuming that k 6= 1 and k 6= 11, we manipulate to obtain 16 = −(k − 1)(k − 11) or
16 = −k2 + 12k − 11 or k2 − 12k + 27 = 0.
Factoring, we obtain (k− 3)(k− 9) = 0 and so AC and BC are perpendicular when k = 3
or k = 9.

In summary, 4ABC is right-angled when k equals one of 1, 3, 9, 11.

Solution 2
4ABC is right-angled exactly when its three side lengths satisfy the Pythagorean Theo-
rem in some orientation. That is, 4ABC is right-angled exactly when AB2 +BC2 = AC2

or AB2 + AC2 = BC2 or AC2 +BC2 = AB2.
Using A(1, 2) and B(11, 2), we obtain AB2 = (11− 1)2 + (2− 2)2 = 100.
Using A(1, 2) and C(k, 6), we obtain AC2 = (k − 1)2 + (6− 2)2 = (k − 1)2 + 16.
Using B(11, 2) and C(k, 6), we obtain BC2 = (k − 11)2 + (6− 2)2 = (k − 11)2 + 16.
Using the Pythagorean relationships above, 4ABC is right-angled when one of the fol-
lowing is true:

(i)

100 + ((k − 11)2 + 16) = (k − 1)2 + 16

100 + k2 − 22k + 121 + 16 = k2 − 2k + 1 + 16

220 = 20k

k = 11

(ii)

100 + ((k − 1)2 + 16) = (k − 11)2 + 16

100 + k2 − 2k + 1 + 16 = k2 − 22k + 121 + 16

20k = 20

k = 1

(iii)

((k − 1)2 + 16) + ((k − 11)2 + 16) = 100

k2 − 2k + 1 + 16 + k2 − 22k + 121 + 16 = 100

2k2 − 24k + 54 = 0

k2 − 12k + 27 = 0

(k − 3)(k − 9) = 0

and so k = 3 or k = 9.

In summary, 4ABC is right-angled when k equals one of 1, 3, 9, 11.
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6. (a) Extend CA and DB downwards until they meet the horizontal through O at P and Q,
respectively.

C
D

O

BA

45°30°

P Q

Since CA and DB are vertical, then ∠CPO = ∠DQO = 90◦.
Since OA = 20 m, then AP = OA sin 30◦ = (20 m) · 1

2
= 10 m.

Since OB = 20 m, then BQ = OB sin 45◦ = (20 m) · 1√
2

= 10
√

2 m.
Since AC = 6 m, then CP = AC + AP = 16 m.
For CD to be as short as possible and given that C is fixed, then it must be the case that
CD is horizontal:

If CD were not horizontal, then suppose that X is on DQ, possibly extended, so
that CX is horizontal.

C
D

O

BA

45°30°

P Q

X

Then ∠CXD = 90◦ and so 4CXD is right-angled with hypotenuse CD.
In this case, CD is longer than CX or XD.
In particular, CD > CX, which means that if D were at X, then CD would be
shorter.
In other words, a horizontal CD makes CD as short as possible.

When CD is horizontal, CDQP is a rectangle, since it has two vertical and two horizontal
sides. Thus, DQ = CP = 16 m.
Finally, this means that BD = DQ−BQ = (16− 10

√
2) m.

(b) Since tan θ =
sin θ

cos θ
, then we assume that cos θ 6= 0.

Therefore, we obtain the following equivalent equations:

cos θ = tan θ

cos θ =
sin θ

cos θ
cos2 θ = sin θ

1− sin2 θ = sin θ

0 = sin2 θ + sin θ − 1

Let u = sin θ. This quadratic equation becomes u2 + u− 1 = 0.

By the quadratic formula, u =
−1±

√
12 − 4(1)(−1)

2(1)
=
−1±

√
5

2
.

Therefore, sin θ =
−1 +

√
5

2
≈ 0.62 or sin θ =

−1−
√

5

2
≈ −1.62.

Since −1 ≤ sin θ ≤ 1, then the second solution is inadmissible. Thus, sin θ =
−1 +

√
5

2
.
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7. (a) Solution 1
Suppose that the trains are travelling at v km/h.
Consider two consecutive points in time at which the car is passed by a train.
Since these points are 10 minutes apart, and 10 minutes equals 1

6
hour, and the car travels

at 60 km/h, then the car travels (60 km/h) · (1
6

h) = 10 km.
During these 10 minutes, each train travels 1

6
v km, since its speed is v km/h.

At the first instance, Train A and the car are next to each other.
At this time, Train B is “3 minutes” behind Train A.

Car

Car

Train A

Train ATrain B

Train B

10 km

Since 3 minutes is 1
20

hour, then Train B is 1
20
v km behind Train A and the car.

Therefore, the distance from the location of Train B at the first instance to the location
where it passes the car is ( 1

20
v + 10) km.

But this distance also equals 1
6
v km, since Train B travels for 10 minutes.

Thus, 1
6
v = 1

20
v + 10 or 10

60
v − 3

60
v = 10 and so 7

60
v = 10 or v = 600

7
.

Therefore, the trains are travelling at 600
7

km/h.

Solution 2
Suppose that the trains are travelling at v km/h.
Consider the following three points in time: the instant when the car and Train A are next
to each other, the instant when Train B is at the same location that the car and Train
A were at in the previous instant, and the instant when the car and Train B are next to
each other.

Car

Car
Train ATrain B

Train ATrain B

Train ATrain B
Car

From the first instant to the second, Train B “catches up” to where Train A was, so this
must take a total of 3 minutes, because the trains leave the station 3 minutes apart.
Since 3 minutes equals 3

60
hour and the car travels at 60 km/h, then the car travels

(60 km/h) · ( 3
60

h) = 3 km between these two instants.
From the first instant to the third, 10 minutes passes, since these are consecutive points
at which the car is passed by trains. In 10 minutes, the car travels 10 km.
Therefore, between the second and third instants, 10− 3 = 7 minutes pass. During these
7 minutes, Train B travels 10 km.

Since 7 minutes equals 7
60

hour, then v km/h = 10 km
7/60 h

= 600
7

km/h, and so the trains are

travelling at 600
7

km/h.
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(b) From the first equation, we note that a ≥ 0 and b ≥ 0, since the argument of a square
root must be non-negative.
From the second equation, we note that a > 0 and b > 0, since the argument of a logarithm
must be positive.
Combining these restrictions, we see that a > 0 and b > 0.

From the equation log10 a + log10 b = 2, we obtain log10(ab) = 2 and so ab = 102 = 100.
From the first equation, obtain

(
√
a+
√
b)2 = 82

a+ 2
√
ab+ b = 64

a+ 2
√

100 + b = 64

a+ b = 64− 2
√

100 = 44

Since a+ b = 44, then b = 44− a.
Since ab = 100, then a(44− a) = 100 or 44a− a2 = 100 and so 0 = a2 − 44a+ 100.
By the quadratic formula,

a =
44±

√
442 − 4(1)(100)

2 · 1
=

44±
√

1536

2
=

44± 16
√

6

2
= 22± 8

√
6

Since b = 44− a, then b = 44− (22± 8
√

6) = 22∓ 8
√

6.

Therefore, (a, b) = (22 + 8
√

6, 22− 8
√

6) or (a, b) = (22− 8
√

6, 22 + 8
√

6).
(We note that 22 + 8

√
6 > 0 and 22 − 8

√
6 > 0, so the initial restrictions on a and b are

satisfied.)
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8. (a) Let ∠PEQ = θ.
Join P to B.
We use the fact that the angle between a tangent to a circle and a chord in that circle
that passes through the point of tangency equals the angle inscribed by that chord. We
prove this fact below.
More concretely, ∠DEP = ∠PBE (using the chord EP and the tangent through E) and
∠ABP = ∠PEQ = θ (using the chord BP and the tangent through B).
Now ∠DEP is exterior to 4FEP and so ∠DEP = ∠FPE +∠EFP = 25◦+ 30◦, and so
∠PBE = ∠DEP = 55◦.
Furthermore, ∠AQB is an exterior angle of 4PQE.
Thus, ∠AQB = ∠QPE + ∠PEQ = 25◦ + θ.

A

C

B

P

Q
E

D

F

R

25°

35°

30°

θ
θ 55°

55° θ + 25°

In 4ABQ, we have ∠BAQ = 35◦, ∠ABQ = θ + 55◦, and ∠AQB = 25◦ + θ.
Thus, 35◦ + (θ + 55◦) + (25◦ + θ) = 180◦ or 115◦ + 2θ = 180◦, and so 2θ = 65◦.
Therefore ∠PEQ = θ = 1

2
(65◦) = 32.5◦.

As an addendum, we prove that the angle between a tangent to a circle and a chord in
that circle that passes through the point of tangency equals the angle inscribed by that
chord.
Consider a circle with centre O and a chord XY , with tangent
ZX meeting the circle at X. We prove that if ZX is tangent to
the circle, then ∠ZXY equals ∠XWY whenever W is a point on
the circle on the opposite side of XY as XZ (that is, the angle
subtended by XY on the opposite side of the circle).
We prove this in the case that ∠ZXY is acute. The cases where
∠ZXY is a right angle or an obtuse angle are similar.
Draw diameter XOV and join V Y .

X

Y

Z

O

W V

Since ∠ZXY is acute, points V and W are on the same arc of chord XY .
This means that ∠XV Y = ∠XWY , since they are angles subtended by the same chord.
Since OX is a radius and XZ is a tangent, then ∠OXZ = 90◦.
Thus, ∠OXY + ∠ZXY = 90◦.
Since XV is a diameter, then ∠XY V = 90◦.
From 4XY V , we see that ∠XV Y + ∠V XY = 90◦.
But ∠OXY + ∠ZXY = 90◦ and ∠XV Y + ∠V XY = 90◦ and ∠OXY = ∠V XY tells us
that ∠ZXY = ∠XV Y .
This gives us that ∠ZXY = ∠XWY , as required.
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(b) Solution 1
Draw a line segment through M in the plane of 4PMN parallel to PN and extend this
line until it reaches the plane through P , A and D at Q on one side and the plane through
N , B and C at R on the other side.
Join Q to P and A. Join R to N and B.

A B

CD

NP

M
Q R

So the volume of solid ABCDPMN equals the volume of solid ABCDPQRN minus the
volumes of solids PMQA and NMRB.
Solid ABCDPQRN is a trapezoidal prism. This is because NR and BC are parallel
(since they lie in parallel planes), which makes NRBC a trapezoid. Similarly, PQAD is
a trapezoid. Also, PN , QR, DC, and AB are all perpendicular to the planes of these
trapezoids and equal in length, since they equal the side lengths of the squares.
Solids PMQA and NMRB are triangular-based pyramids. We can think of their bases as
being 4PMQ and 4NMR. Their heights are each equal to 2, the height of the original
solid. (The volume of a triangular-based pyramid equals 1

3
times the area of its base times

its height.)
The volume of ABCDPQRN equals the area of trapezoid NRBC times the width of the
prism, which is 2.
That is, this volume equals 1

2
(NR +BC)(NC)(NP ) = 1

2
(NR + 2)(2)(2) = 2 ·NR + 4.

So we need to find the length of NR.
Consider quadrilateral PNRQ. This quadrilateral is a rectangle since PN and QR are
perpendicular to the two side planes of the original solid.
Thus, NR equals the height of 4PMN .
Join M to the midpoint T of PN .
Since 4PMN is isosceles, then MT is perpendicular to PN .

NP

M

T

Since NT = 1
2
PN = 1 and ∠PMN = 90◦ and ∠TNM = 45◦, then 4MTN is also

right-angled and isosceles with MT = TN = 1.
Therefore, NR = MT = 1 and so the volume of ABCDPQRN is 2 · 1 + 4 = 6.
The volumes of solids PMQA and NMRB are equal. Each has height 2 and their bases
4PMQ and 4NMR are congruent, because each is right-angled (at Q and at R) with
PQ = NR = 1 and QM = MR = 1.
Thus, using the formula above, the volume of each is 1

3
(1
2
(1)(1))2 = 1

3
.

Finally, the volume of the original solid equals 6− 2 · 1
3

= 16
3

.
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Solution 2
We determine the volume of ABCDPMN by splitting it into two solids: ABCDPN and
ABNPM by slicing along the plane of ABNP .
Solid ABCDPN is a triangular prism, since 4BCN and 4ADP are each right-angled
(at C and D), BC = CN = AD = DP = 2, and segments PN , DC and AB are perpen-
dicular to each of the triangular faces and equal in length.
Thus, the volume of ABCDPN equals the area of 4BCN times the length of DC, or
1
2
(BC)(CN)(DC) = 1

2
(2)(2)(2) = 4. (This solid can also be viewed as “half” of a cube.)

Solid ABNPM is a pyramid with rectangular base ABNP . (Note that PN and AB are
perpendicular to the planes of both of the side triangular faces of the original solid, that
PN = AB = 2 and BN = AP =

√
22 + 22 = 2

√
2, by the Pythagorean Theorem.)

Therefore, the volume of ABNPM equals 1
3
(AB)(BN)h = 4

√
2

3
h, where h is the height of

the pyramid (that is, the distance that M is above plane ABNP ).
So we need to calculate h.
Join M to the midpoint, T , of PN and to the midpoint, S,
of AB. Join S and T . By symmetry, M lies directly above ST .
Since ABNP is a rectangle and S and T are the midpoints of
opposite sides, then ST = AP = 2

√
2.

Since 4PMN is right-angled and isosceles, then MT is perpen-
dicular to PN . Since NT = 1

2
PN = 1 and ∠TNM = 45◦, then

4MTN is also right-angled and isosceles with MT = TN = 1. A B

NP

M

T

S
Also, MS is the hypotenuse of the triangle formed by dropping
a perpendicular from M to U in the plane of ABCD (a distance
of 2) and joining U to S. Since M is 1 unit horizontally from
PN , then US = 1.
Thus, MS =

√
22 + 12 =

√
5 by the Pythagorean Theorem.

A B

CD

NP

M

S
U

We can now consider 4SMT . h is the height of this triangle, from M to base ST .

M

TS
h

1

Now h = MT sin(∠MTS) = sin(∠MTS).
By the cosine law in 4SMT , we have

MS2 = ST 2 +MT 2 − 2(ST )(MT ) cos(∠MTS)

Therefore, 5 = 8 + 1− 4
√

2 cos(∠MTS) or 4
√

2 cos(∠MTS) = 4.
Thus, cos(∠MTS) = 1√

2
and so ∠MTS = 45◦ which gives h = sin(∠MTS) = 1√

2
.

(Alternatively, we note that the plane of ABCD is parallel to the plane of PMN , and so
since the angle between plane ABCD and plane PNBA is 45◦, then the angle between
plane PNBA and plane PMN is also 45◦, and so ∠MTS = 45◦.)

Finally, this means that the volume of ABNPM is 4
√
2

3
· 1√

2
= 4

3
, and so the volume of

solid ABCDPMN is 4 + 4
3

= 16
3

.
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9. (a) There are 4! = 4 · 3 · 2 · 1 = 24 permutations of 1, 2, 3, 4.
This is because there are 4 possible choices for a1, and for each of these there are 3 possible
choices for a2, and for each of these there are 2 possible choices for a3, and then 1 possible
choice for a4.
Consider the permutation a1 = 1, a2 = 2, a3 = 3, a4 = 4. (We write this as 1,2,3,4.)
Here, |a1 − a2|+ |a3 − a4| = |1− 2|+ |3− 4| = 1 + 1 = 2.
This value is the same as the value for each of 2,1,3,4 and 1,2,4,3 and 2,1,4,3 and 3,4,1,2
and 4,3,1,2 and 3,4,2,1 and 4,3,2,1.
Consider the permutation 1,3,2,4.
Here, |a1 − a2|+ |a3 − a4| = |1− 3|+ |2− 4| = 2 + 2 = 4.
This value is the same as the value for each of 3,1,2,4 and 1,3,4,2 and 3,1,4,2 and 2,4,1,3
and 4,2,1,3 and 2,4,3,1 and 4,2,3,1.
Consider the permutation 1,4,2,3.
Here, |a1 − a2|+ |a3 − a4| = |1− 4|+ |2− 3| = 3 + 1 = 4.
This value is the same as the value for each of 4,1,2,3 and 1,4,3,2 and 4,1,3,2 and 2,3,1,4
and 3,2,1,4 and 2,3,4,1 and 3,2,4,1.
This accounts for all 24 permutations.

Therefore, the average value is
2 · 8 + 4 · 8 + 4 · 8

24
=

80

24
=

10

3
.

(b) There are 7! = 7 · 6 · 5 · 4 · 3 · 2 · 1 permutations of 1, 2, 3, 4, 5, 6, 7, because there are 7
choices for a1, then 6 choices for a2, and so on.
We determine the average value of a1 − a2 + a3 − a4 + a5 − a6 + a7 over all of these
permutations by determining the sum of all 7! values of this expression and dividing by
7!.
To determine the sum of all 7! values, we determine the sum of the values of a1 in each
of these expressions and call this total s1, the sum of the values of a2 in each of these
expressions and call this total s2, and so on.
The sum of the 7! values of the original expression must equal s1−s2+s3−s4+s5−s6+s7.
This uses the fact that, when adding, the order in which we add the same set of numbers
does not matter.
By symmetry, the sums of the values of a1, a2, a3, a4, a5, a6, a7 will all be equal. That is,
s1 = s2 = s3 = s4 = s5 = s6 = s7.
This means that the desired average value equals

s1 − s2 + s3 − s4 + s5 − s6 + s7
7!

=
(s1 + s3 + s5 + s7)− (s2 + s4 + s6)

7!
=

4s1 − 3s1
7!

=
s1
7!

So we need to determine the value of s1.
Now a1 can equal each of 1, 2, 3, 4, 5, 6, 7.
If a1 = 1, there are 6! combinations of values for a2, a3, a4, a5, a6, a7, since there are still 6
choices for a2, 5 for a3, and so on.
Similarly, there are 6! combinations with a1 equal to each of 2, 3, 4, 5, 6, 7.
Thus, s1 = 1·6!+2·6!+3·6!+4·6!+5·6!+6·6!+7·6! = 6!(1+2+3+4+5+6+7) = 28(6!).

Therefore, the average value of the expression is
28(6!)

7!
=

28(6!)

7(6!)
=

28

7
= 4.
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(c) There are 200! permutations of 1, 2, 3, . . . , 198, 199, 200.
We determine the average value of

|a1 − a2|+ |a3 − a4|+ · · ·+ |a197 − a198|+ |a199 − a200| (∗)

over all of these permutations by determining the sum of all 200! values of this expression
and dividing by 200!.
As in (b), we let s1 be the sum of the values of |a1 − a2| in each of these expressions, s2
be the sum of the values of |a3 − a4|, and so on.
The sum of the 200! values of (∗) equals s1 + s2 + · · ·+ s99 + s100.
By symmetry, s1 = s2 = · · · = s99 = s100.

Therefore, the average value of (∗) equals
100s1
200!

. So we need to determine the value of s1.

Suppose that a1 = i and a2 = j for some integers i and j between 1 and 200, inclusive.
There are 198! permutations with a1 = i and a2 = j because there are still 198 choices for
a3, 197 choices for a4, and so on.
Similarly, there are 198! permutations with a1 = j and a2 = i.
Since |i − j| = |j − i|, then there are 2(198!) permutations with |a1 − a2| = |i − j| that
come from a1 and a2 equalling i and j in some order.
Therefore, we may assume that i > j and note that s1 equals 2(198!) times the sum of
i− j over all possible pairs i > j.

(Note that there are

(
200

2

)
=

200(199)

2
choices for the pair of integers (i, j) with i > j. For

each of these choices, there are 2(198!) choices for the remaining entries in the permutation,

which gives
200(199)

2
· 2(198!) = 200(199)(198!) = 200! permutations, as expected.)

So to determine s1, we need to determine the sum of the values of i− j.
We calculate this sum, which we call D, by letting j = 1, 2, 3, . . . , 198, 199 and for each of
these, we let i be the possible integers with j < i ≤ 200:

D = (2− 1) + (3− 1) + (4− 1) + · · ·+ (197− 1) + (198− 1) + (199− 1) + (200− 1)

+ (3− 2) + (4− 2) + (5− 2) + · · ·+ (198− 2) + (199− 2) + (200− 2)

+ (4− 3) + (5− 3) + (6− 3) + · · ·+ (199− 3) + (200− 3)

...

+ (199− 198) + (200− 198)

+ (200− 199)

= 199(1) + 198(2) + 197(3) + · · ·+ 2(198) + 1(199) (grouping by columns)

= 199(200− 199) + 198(200− 198) + 197(200− 197) + · · ·+ 2(200− 2) + 1(200− 1)

= 200(199 + 198 + 197 + · · ·+ 3 + 2 + 1)− (1992 + 1982 + 1972 + · · ·+ 32 + 22 + 12)

= 200 · 1
2
(199)(200)− 1

6
(199)(199 + 1)(2(199) + 1)

= 100(199)(200)− 1
6
(199)(200)(399)

= 199(200)
(
100− 133

2

)
= 199(200)67

2

Therefore, s1 = 2(198!)D = 2(198!) · 199(200)(67)
2

= 67(198!)(199)(200) = 67(200!).

Finally, this means that the average value of (∗) is
100s1
200!

=
100(67)(200!)

200!
= 6700.
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We note that we have used the facts that, if n is a positive integer, then

• 1 + 2 + · · ·+ (n− 1) + n = 1
2
n(n+ 1)

• 12 + 22 + · · ·+ (n− 1)2 + n2 = 1
6
n(n+ 1)(2n+ 1)

Using sigma notation, we could have calculated D as follows:

D =
200∑
i=2

i−1∑
j=1

(i− j)

=

(
200∑
i=2

i−1∑
j=1

i

)
−

(
200∑
i=2

i−1∑
j=1

j

)

=

(
200∑
i=2

i(i− 1)

)
−

(
200∑
i=2

1
2
(i− 1)i

)

=

(
200∑
i=2

i(i− 1)

)
− 1

2

(
200∑
i=2

(i− 1)i

)

= 1
2

(
200∑
i=2

(i− 1)i

)

= 1
2

(
200∑
i=1

(i− 1)i

)
(since (i− 1)i = 0 when i = 1)

= 1
2

(
200∑
i=1

(i2 − i)

)

= 1
2

(
200∑
i=1

i2 −
200∑
i=1

i

)
= 1

2

(
1
6
(200)(200 + 1)(2(200) + 1)− 1

2
(200)(200 + 1)

)
= 1

2
(200)(201)

(
1
6
(401)− 1

2

)
= 100(201) · 398

6

= 100(201) · 199
3

= 100(67)(199)

which equals 199(200)67
2

, as expected. (Can you determine a general formula when 200 is
replaced with 2n?)
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10. (a) We start with the subset {1, 2, 3}.
The sums of pairs of elements are 1 + 2 = 3 and 1 + 3 = 4 and 2 + 3 = 5, which are all
different.
Thus, {1, 2, 3} is exciting.
We proceed to include additional elements in {1, 2, 3}.
We cannot include 4 to create an exciting set, since if we did, we would have 1+4 = 2+3,
and so {1, 2, 3, 4} is boring.
Consider the subset {1, 2, 3, 5}.
The sums of pairs of elements are

1 + 2 = 3 1 + 3 = 4 1 + 5 = 6 2 + 3 = 5 2 + 5 = 7 3 + 5 = 8

which are all different.
Thus, {1, 2, 3, 5} is exciting.
We cannot include 6 or 7 since 2 + 5 = 1 + 6 and 3 + 5 = 1 + 7.
Consider the subset {1, 2, 3, 5, 8}.
In addition to the six sums above, we have the additional sums 1 + 8 = 9 and 2 + 8 = 10
and 3 + 8 = 11 and 5 + 8 = 13, so the 10 sums are all different.
Therefore, {1, 2, 3, 5, 8} is an exciting subset of {1, 2, 3, 4, 5, 6, 7, 8} that contains exactly
5 elements.
(The subset {1, 4, 6, 7, 8} is the only other exciting subset of {1, 2, 3, 4, 5, 6, 7, 8} that con-
tains exactly 5 elements.)

(b) Suppose that S is an exciting set that contains exactly m elements.

There are

(
m

2

)
=
m(m− 1)

2
pairs of elements of S.

Since S is exciting, the sums of these pairs of elements are all distinct positive integers.

This means that the largest of these sums is greater than or equal to
m(m− 1)

2
.

When two numbers add to
m(m− 1)

2
or greater, then at least one of them must be at

least as large as
1

2
· m(m− 1)

2
=
m2 −m

4
.

Therefore, there is an element of S that is greater than or equal to
m2 −m

4
.

(c) Let n be a positive integer with n ≥ 10.
For each integer k with 1 ≤ k ≤ n, define xk = 2n · rem(k2, n) + k, where rem(k2, n) is the
remainder when k2 is divided by n.
Define T = {x1, x2, . . . , xn−1, xn}.
We show that T is exciting exactly when n is prime.

Suppose that a, b, c, d are distinct integers between 1 and n with xa + xb = xc + xd.
This equation is equivalent to

(2n · rem(a2, n) + a) + (2n · rem(b2, n) + b) = (2n · rem(c2, n) + c) + (2n · rem(d2, n) + d)

and
2n · (rem(a2, n) + rem(b2, n)− rem(c2, n)− rem(d2, n)) = c+ d− a− b

Since a, b, c, d are distinct integers between 1 and n, inclusive, then we have
1 + 2 ≤ a+ b ≤ (n− 1) + n, or 3 ≤ a+ b ≤ 2n− 1. Similarly, 3 ≤ c+ d ≤ 2n− 1.
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This means that 3−(2n−1) ≤ c+d−a−b ≤ (2n−1)−3 or −2n+4 ≤ c+d−a−b ≤ 2n−4.
But the left side of the equation

2n · (rem(a2, n) + rem(b2, n)− rem(c2, n)− rem(d2, n)) = c+ d− a− b

is an integer that is a multiple of 2n, so the right side (c+ d− a− b) must be as well.
Since −2n+ 4 ≤ c+ d− a− b ≤ 2n− 4 and the only multiple of 2n between −2n+ 4 and
2n− 4 is 0 · 2n = 0, then c+ d− a− b = 0 or c+ d = a+ b.
Thus, 2n · (rem(a2, n) + rem(b2, n)− rem(c2, n)− rem(d2, n)) = 0.
Since n 6= 0, then rem(a2, n) + rem(b2, n)− rem(c2, n)− rem(d2, n) = 0.
Therefore, xa + xb = xc + xd exactly when

a+ b = c+ d and rem(a2, n) + rem(b2, n) = rem(c2, n) + rem(d2, n)

Suppose that n is composite. We show that T is boring.
We consider three cases: n = p2 for some prime p, n is even, and all other n.
Suppose that n = p2 for some prime p. Since n ≥ 10, then p ≥ 5.
Set a = p, b = 4p, c = 2p, and d = 3p.
Then a+ b = 5p = c+ d.
Also, since p ≥ 5, then 0 < p < 2p < 3p < 4p < p2.
Furthermore, since each of a, b, c, d is divisible by p, then each of a2, b2, c2, d2 is divisible
by p2 = n, so rem(a2, n) = rem(b2, n) = rem(c2, n) = rem(d2, n) = 0.
This means that a+ b = c+ d and rem(a2, n) + rem(b2, n) = rem(c2, n) + rem(d2, n), and
so xa + xb = xc + xd, which means that T is boring.

Next, suppose that n is even, say n = 2t for some positive integer t ≥ 5.
Set a = 1, b = t+ 2, c = 2, and d = t+ 1.
Since t ≥ 5, then 1 ≤ a < b < c < d < 2t, so a, b, c, d are distinct positive integers in the
correct range.
Also, a+ b = t+ 3 = c+ d.
To show that xa + xb = xc + xd, it remains to show that

rem(12, 2t) + rem((t+ 2)2, 2t) = rem(22, 2t) + rem((t+ 1)2, 2t)

Now rem(12, 2t) = rem(1, 2t) = 1 and rem(22, 2t) = rem(4, 2t) = 4 since 2t > 4.
Also, since (t+ 2)2 = t2 + 4t+ 4 and so (t+ 2)2 and t2 + 4 differ by a multiple of n = 2t,
then rem((t+ 2)2, 2t) = rem(t2 + 4, 2t).
Similarly, since (t+ 1)2 = t2 + 2t+ 1, then rem((t+ 1)2, 2t) = rem(t2 + 1, 2t).
Therefore, we need to show that rem(t2 + 4, 2t)− rem(t2 + 1, 2t) = 4− 1 = 3.
Since t ≥ 5, then t2 + t > t2 + 4.
This means that t2 < t2 + 1 < t2 + 2 < t2 + 3 < t2 + 4 < t2 + t; in other words, each of
t2 + 1, t2 + 2, t2 + 3, t2 + 4 is strictly between two consecutive multiples of t, and so none
of these four integers can be a multiple of t. This means that none of these is a multiple
of n = 2t.
Therefore, t2 + 4 and t2 + 1 are bounded between the same two multiples of n, and so the
difference between their remainders when dividing by n equals the difference between the
integers, which is 3.
Thus, xa + xb = xc + xd, which means that T is boring.

Finally, we consider the case where n is odd and composite and can be written as n = MN
for some odd integers M > N > 1.
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Set a = 1
2
(M +N), b = n− a, c = 1

2
(M −N), and d = n− c.

Since M and N are both odd, then M + N and M − N are even, and so a, b, c, d are
integers.
Since M > N > 0, then a > c > 0.
Since N ≥ 3, then n = MN ≥ 3M > 2M and so M < 1

2
n.

Since M > N , then a = 1
2
(M +N) < 1

2
(M +M) = M < 1

2
n.

Therefore, 0 < c < a < 1
2
n.

Since b = n− a and d = n− c, then 1
2
n < b < d < n and so 0 < c < a < 1

2
n < b < d < n.

This means that a, b, c, d are distinct integers in the correct range.
Also, note that a+ b = n = c+ d.
To show that xa + xb = xc + xd, it remains to show that

rem(a2, n) + rem(b2, n) = rem(c2, n) + rem(d2, n)

We show that rem(a2, n) = rem(b2, n) = rem(c2, n) = rem(d2, n), which will provide the
desired conclusion.
Since b = n− a, then b2 = n2 − 2na + a2. Since b2 and a2 differ by a multiple of n, their
remainders after division by n will be equal. Similarly, rem(c2, n) = rem(d2, n).
Thus, it remains to show that rem(a2, n) = rem(c2, n).
But

a2−c2 = (a+c)(a−c) =
(
1
2
(M +N) + 1

2
(M −N)

) (
1
2
(M +N)− 1

2
(M −N)

)
= MN = n

Since a2 and c2 differ by a multiple of n, then rem(a2, n) = rem(c2, n).
Thus, xa + xb = xc + xd, which means that T is boring.

Suppose that n is prime. We show that T is exciting.
Since n ≥ 10, then n is odd.
Suppose that xa + xb = xc + xd. We will show that this is not possible.
Recall that xa +xb = xc +xd is equivalent to the conditions a+ b = c+d and rem(a2, n) +
rem(b2, n) = rem(c2, n) + rem(d2, n).
We work with this second equation.
When a2 is divided by n, we obtain a quotient that we call qa and the remainder rem(a2, n).
Note that a2 = qan+ rem(a2, n) and 0 ≤ rem(a2, n) < n.
We define qb, qc, qd similarly and obtain

(a2 − qan) + (b2 − qbn) = (c2 − qcn) + (d2 − qdn)

or
a2 + b2 − c2 − d2 = n(qa + qb − qc − qd)

Since a+ b = c+ d, then a2 + 2ab+ b2 = c2 + 2cd+ d2 or a2 + b2 − c2 − d2 = 2cd− 2ab.
Therefore, xa +xb = xc +xd exactly when a+b = c+d and 2cd−2ab = n(qa +qb−qc−qd).
Since d = a+ b− c, then this last equation becomes

2c(a+ b− c)− 2ab = n(qa + qb − qc − qd)
−2(c2 − ac− bc+ ab) = n(qa + qb − qc − qd)
−2(c(c− a)− b(c− a)) = n(qa + qb − qc − qd)

−2(c− a)(c− b) = n(qa + qb − qc − qd)

Since xa + xb = xc + xd, then a+ b = c+ d and −2(c− a)(c− b) = n(qa + qb − qc − qd).
Therefore, 2(c− a)(c− b) is a multiple of n, which is an odd prime.
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This means that either c− a or c− b is a multiple of n.
But a, b, c, d are between 1 and n inclusive and are distinct, so 1− n ≤ c− a ≤ n− 1 and
1− n ≤ c− b ≤ n− 1.
The only multiple of n in this range is 0, so c− a = 0 or c− b = 0, which contradicts the
fact that a, b, c, d are distinct.
Therefore, if n is prime, there do not exist four distinct elements of T that make T boring,
so T is exciting.

In summary, T is exciting exactly when n ≥ 10 is prime.
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1. (a) The average is

5 + 15 + 25 + 35 + 45 + 55

6
=

(5 + 55) + (15 + 45) + (25 + 35)

6
=

60 + 60 + 60

6
= 30

(b) Since x2 = 2016, then (x+ 2)(x− 2) = x2 − 4 = 2016− 4 = 2012.

(c) Since points P , Q and R lie on a straight line, then the slope of PQ equals the slope of
PR.

The slope of PQ equals
2a− 5

a− 7
and the slope of PR equals

30− 5

12− 7
=

25

5
= 5.

Therefore,
2a− 5

a− 7
= 5 and so 2a− 5 = 5(a− 7).

This gives 2a− 5 = 5a− 35 or 3a = 30, and so a = 10.

2. (a) If
n

9
=

25

n
, then n2 = 25(9) = 225. Therefore, n = 15 or n = −15.

(We can check by substitution that each of these values satisfies the original equation.)

(b) When we expand the left side of (x− 3)(x− 2) = 6, we obtain x2 − 5x+ 6 = 6.
Thus, x2 − 5x = 0 or x(x− 5) = 0, which gives x = 0 or x = 5.
(We can check by substitution that each of these values satisfies the original equation.)

(c) Let a be the cost, in dollars, of 1 apple and let b be the cost, in dollars, of 1 banana.
From the given information, 2a = 3b and 6a+ 12b = 6.30.
Since 3b = 2a, then 12b = 4(3b) = 4(2a) = 8a.
Therefore, 6a+ 8a = 6.3 or 14a = 6.3, which gives a = 0.45.
In other words, the cost of 1 apple is $0.45.

3. (a) Solution 1
Since the sum of the angles in any triangle is 180◦, then the combined sum of the angles
in 4ABD, 4FBG and 4CBE is 3 · 180◦ or 540◦.
The nine angles in these triangles include those with measures, in degrees, of p, q, r, s, t, u
as well as the three angles ∠ABD, ∠FBG and ∠CBE.
These last three angles form a straight angle, and so their sum is 180◦.
Therefore, the sum of the remaining six angles must be 540◦ − 180◦ = 360◦.
In other words, p+ q + r + s+ t+ u = 360.

Solution 2
We repeatedly use the fact that the sum of the angles in any triangle is 180◦.
From 4ABD, ∠ABD = 180◦ − p◦ − q◦.
From 4FBG, ∠FBG = 180◦ − r◦ − s◦.
From 4CBE, ∠CBE = 180◦ − t◦ − u◦.
Since ABC forms a straight line segment, then

∠ABD + ∠FBG+ ∠CBE = 180◦

which gives

(180◦ − p◦ − q◦) + (180◦ − r◦ − s◦) + (180◦ − t◦ − u◦) = 180◦

Rearranging, we obtain 360 = p+ q+ r+ s+ t+u and so the value of p+ q+ r+ s+ t+u
is 360.
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(b) Solution 1
The integer equal to 1020 consists of the digit 1 followed by 20 0s.
The integer equal to 1020 − 1 thus consists of 20 9s.
Now, n = 1020 − 20 is 19 less than 1020 − 1 which is the integer that consists of 20 9s.
So n = 1020 − 20 = 99 · · · 980 where this integer has 18 9s.
Therefore, the sum of the digits of n is 18(9) + 8 + 0 = 162 + 8 = 170.

Solution 2
Since 1020− 20 = 10(1019− 2) and 1019− 2 = 99 · · · 98 (where this integer has 18 9s), then
1020 − 20 = 99 · · · 980, where this integer has 18 9s.
Therefore, the sum of the digits of n is 18(9) + 8 + 0 = 162 + 8 = 170.

(c) Solution 1
Since P (2, 0) and Q(8, 0), then PQ = 8− 2 = 6.
Let h be the perpendicular distance from V to PQ.
Then the area of 4V PQ equals 1

2
(PQ)h.

Since the area of 4V PQ is 12, then 1
2
(PQ)h = 12 and so 1

2
(6)h = 12 or h = 4.

Since V is below the x-axis, then the y-coordinate of V is −4.
Since V is the vertex of a parabola and P and Q are points where the parabola intersects
the x-axis, then the x-coordinate of V is the average of the x-coordinates of P and Q,
which is 1

2
(2 + 8) = 5.

Finally, the coordinates of V are (5,−4).

Solution 2
Since the parabola intersects the x-axis at P (2, 0) and Q(8, 0), then the equation of the
parabola will be of the form y = a(x− 2)(x− 8) for some a 6= 0.
Completing the square, we obtain

y = a(x2 − 10x+ 16) = a((x− 5)2 − 9) = a(x− 5)2 − 9a

From this, we see that the vertex of this parabola has coordinates (5,−9a).
Since the vertex of the parabola is below the x-axis, then −9a < 0 or a > 0.
Now 4V PQ has base PQ along the x-axis (which has length 8− 2 = 6).
The corresponding height is the perpendicular distance from V to the x-axis. This equals
9a, since a > 0.
Since the area of 4V PQ is 12, then 1

2
(6)(9a) = 12 or 27a = 12 which gives a = 4

9
.

Finally, substituting a = 4
9

into (5,−9a) gives the conclusion that the coordinates of V
are (5,−4).

4. (a) Rewriting sin2 θ + 2 cos2 θ = 7
4
, we get (sin2 θ + cos2 θ) + cos2 θ = 7

4
.

Since sin2 θ + cos2 θ = 1 for any angle θ, then 1 + cos2 θ = 7
4

and so cos2 θ = 3
4

or

cos θ = ±
√
3
2

.

Since 0◦ ≤ θ ≤ 180◦, then cos θ =
√
3
2

exactly when θ = 30◦.

Since 0◦ ≤ θ ≤ 180◦, then cos θ = −
√
3
2

exactly when θ = 150◦.
Therefore, θ = 30◦ or θ = 150◦.
(We can check by substitution that each of these values satisfies the original equation.)
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(b) Let the radius of the smaller circle be r cm and let the radius of the larger circle be R cm.
Thus, the circumference of the smaller circle is 2πr cm, the circumference of the larger
circle is 2πR cm, the area of the smaller circle is πr2 cm2, and the area of the larger circle
is πR2 cm2.
Since the sum of the radii of the two circles is 10 cm, then r +R = 10.
Since the circumference of the larger circle is 3 cm larger than the circumference of the
smaller circle, then 2πR− 2πr = 3, or 2π(R− r) = 3.
Then the difference, in cm2, between the area of the larger circle and the area of the
smaller circle is

πR2 − πr2 = π(R− r)(R + r) = 1
2
[2π(R− r)](R + r) = 1

2
(3)(10) = 15

Therefore, the difference between the areas is 15 cm2.

5. (a) When the price of $p is raised by n%, the price is multiplied by 1 +
n

100
.

When the new price is reduced by 20%, the new price is multiplied by 1− 20

100
=

80

100
.

Therefore, after these two price adjustments, the price is $p
(

1 +
n

100

)( 80

100

)
.

We are told that this final price is 20% higher than $p, and so the final price equals

$p

(
1 +

20

100

)
or $p

(
120

100

)
.

In other words,

$p
(

1 +
n

100

)( 80

100

)
= $p

(
120

100

)
Simplifying and using the fact that p 6= 0, we obtain 80

(
1 +

n

100

)
= 120.

Thus, 1 +
n

100
=

120

80
=

3

2
=

150

100
and so

n

100
=

50

100
or n = 50.

(b) Solution 1
Let m = f(n). The equation f(f(n)) = 3 becomes f(m) = 3.
Suppose that f(m) = 3 and m is odd.
By definition, we have f(m) = m − 1 = 3 and so m = 4, which is not odd, so this case
cannot happen.
Suppose that f(m) = 3 and m is even.
By definition, we have f(m) = m2 − 1 = 3 and so m2 = 4 or m = ±2, each of which is
even.
Therefore, if f(f(n)) = 3, then f(n) = 2 or f(n) = −2.
Suppose that f(n) = 2 or f(n) = −2 and n is odd.
By definition, we have n− 1 = 2 (giving n = 3) or n− 1 = −2 (giving n = −1). Each of
these resulting values of n is odd.
Suppose that f(n) = 2 or f(n) = −2 and n is even.
Then n2−1 = 2 or n2−1 = −2 which give n2 = 3 or n2 = −1, neither of which is possible
if n is an integer.
Thus, the integers n for which f(f(n)) = 3 are n = 3 and n = −1.
(We can check by substitution that each of these satisfies the original equation.)
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Solution 2
We consider the cases of n even and n odd separately.

Suppose that n is even.
Then n2 is even and so f(n) = n2 − 1 must be odd.
Thus, f(f(n)) = f(n2 − 1) = (n2 − 1)− 1 = n2 − 2, since f(m) = m− 1 when m is odd.
For n to be even and f(f(n)) = 3, we must have n2 − 2 = 3 or n2 = 5.
There are no integer solutions to this equation, and so there are no solutions in this case.

Suppose that n is odd.
Then f(n) = n− 1 must be even.
Thus, f(f(n)) = f(n− 1) = (n− 1)2 − 1 = n2 − 2n+ 1− 1 = n2 − 2n.
For n to be odd and f(f(n)) = 3, we must have n2 − 2n = 3 or n2 − 2n− 3 = 0.
Factoring, we obtain (n− 3)(n+ 1) = 0 and so n = 3 or n = −1, both of which are odd.

Thus, the integers n for which f(f(n)) = 3 are n = 3 and n = −1.
(We can check by substitution that each of these satisfies the original equation.)

6. (a) Since 10y 6= 0, the equation
1

32
=

x

10y
is equivalent to 10y = 32x.

So the given question is equivalent to asking for the smallest positive integer x for which
32x equals a positive integer power of 10.
Now 32 = 25 and so 32x = 25x.
For 32x to equal a power of 10, each factor of 2 must be matched with a factor of 5.
Therefore, x must be divisible by 55 (that is, x must include at least 5 powers of 5), and
so x ≥ 55 = 3125.
But 32(55) = 2555 = 105, and so if x = 55 = 3125, then 32x is indeed a power of 10,
namely 105.

This tells us that the smallest positive integer x for which
1

32
=

x

10y
for some positive

integer y is x = 55 = 3125.

(b) Solution 1
Since the three side lengths of a right-angled triangle form an arithemetic sequence and
must include 60, then the three side lengths are 60, 60 + d, 60 + 2d or 60− d, 60, 60 + d or
60− 2d, 60− d, 60, for some d ≥ 0.

For a triangle with sides of length 60, 60+d, 60+2d to be right-angled, by the Pythagorean
Theorem, the following equivalent equations must be true:

602 + (60 + d)2 = (60 + 2d)2

3600 + 3600 + 120d+ d2 = 3600 + 240d+ 4d2

0 = 3d2 + 120d− 3600

0 = d2 + 40d− 1200

0 = (d+ 60)(d− 20)

(Note that, since d ≥ 0, then 60 + 2d must be the hypotenuse of the triangle.)
Since d ≥ 0, then d = 20, which gives the triangle with side lengths 60, 80, 100.
The longest side length is the hypotenuse and the shorter two sides meet at right angles,
giving an area of 1

2
(60)(80) = 2400.
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For a triangle with sides of length 60−d, 60, 60+d to be right-angled, by the Pythagorean
Theorem, the following equivalent equations must be true:

(60− d)2 + 602 = (60 + d)2

3600− 120d+ d2 + 3600 = 3600 + 120d+ d2

3600 = 240d

d = 15

Since d ≥ 0, then d = 15 is admissible, which gives the triangle with side lengths 45, 60, 75.
Using a similar analysis, the area of this triangle is 1

2
(45)(60) = 1350.

For a triangle with sides of length 60−2d, 60−d, 60 to be right-angled, by the Pythagorean
Theorem, the following equivalent equations must be true:

(60− 2d)2 + (60− d)2 = 602

3600− 240d+ 4d2 + 3600− 120d+ d2 = 3600

5d2 − 360d+ 3600 = 0

d2 − 72d+ 720 = 0

(d− 60)(d− 12) = 0

Since d ≥ 0, then d = 60 or d = 12, which give possible side lengths of −60, 0, 60 (which
do not form a triangle) and 36, 48, 60 (which do form a triangle).
Using a similar analysis, the area of this triangle is 1

2
(36)(48) = 864.

Therefore, the possible values for the area of such a triangle are 2400, 1350, and 864.

Solution 2
Suppose that a triangle has side lengths in arithemetic sequence.
Then the side lengths can be written as a− d, a, a+ d for some a > 0 and d ≥ 0.
Note that a− d ≤ a ≤ a+ d.
For such a triangle to be right-angled, by the Pythagorean Theorem, the following equiv-
alent equations are true:

(a− d)2 + a2 = (a+ d)2

a2 − 2ad+ d2 + a2 = a2 + 2ad+ d2

a2 = 4ad

Since a > 0, then a = 4d, and so the side lengths of the triangle are a − d = 3d, a = 4d,
and a+ d = 5d for some d ≥ 0.
(Note that such triangles are all similar to the 3-4-5 triangle.)
If such a triangle has 60 as a side length, then there are three possibilities:

(i) 3d = 60: This gives d = 20 and side lengths 60, 80, 100.
Since the triangle is right-angled and its hypotenuse has length 100, then its area will
equal 1

2
(60)(80) = 2400.

(ii) 4d = 60: This gives d = 15 and side lengths 45, 60, 75.
In a similar way to case (i), its area will equal 1

2
(45)(60) = 1350.

(iii) 5d = 60: This gives d = 12 and side lengths 36, 48, 60.
In a similar way to case (i), its area will equal 1

2
(36)(48) = 864.

Therefore, the possible values for the area of such a triangle are 2400, 1350, and 864.
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7. (a) Solution 1
Suppose that Amrita paddles the kayak for p km and swims for s km.
Since Amrita leaves the kayak in the lake and it does not move, then Zhang swims p km
and paddles the kayak for s km.
Note that each paddles at 7 km/h and each swims at 2 km/h and each takes exactly 90
minutes (or 1.5 hours) to complete the trip.
If s < p, then Amrita would paddle farther and swim less distance than Zhang and so
would reach the other side in less time than Zhang.
If s > p, then Zhang would paddle farther and swim less distance than Amrita and so
would reach the other side in less time than Amrita.
Since they each take 90 minutes, then we must have s = p.
Alternatively, since each paddles at 7 km/h and each swims at 2 km/h and each takes
exactly 90 minutes (or 1.5 hours) to complete the trip, then we obtain the two equations

p

7
+
s

2
= 1.5

p

2
+
s

7
= 1.5

Using the fact that the right sides of these equations are equal, we obtain

p

7
+
s

2
=
s

7
+
p

2
s

2
− s

7
=
p

2
− p

7

s

(
1

2
− 1

7

)
= p

(
1

2
− 1

7

)
s = p

Therefore,
p

7
+
p

2
= 1.5 or

9

14
p = 1.5 =

3

2
and so p =

7

3
.

For Amrita to paddle these
7

3
km at 7 km/h, it takes

7/3

7
=

1

3
hour, or 20 minutes.

For Zhang to swim these
7

3
km at 2 km/h, it takes

7/3

2
=

7

6
hour, or 70 minutes.

The kayak is not being paddled for the period of time from when Amrita stops paddling
to the time when Zhang stops swimming, which is a period of 70− 20 = 50 minutes.
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Solution 2
Let t1 hours be the length of time during which Amrita paddles and Zhang swims.
Let t2 hours be the length of time during which Amrita swims and Zhang swims; the kayak
is not moving during this time.
Let t3 hours be the length of time during which Amrita swims and Zhang paddles.
Let d km be the total distance across the lake.
Since Amrita paddles at 7 km/h and swims at 2 km/h, then 7t1 + 2t2 + 2t3 = d.
Since Zhang paddles at 7 km/h and swims at 2 km/h, then 2t1 + 2t2 + 7t3 = d.
Since the kayak travels at 7 km/h and does not move while both Amrita and Zhang are
swimming, then 7t1 + 0t2 + 7t3 = d.
Since Amrita and Zhang each take 90 minutes (3

2
hours) to cross the lake, then the total

time gives t1 + t2 + t3 = 3
2
.

From 7t1 + 2t2 + 2t3 = d and 2t1 + 2t2 + 7t3 = d, we obtain 7t1 + 2t2 + 2t3 = 2t1 + 2t2 + 7t3
or 5t1 = 5t3 and so t1 = t3.
Since 7t1 +2t2 +2t3 = d and 7t1 +0t2 +7t3 = d and t1 = t3, then 7t1 +2t2 +2t1 = 7t1 +7t1
or 2t2 = 5t1 or t2 = 5

2
t1.

Since t1 + t2 + t3 = 3
2
, then t1 + 5

2
t1 + t1 = 3

2
or 9

2
t1 = 3

2
and so t1 = 1

3
.

Thus, t2 = 5
2
· 1
3

= 5
6

hours (or 50 minutes) is the period of time that the kayak is not moving.

(b) From the first equation, x
(
1
2

+ y − 2x2
)

= 0, we obtain x = 0 or 1
2

+ y − 2x2 = 0.

From the second equation, y
(
5
2

+ x− y
)

= 0, we obtain y = 0 or 5
2

+ x− y = 0.

If x = 0, the first equation is satisified.
For the second equation to be true in this case, we need y = 0 (giving the solution (0, 0))
or 5

2
+ 0− y = 0. The second equation gives y = 5

2
(giving the solution (0, 5

2
)).

If y = 0, the second equation is satisified.
For the first equation to be true in this case, we need x = 0 (giving the solution (0, 0)) or
1
2

+ 0− 2x2 = 0. The second equation gives x2 = 1
4

or x = ±1
2

(giving the solutions (1
2
, 0)

and (−1
2
, 0)).

So far, we have accounted for all solutions with x = 0 or y = 0.
If x 6= 0 and y 6= 0, then for both equations to be true, we need 1

2
+ y − 2x2 = 0 (or

1 + 2y − 4x2 = 0) and 5
2

+ x− y = 0 (or 5 + 2x− 2y = 0).
Adding these two equations, we obtain 6 + 2x− 4x2 = 0.
This is equivalent to 2x2 − x − 3 = 0 or (2x − 3)(x + 1) = 0, whose solutions are x = 3

2

and x = −1.
The equation 5

2
+ x− y = 0 tells us that y = x+ 5

2
.

If x = 3
2
, then y = 4; if x = −1, then y = 3

2
.

Therefore, the complete list of pairs that satisfy the given system of equations is

(x, y) = (0, 0), (0, 5
2
), (1

2
, 0), (−1

2
, 0), (3

2
, 4), (−1, 3

2
) .
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8. (a) Let ∠EAF = θ.
Since ABCD is a parallelogram, then AB and DC are parallel with AB = DC, and DA
and CB are parallel with DA = CB.
Since AE is perpendicular to DC and AB and DC are parallel, then AE is perpendicular
to AB.
In other words, ∠EAB = 90◦, and so ∠FAB = 90◦ − θ.
Since 4AFB is right-angled at F and ∠FAB = 90◦ − θ, then ∠ABF = θ.
Using similar arguments, we obtain that ∠DAE = 90◦ − θ and ∠ADE = θ.

A B

CD E

F
20 32

θ θ

θ

90° – θ

Since cos(∠EAF ) = cos θ = 1
3

and cos2 θ + sin2 θ = 1, then

sin θ =
√

1− cos2 θ =
√

1− 1
9

=
√

8
9

= 2
√
2

3

(Note that sin θ > 0 since θ is an angle in a triangle.)

In 4AFB, sin θ =
AF

AB
and cos θ =

FB

AB
.

Since AF = 32 and sin θ = 2
√
2

3
, then AB =

AF

sin θ
=

32

2
√

2/3
=

48√
2

= 24
√

2.

Since AB = 24
√

2 and cos θ = 1
3
, then FB = AB cos θ = 24

√
2(1

3
) = 8

√
2.

In 4AED, sin θ =
AE

AD
and cos θ =

DE

AD
.

Since AE = 20 and sin θ = 2
√
2

3
, then AD =

AE

sin θ
=

20

2
√

2/3
=

30√
2

= 15
√

2.

Since AD = 15
√

2 and cos θ = 1
3
, then DE = AD cos θ = 15

√
2(1

3
) = 5

√
2.

(To calculate AD and DE, we could also have used the fact that 4ADE is similar to
4ABF .)
Finally, the area of quadrilateral AECF equals the area of parallelogram ABCD minus
the combined areas of 4AFB and 4ADE.
The area of parallelogram ABCD equals AB · AE = 24

√
2 · 20 = 480

√
2.

The area of 4AFB equals 1
2
(AF )(FB) = 1

2
(32)(8

√
2) = 128

√
2.

The area of 4AED equals 1
2
(AE)(DE) = 1

2
(20)(5

√
2) = 50

√
2.

Thus, the area of quadrilateral AECF is 480
√

2− 128
√

2− 50
√

2 = 302
√

2.
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(b) Note that x 6= 1 since 1 cannot be the base of a logarithm. This tells us that log x 6= 0.

Using the fact that loga b =
log b

log a
and then using other logarithm laws, we obtain the

following equivalent equations:

log4 x− logx 16 = 7
6
− logx 8

log x

log 4
− log 16

log x
=

7

6
− log 8

log x
(note that x 6= 1, so log x 6= 0)

log x

log 4
=

7

6
+

log 16− log 8

log x

log x

log(22)
=

7

6
+

log(16
8

)

log x

log x

2 log 2
=

7

6
+

log 2

log x

1

2

(
log x

log 2

)
=

7

6
+

log 2

log x

Letting t =
log x

log 2
= log2 x and noting that t 6= 0 since x 6= 1, we obtain the following

equations equivalent to the previous ones:

t

2
=

7

6
+

1

t
3t2 = 7t+ 6 (multiplying both sides by 6t)

3t2 − 7t− 6 = 0

(3t+ 2)(t− 3) = 0

Therefore, the original equation is equivalent to t = −2
3

or t = 3.
Converting back to the variable x, we obtain log2 x = −2

3
or log2 x = 3, which gives

x = 2−2/3 or x = 23 = 8.
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9. (a) There are 210 = 1024 strings of ten letters, each of which is A or B, because there are
2 choices for each of the 10 positions in the string.
We determine the number of these strings that do not include the “substring” ABBA
(that is, that do not include consecutive letters ABBA) by counting the number of strings
that do include the substring ABBA and subtracting this total from 1024.
If a string includes the substring ABBA, there are 7 possible positions in which this sub-
string could start (ABBAxxxxxx, xABBAxxxxx, . . ., xxxxxxABBA).
There are 2 choices for each of the remaining 6 letters in such a string, so there are
7 · 26 = 448 occurrences of the substring ABBA among the 1024 strings.
This does not mean that there are 448 strings that contain the substring ABBA. Since
ABBA can appear multiple times in a single string, this total will count some strings more
than once. (For example, the string ABBAAAABBA is included in both the first and
seventh of these categories, so this string is counted twice.)
So we must “correct” this total of 448 by accounting for the strings in which ABBA occurs
more than once.
We note that, since two substrings of ABBA can overlap in 0 letters (for example,
ABBAABBAxx) or in 1 letter (for example, ABBABBAxxx), then the maximum num-
ber of times that the substring ABBA can appear is 3, and there is only one such string:
ABBABBABBA.
If a string contains two copies of ABBA that overlap, then it must be of one of the fol-
lowing forms:

ABBABBAxxx xABBABBAxx xxABBABBAx xxxABBABBA

Since there are 4 choices for the starting position of ABBABBA and 2 choices for each of
the three unknown letters, then there are 4 · 23 = 32 occurrences of ABBABBA among
all of these strings.
But the string ABBABBABBA is counted in each of the first and last categories, so we
subtract 2 occurrences from this total to obtain 30, the total number of strings of ten
letters that included exactly two overlapping copies of ABBA. (We’ll count the string
ABBABBABBA later.)
If a string contains exactly two substrings of ABBA and these do not overlap, then it
must be of one of the following forms:

ABBAABBAxx ABBAxABBAx ABBAxxABBA

xABBAABBAx xABBAxABBA xxABBAABBA

Since there are 6 such forms and 2 choices for each of the 2 unknown letters in each case,
then there appear to be 6 · 22 = 24 such strings.
This total includes the string ABBABBABBA in the third category, so we subtract 1
from this total to obtain 23, the total number of strings of ten letters that include exactly
two copies of ABBA which do not overlap.
So there are 30 strings that contain exactly two overlapping substrings ABBA, 23 strings
that contain exactly two non-overlapping substrings ABBA, and 1 string that contains
exactly three substrings ABBA.
To get the total number of strings with one or more substrings ABBA we take the total
number of occurrences of ABBA (448), subtract the number of strings with exactly two
substrings ABBA (since these were included twice in the original count), and subtract
two times the number of strings with exactly three substrings ABBA (since these were
included three times in the original count).
Therefore, there are 448− 23− 30− 2 · 1 = 393 strings that include at least one substring
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ABBA, and so there are 1024 − 393 = 631 strings of ten letters that do not include the
substring ABBA.
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(b) Solution 1
Rotate 4DFC through an angle of 90◦ counterclockwise about D, so that DC now lies
along DA and F ′ is outside the square, as shown.
Join F ′ to E.

A B

CD

E

F

x

y

z45˚

F'

Since AC is a diagonal of square ABCD, then ∠EAD = ∠FCD = 45◦.
Since ∠EAD = 45◦ and ∠F ′AD = ∠FCD = 45◦, then ∠F ′AE = 45◦ + 45◦ = 90◦.
By the Pythagorean Theorem in 4F ′AE, we have F ′E2 = F ′A2 + AE2.
But F ′A = FC = z and AE = x, so F ′E2 = z2 + x2.
To show that y2 = x2 + z2, it is sufficient to show that F ′E = y.
Consider 4F ′DE and 4FDE.
Note that F ′D = FD and ∠F ′DA = ∠FDC by construction and ED = ED.
Also, ∠F ′DE = ∠F ′DA+ ∠EDA = ∠FDC + ∠EDA = 90◦ −∠EDF = 45◦, which tells
us that ∠F ′DE = ∠FDE = 45◦.
Therefore, 4F ′DE is congruent to 4FDE (side-angle-side), and so F ′E = FE = y.
This gives us the desired conclusion that y2 = x2 + z2.

Solution 2
Since AC is a diagonal of square ABCD, then ∠EAD = ∠FCD = 45◦.
Let ∠ADE = θ.
Since the angles in a triangle have a sum of 180◦, then

∠AED = 180◦ − ∠EAD − ∠ADE = 180◦ − 45◦ − θ = 135◦ − θ

Since AEF is a straight angle, then ∠DEF = 180◦−∠AED = 180◦−(135◦−θ) = 45◦+θ.
Continuing in this way, we find that ∠EFD = 90◦ − θ, ∠DFC = 90◦ + θ, and
∠FDC = 45◦ − θ.

A B

CD

E

F

x

y

z45˚

45˚

45˚
θ

135˚– θ

45˚+ θ

45˚– θ

90˚– θ
90˚+ θ

Using the sine law in 4AED, we see that
AE

sin∠ADE
=

ED

sin∠EAD
or

x

sin θ
=

ED

sin 45◦
.

Using the sine law in4DEF , we see that
EF

sin∠EDF
=

ED

sin∠EFD
or

y

sin 45◦
=

ED

sin(90◦ − θ)
.
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Using the sine law in4DEF , we see that
EF

sin∠EDF
=

FD

sin∠DEF
or

y

sin 45◦
=

FD

sin(45◦ + θ)
.

Using the sine law in 4DFC, we get
FC

sin∠FDC
=

FD

sin∠DCF
or

z

sin(45◦ − θ)
=

FD

sin 45◦
.

Dividing the first of these equations by the second, we obtain
x sin 45◦

y sin θ
=

sin(90◦ − θ)
sin 45◦

or

x

y
=

sin(90◦ − θ) sin θ

sin2 45◦
.

Dividing the fourth of these equations by the third, we obtain
z sin 45◦

y sin(45◦ − θ)
=

sin(45◦ + θ)

sin 45◦

or
z

y
=

sin(45◦ + θ) sin(45◦ − θ)
sin2 45◦

.

Since sin(90◦ − α) = cosα for every angle α, then sin(90◦ − θ) = cos θ.
Also, sin(45◦ + θ) = sin(90◦ − (45◦ − θ)) = cos(45◦ − θ).
Using this and the fact that

1

sin2 45◦
=

1

(1/
√

2)2
= 2, the expressions for

x

y
and

z

y
become

x

y
= 2 cos θ sin θ = sin 2θ

and

z

y
= 2 cos(45◦ − θ) sin(45◦ − θ) = sin(2(45◦ − θ)) = sin(90◦ − 2θ) = cos 2θ

Finally, this tells us that

x2

y2
+
z2

y2
=

(
x

y

)2

+

(
z

y

)2

= sin2 2θ + cos2 2θ = 1

Since
x2

y2
+
z2

y2
= 1, then x2 + z2 = y2, as required.
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10. (a) Here, k = 10 and so there are 10 balls in each bag.
Since there are 10 balls in each bag, there are 10 · 10 = 100 pairs of balls that can be
chosen.
Let a be the number on the first ball chosen and b be the number on the second ball
chosen. To determine P (10), we count the number of pairs (a, b) for which ab is divisible
by 10.

If the number of pairs is m, then P (10) =
m

100
.

For ab to be divisible by 10, at least one of a and b must be a multiple of 5 and at least
one of a and b must be even.
If a = 10 or b = 10, then the pair (a, b) gives a product ab divisible by 10.
In this case, we obtain the 19 pairs

(a, b) = (1, 10), (2, 10), . . . , (9, 10), (10, 10), (10, 9), . . . , (10, 2), (10, 1)

If neither a nor b equals 10, then either a = 5 or b = 5 in order for a or b to be divisible
by 5.
In this case, the other of a and b must be even and not equal to 10. (We have already
counted the pairs where a = 10 or b = 10.)
In this case, we obtain the 8 pairs

(a, b) = (5, 2), (5, 4), (5, 6), (5, 8), (2, 5), (4, 5), (6, 5), (8, 5)

From our work above, there are no additional pairs for which ab is divisible by 10.
Thus, there are 19 + 8 = 27 pairs (a, b) for which ab is divisible by 10, which means that
P (10) = 27

100
.

(We note that we could have made a 10 by 10 table that listed all possible combinations
of a and b and their product, from which we could obtain P (10).)

(b) Let n be a positive integer with n ≥ 2.
Consider f(n) = 2n− 1. This is a polynomial in n.

We demonstrate that P (n) ≥ 2n− 1

n2
for all positive integers n with n ≥ 2 and that

P (n) =
2n− 1

n2
for infinitely many positive integers n with n ≥ 2.

Suppose that there are two bags, each containing n balls labelled from 1 to n.
Since there are n balls in each bag, there are n2 pairs of balls that can be chosen.
Let a be the number on the first ball chosen and b be the number on the second ball
chosen.
The pairs

(a, b) = (1, n), (2, n), . . . , (n− 1, n), (n, n), (n, n− 1), . . . , (n, 2), (n, 1)

each have the property that ab is divisible by n.
There are (n− 1) + 1 + (n− 1) = 2n− 1 of these pairs.
Therefore, at least 2n−1 of the pairs of balls that can be chosen have labels whose product
is divisible by n.
Since there are n2 pairs that can be chosen and the number of pairs of balls with the

desired property is at least 2n− 1, then P (n) ≥ 2n− 1

n2
.

This proves the first part of what we needed to prove.
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Next, suppose that n = p, a prime number.
For ab to be divisible by p, then either a is divisible by p or b is divisible by p (or both).
(This property is not true when p is not a prime number; for example, 2 · 2 is divisible by
4 even though neither factor is divisible by 4.)
Since 1 ≤ a ≤ p and 1 ≤ b ≤ p, then if either a is divisible by p or b is divisible by p (or
both), we must have either a = p or b = p, or both.
In other words, ab is divisible by p exactly when (a, b) is in the list

(1, p), (2, p), . . . , (p− 1, p), (p, p), (p, p− 1), . . . , (p, 2), (p, 1)

There are 2p − 1 pairs in this list and these are the only pairs for which ab is divisible
by p.

Therefore, P (n) =
2n− 1

n2
when n is a prime number.

Since there are infinitely many prime numbers, then P (n) =
2n− 1

n2
for infinitely many

positive integers n with n ≥ 2.
Thus, f(n) = 2n− 1 is a polynomial with the desired properties.

(c) Let N = 2k, where k is a positive integer with k ≥ 2.
Suppose that there are two bags, each containing N balls labelled from 1 to N .
Since there are N balls in each bag, there are N2 pairs of balls that can be chosen.
Let a be the number on the first ball chosen and b be the number on the second ball
chosen.
Let j be a positive integer with 1 ≤ j ≤ k − 1.
Consider pairs of the form (a, b) = (2jx, 2k−jy) where x and y are odd positive integers
that keep a and b in the desired range.
Note that, in each case, ab = (2jx)(2k−jy) = 2kxy which is divisible by N = 2k.
Since 1 ≤ a ≤ 2k, then 1 ≤ 2jx ≤ 2k and so x ≤ 2k−j.
Since half of the positive integers from 1 to 2k−j are odd, then there are 1

2
2k−j = 2k−j−1

choices for x.
Similarly, there are 2k−(k−j)−1 = 2j−1 choices for y.
Note that each choice of x and y gives a unique pair (a, b).
For any fixed j, there are 2k−j−1 choices for x and 2j−1 choices for y.
Thus, there are 2k−j−1 · 2j−1 = 2k−2 choices of this form for the pair (a, b).
So for a fixed j with 1 ≤ j ≤ k − 1, this method gives 2k−2 pairs (a, b) for which ab is
divisible by N .
Since there are k−1 different values for j, then there are at least (k−1)2k−2 pairs (a, b) for
which ab is divisible by N . (Note that two pairs that come from different values of j will
in fact be different since the number of factors of 2 in their values of a will be different.)
Since there are N2 choices for (a, b), then

P (N) ≥ (k − 1)2k−2

N2
=

(k − 1)2k2−2

N2
=
k − 1

4
· 1

N

When
k − 1

4
> 2016, we will have P (N) > 2016 · 1

N
.

The inequality
k − 1

4
> 2016 is equivalent to k − 1 > 8064 or k > 8065.

We want to show that there exists a positive integer m with P (m) >
2016

m
.

Set m = 28066.

By the work above, P (m) ≥ 8065

4
· 1

m
>

2016

m
, as required.
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1. (a) Evaluating,
102 − 92

10 + 9
=

100− 81

19
=

19

19
= 1.

Alternatively, we could factor 102 − 92 as a difference of squares to obtain

102 − 92

10 + 9
=

(10 + 9)(10− 9)

10 + 9
= 10− 9 = 1

noting that 10 + 9, which we divided from the numerator and denominator, is not equal
to 0.

(b) Since
x+ 1

x+ 4
= 4, then x+ 1 = 4(x+ 4) and so x+ 1 = 4x+ 16 or 3x = −15.

Therefore, 3x+ 8 = −15 + 8 = −7.
Alternatively, we could note that since 3x = −15, then x = −5.
Thus, 3x+ 8 = 3(−5) + 8 = −15 + 8 = −7.

(c) Since f(x) = 2x− 1, then f(3) = 2(3)− 1 = 5.
Therefore, (f(3))2 + 2(f(3)) + 1 = 52 + 2(5) + 1 = 25 + 10 + 1 = 36.
Alternatively, we could note that since f(x) = 2x− 1, then

(f(x))2 + 2(f(x)) + 1 = (f(x) + 1)2 = (2x− 1 + 1)2 = 4x2

and so (f(3))2 + 2(f(3)) + 1 = 4(32) = 36.

2. (a) Since
√
a+
√
a = 20, then 2

√
a = 20 or

√
a = 10, and so a = 102 = 100.

(b) Let the radius of the larger circle be r.
Since the radius of the smaller circle is 1, then its area is π · 12 = π.
Since the area between the circles is equal to the area of the smaller circle, then the area
of the larger circle is π + π = 2π.
Thus, πr2 = 2π or r2 = 2. Since r > 0, then r =

√
2.

(c) Since 30 students had an average mark of 80, then the sum of the marks of these 30 stu-
dents was 30 · 80 = 2400.
After 2 students dropped the class, there were 28 students left. Their average mark was
82.
Thus, the sum of the marks of the remaining 28 students was 28 · 82 = 2296.
Therefore, the sum of the marks of the 2 students who dropped the class was 2400− 2296

or 104, and so their average mark was
104

2
= 52.
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3. (a) Solution 1
Join AD.
Since BC = CD and BD = 4, then BC = CD = 2. Also, AB = BC = 2.
Since 4ABC is equilateral, then ∠ABC = ∠ACB = 60◦.
Since ∠ACB = 60◦, then ∠ACD = 180◦ − ∠ACB = 180◦ − 60◦ = 120◦.

A

B C D
2 2

2

60º 120º

Since AC = CD, then 4ACD is isosceles with ∠CDA = ∠CAD.
Each of these angles equals 1

2
(180◦ − ∠ACD) = 1

2
(180◦ − 120◦) = 30◦.

Since ∠ABD = 60◦ and ∠ADB = 30◦, then ∠BAD = 90◦ and 4DBA is a 30◦-60◦-90◦

triangle.
Therefore, AD =

√
3AB = 2

√
3.

Solution 2
Join AD.
Since BC = CD and BD = 4, then BC = CD = 2. Also, AC = CD = 2.
Since ∠ACB = 60◦, then ∠ACD = 180◦ − ∠ACB = 180◦ − 60◦ = 120◦.
By the cosine law in 4ACD,

AD2 = AC2 + CD2 − 2(AC)(CD) cos(∠ACD)

= 22 + 22 − 2(2)(2) cos 120◦

= 4 + 4− 8(−1
2
)

= 12

Since AD2 = 12 and AD > 0, then AD =
√

12 = 2
√

3.

Solution 3
Join AD and drop a perpendicular from A to E on BC.
Since BC = CD and BD = 4, then BC = CD = 2. Also, AB = BC = 2.
Since 4ABC is equilateral, then ∠ABC = ∠ACB = 60◦.
Since ∠ABC = 60◦ and ∠AEB = 90◦, then 4ABE is a 30◦-60◦-90◦ triangle.
Thus, AE =

√
3
2
AB =

√
3.

Since ∠ACB = 60◦, then ∠ACD = 180◦ − ∠ACB = 180◦ − 60◦ = 120◦.

A

B C D
2

2

60º 120º
E

Since AC = CD, then 4ACD is isosceles with ∠CDA = ∠CAD.
Each of these angles equals 1

2
(180◦ − ∠ACD) = 1

2
(180◦ − 120◦) = 30◦.

But 4DAE is then a 30◦-60◦-90◦ triangle, so AD = 2AE = 2
√

3.
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(b) Points N(5, 3) and P (5, c) lie on the same vertical line. We can consider NP as the base
of 4MNP . Suppose that the length of this base is b.
The corresponding height of 4MNP is the distance from M(1, 4) to the line through N
and P . Since M lies on the vertical line x = 1 and N and P lie on the vertical line x = 5,
then the height is h = 4.

y

x

M (1, 4)
N (5, 3)

P1(5, c1)

P2(5, c2)

Since the area of 4MNP is 14, then 1
2
bh = 14.

Since h = 4, then 1
2
b(4) = 14 or 2b = 14 and so b = 7.

Therefore, P (5, c) is a distance of 7 units away from N(5, 3).
Since NP is a vertical line segment, then c = 3 + 7 or c = 3− 7, and so c = 10 or c = −4.
The sum of these two values is 10 + (−4) = 6.
(We could also have noted that, since the two values of c will be symmetric about y = 3,
then the average of their values is 3 and so the sum of their values is 2 · 3 = 6.)

4. (a) To find the y-intercept, we set x = 0 and obtain

y = (−1)(−2)(−3)− (−2)(−3)(−4) = (−6)− (−24) = 18 .

To find the x-intercepts, we first simplify using common factors:

y = (x−1)(x−2)(x−3)−(x−2)(x−3)(x−4) = (x−2)(x−3) ((x− 1)− (x− 4)) = 3(x−2)(x−3)

To find the x-intercepts, we set y = 0 and obtain 3(x − 2)(x − 3) = 0 which gives x = 2
or x = 3.
Therefore, the y-intercept is 18 and the x-intercepts are 2 and 3.

(b) To find the points of intersection of the graphs with equations y = x3 − x2 + 3x − 4 and
y = ax2 − x− 4, we equate values of y and solve for x.
We want to find all values of a for which there are exactly two values of x which are
solutions to x3 − x2 + 3x− 4 = ax2 − x− 4.
Solving, we obtain

x3 − x2 + 3x− 4 = ax2 − x− 4

x3 − x2 − ax2 + 4x = 0

x3 − (a+ 1)x2 + 4x = 0

x(x2 − (a+ 1)x+ 4) = 0

Therefore x = 0 or x2 − (a+ 1)x+ 4 = 0.
Note that x = 0 is not a solution to x2− (a+ 1)x+ 4 = 0, since when x = 0 is substituted
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into the left side, we obtain 4 and not 0.
Therefore, for there to be exactly two points of intersection between the two graphs, the
quadratic equation x2 − (a+ 1)x+ 4 = 0 must have exactly one solution.
Setting the discriminant equal to 0 (to obtain a single root), we obtain (a+1)2−4(1)(4) = 0
or (a+ 1)2 = 16, which gives a+ 1 = ±4.
If a+ 1 = 4, then a = 3; if a+ 1 = −4, then a = −5.
Therefore, the values of a for which the graphs with equations y = x3 − x2 + 3x− 4 and
y = ax2 − x− 4 intersect at exactly two points are a = 3 and a = −5.
(We can check that y = x3−x2 + 3x− 4 and y = 3x2−x− 4 intersect exactly when x = 0
and x = 2, and that y = x3 − x2 + 3x − 4 and y = −5x2 − x − 4 intersect exactly when
x = 0 and x = −2.)

5. (a) Suppose that AB = AC = DE = x.
Since DB = 9, then AD = x− 9.
Since EC = 8, then AE = x− 8.
By the Pythagorean Theorem in 4ADE,

AD2 + AE2 = DE2

(x− 9)2 + (x− 8)2 = x2

x2 − 18x+ 81 + x2 − 16x+ 64 = x2

x2 − 34x+ 145 = 0

(x− 5)(x− 29) = 0

Therefore, x = 5 or x = 29.
Since x ≥ 9 (because AB ≥ DB = 9), then DE = 29.

(b) Since each list contains 6 consecutive positive integers and the smallest integers in the lists
are a and b, then the positive integers in the first list are a, a+ 1, a+ 2, a+ 3, a+ 4, a+ 5
and the positive integers in the second list are b, b+ 1, b+ 2, b+ 3, b+ 4, b+ 5.
Note that 1 ≤ a < b.
We first determine the pairs (a, b) for which 49 will appear in the third list, then determine
which of these pairs give a third list that contains no multiple of 64, and then finally keep
only those pairs for which there is a number in the third list larger than 75.

The first bullet tells us that 49 is the product of an integer in the first list and an integer
in the second list.
Since 49 = 72 and 7 is prime, then these integers are either 1 and 49 or 7 and 7.
If 1 is in one of the lists, then either a = 1 or b = 1. Since 1 ≤ a < b, then it must be that
a = 1.
If 49 is in the second list, then one of b, b + 1, b + 2, b + 3, b + 4, b + 5 equals 49, and so
44 ≤ b ≤ 49.
Therefore, for 1 and 49 to appear in the two lists, then (a, b) must be one of

(1, 49), (1, 48), (1, 47), (1, 46), (1, 45), (1, 44) .

If 7 appears in the first list, then one of a, a + 1, a + 2, a + 3, a + 4, a + 5 equals 7, so
2 ≤ a ≤ 7. Similarly, if 7 appears in the second list, then 2 ≤ b ≤ 7.
Therefore, for 7 to appear in both lists, then, knowing that a < b, then (a, b) must be one
of

(2, 3), (2, 4), (2, 5), (2, 6), (2, 7), (3, 4), (3, 5), (3, 6), (3, 7), (4, 5), (4, 6), (4, 7), (5, 6), (5, 7), (6, 7) .
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The second bullet tells us that no pair of numbers in the first and second lists have a
product that is a multiple of 64.
Given that the possible values of a and b are 1, 2, 3, 4, 5, 6, 7, 44, 45, 46, 47, 48, 49, then the
possible integers in the two lists are those integers from 1 to 12, inclusive, and from 44 to
54, inclusive. (For example, if the first number in one list is 7, then the remaining numbers
in this list are 8, 9, 10, 11, 12.)
There is no multiple of 32 or 64 in these lists.
Thus, for a pair of integers from these lists to have a product that is a multiple of 64, one
is a multiple of 4 and the other is a multiple of 16, or both are multiples of 8.
If (a, b) = (1, 48), (1, 47), (1, 46), (1, 45), (1, 44), then 4 appears in the first list and 48 ap-
pears in the second list; these have a product of 192, which is 3 · 64.
If (a, b) = (1, 49), there is a multiple of 4 but not of 8 in the first list, and a multiple of 4
but not of 8 in the second list, so there is no multiple of 64 in the third list.
If (a, b) = (3, 4), (3, 5), (3, 6), (3, 7), (4, 5), (4, 6), (4, 7), (5, 6), (5, 7), (6, 7), then 8 appears in
both lists, so 64 appears in the third list.
If (a, b) = (2, 3), (2, 4), (2, 5), (2, 6), (2, 7), then there is no multiple of 8 or 16 in the first
list and no multiple of 16 in the second list, so there is no multiple of 64 in the third list.
Therefore, after considering the first two bullets, the possible pairs (a, b) are (1, 49), (2, 3),
(2, 4), (2, 5), (2, 6), (2, 7).

The third bullet tells us that there is at least one number in the third list that is larger
than 75.
Given the possible pairs (a, b) are (1, 49), (2, 3), (2, 4), (2, 5), (2, 6), (2, 7), the corresponding
pairs of largest integers in the lists are (6, 54), (7, 8), (7, 9), (7, 10), (7, 11), (7, 12).
The corresponding largest integers in the third list are the products of the largest integers
in the two lists; these products are 324, 56, 63, 70, 77, 84, respectively.
Therefore, the remaining pairs (a, b) are (1, 49), (2, 6), (2, 7)

Having considered the three conditions, the possible pairs (a, b) are (1, 49), (2, 6), (2, 7).
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6. (a) We are told that when a, b and c are the numbers in consecutive sectors, then b = ac.
This means that if a and b are the numbers in consecutive sectors, then the number in the

next sector is c =
b

a
. (That is, each number is equal to the previous number divided by

the one before that.)
Starting with the given 2 and 3 and proceeding clockwise, we obtain

2, 3,
3

2
,

3/2

3
=

1

2
,

1/2

3/2
=

1

3
,

1/3

1/2
=

2

3
,

2/3

1/3
= 2,

2

2/3
= 3,

3

2
, . . .

After the first 6 terms, the first 2 terms (2 and 3) reappear, and so the first 6 terms will
repeat again. (This is because each term comes from the previous two terms, so when
two consecutive terms reappear, then the following terms are the same as when these two
consecutive terms appeared earlier.)

Since there are 36 terms in total, then the 6 terms repeat exactly
36

6
= 6 times.

Therefore, the sum of the 36 numbers is 6

(
2 + 3 +

3

2
+

1

2
+

1

3
+

2

3

)
= 6(2+3+2+1) = 48.

(b) We consider two cases: x > −1 (that is, x+ 1 > 0) and x < −1 (that is, x+ 1 < 0). Note
that x 6= −1.

Case 1: x > −1

We take the given inequality 0 <
x2 − 11

x+ 1
< 7 and multiply through by x + 1, which is

positive, to obtain 0 < x2 − 11 < 7x+ 7.
Thus, x2 − 11 > 0 and x2 − 11 < 7x+ 7.
From the first, we obtain x2 > 11 and so x >

√
11 or x < −

√
11.

Since x > −1, then x >
√

11. (Note that −
√

11 < −1.)
From the second, we obtain x2 − 7x − 18 < 0 or (x − 9)(x + 2) < 0. Thus, −2 < x < 9.
(Since y = x2 − 7x− 18 represents a parabola opening upwards, its y-values are negative
between its x-intercepts.)
Since x > −1 and −2 < x < 9, then −1 < x < 9.
Since x >

√
11 and −1 < x < 9, then the solution in this case is

√
11 < x < 9.

Case 2: x < −1

We take the given inequality 0 <
x2 − 11

x+ 1
< 7 and multiply through by x + 1, which is

negative, to obtain 0 > x2 − 11 > 7x+ 7.
Thus, x2 − 11 < 0 and x2 − 11 > 7x+ 7.
From the first, we obtain x2 < 11 and so −

√
11 < x <

√
11.

Since x < −1 and −
√

11 < x <
√

11, then −
√

11 < x < −1.
From the second, we obtain x2 − 7x − 18 > 0 or (x − 9)(x + 2) > 0. Thus, x < −2 or
x > 9. (Since y = x2 − 7x − 18 represents a parabola opening upwards, its y-values are
positive outside its x-intercepts.)
Since x < −1, we obtain x < −2.
Since −

√
11 < x < −1 and x < −2, then the solution in this case is −

√
11 < x < −2.

In summary, the values of x for which 0 <
x2 − 11

x+ 1
< 7 those x with −

√
11 < x < −2 and

those x with
√

11 < x < 9.
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7. (a) Join BE.

A B C

DEF

Since 4FBD is congruent to 4AEC, then FB = AE.
Since 4FAB and 4AFE are each right-angled, share a common side AF and have equal
hypotenuses (FB = AE), then these triangles are congruent, and so AB = FE.
Now BAFE has two right angles at A and F (so AB and FE are parallel) and has equal
sides AB = FE so must be a rectangle.
This means that BCDE is also a rectangle.
Now the diagonals of a rectangle partition it into four triangles of equal area. (Diagonal
AE of the rectangle splits the rectangle into two congruent triangles, which have equal
area. The diagonals bisect each other, so the four smaller triangles all have equal area.)
Since 1

4
of rectangle ABEF is shaded and 1

4
of rectangle BCDE is shaded, then 1

4
of the

total area is shaded. (If the area of ABEF is x and the area of BCDE is y, then the total
shaded area is 1

4
x+ 1

4
y, which is 1

4
of the total area x+ y.)

Since AC = 200 and CD = 50, then the area of rectangle ACDF is 200(50) = 10 000, so
the total shaded area is 1

4
(10 000) = 2500.

(b) Suppose that the arithmetic sequence a1, a2, a3, . . . has first term a and common differ-
ence d.
Then, for each positive integer n, an = a+ (n− 1)d.
Since a1 = a and a2 = a+ d and a1 6= a2, then d 6= 0.

Since a1, a2, a6 form a geometric sequence in that order, then
a2
a1

=
a6
a2

or (a2)
2 = a1a6.

Substituting, we obtain

(a+ d)2 = a(a+ 5d)

a2 + 2ad+ d2 = a2 + 5ad

d2 = 3ad

d = 3a (since d 6= 0)

Therefore, an = a+ (n− 1)d = a+ (n− 1)(3a) = (3n− 2)a for each n ≥ 1.
Thus, a4 = (3(4)− 2)a = 10a, and ak = (3k − 2)a. (Note that a1 = (3(1)− 2)a = a.)
For a1, a4, ak to also form a geometric sequence then, as above, (a4)

2 = a1ak, and so

(10a)2 = (a)((3k − 2)a)

100a2 = (3k − 2)a2

Since d 6= 0 and d = 3a, then a 6= 0.
Since 100a2 = (3k − 2)a2 and a 6= 0, then 100 = 3k − 2 and so 3k = 102 or k = 34.
Checking, we note that a1 = a, a4 = 10a and a34 = 100a which form a geometric sequence
with common ratio 10.
Therefore, the only possible value of k is k = 34.
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8. (a) First, we note that since k is a positive integer, then k ≥ 1.
Next, we note that the given parabola passes through the point (0,−5) as does the given

circle. (This is because if x = 0, then y =
02

k
− 5 = −5 and if (x, y) = (0,−5), then

x2 + y2 = 02 + (−5)2 = 25, so (0,−5) satisfies each of the equations.)
Therefore, for every positive integer k, the two graphs intersect in at least one point.
If y = −5, then x2 + (−5)2 = 25 and so x2 = 0 or x = 0. In other words, there is one
point on both parabola and circle with y = −5, namely (0,−5).
Now, the given circle with equation x2 + y2 = 25 = 52 has centre (0, 0) and radius 5.
This means that the y-coordinates of points on this circle satisfy −5 ≤ y ≤ 5.

To find the other points of intersection, we re-write y =
x2

k
− 5 as ky = x2 − 5k or

x2 = ky + 5k and substitute into x2 + y2 = 25 to obtain

(ky + 5k) + y2 = 25

y2 + ky + (5k − 25) = 0

(y + 5)(y + (k − 5)) = 0

and so y = −5 or y = 5− k.
(We note that since the two graphs intersect at y = −5, then (y + 5) was going to be a
factor of the quadratic equation y2 + ky+ (5k− 25) = 0. If we had not seen this, we could
have used the quadratic formula.)
Therefore, for y = 5− k to give points on the circle, we need −5 ≤ 5− k and 5− k ≤ 5.
This gives k ≤ 10 and k ≥ 0.
Since k is a positive integer, the possible values of k to this point are k = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10.
If k = 1, then y = 5− 1 = 4. In this case, x2 + 42 = 25 or x2 = 9 and so x = ±3.
This gives the two points (3, 4) and (−3, 4) which lie on the parabola and circle.
Consider the three points A(3, 4), B(−3, 4) and C(0,−5).
Now AB is horizontal with AB = 3− (−3) = 6. (This is the difference in x-coordinates.)
The vertical distance from AB to C is 4 − (−5) = 9. (This is the difference in y-
coordinates.)
Therefore, the area of 4ABC is 1

2
(6)(9) = 27, which is a positive integer.

We now repeat these calculations for each of the other values of k by making a table:

k y x = ±
√

25− y2 Base Height Area of triangle
1 4 ±3 3− (−3) = 6 4− (−5) = 9 27
2 3 ±4 4− (−4) = 8 3− (−5) = 8 32

3 2 ±
√

21 2
√

21 7 7
√

21

4 1 ±
√

24 2
√

24 6 6
√

24
5 0 ±5 10 5 25

6 −1 ±
√

24 2
√

24 4 4
√

24

7 −2 ±
√

21 2
√

21 3 3
√

21
8 −3 ±4 8 2 8
9 −4 ±3 6 1 3
10 −5 0

When k = 10, we have y = 5 − k = −5 and x = 0 only, so there is only one point of
intersection.
Finally, the values of k for which there are three points of intersection and for which the
area of the resulting triangle is a positive integer are k = 1, 2, 5, 8, 9.
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(b) Suppose that M is the midpoint of Y Z.
Suppose that the centre of the smaller circle is O and the centre of the larger circle is P .
Suppose that the smaller circle touches XY at C and XZ at D, and that the larger circle
touches XY at E and XZ at F .
Join OC, OD and PE.
Since OC and PE are radii that join the centres of circles to points
of tangency, then OC and PE are perpendicular to XY .
Join XM . Since 4XY Z is isosceles, then XM (which is a median
by construction) is an altitude (that is, XM is perpendicular to
Y Z) and an angle bisector (that is, ∠MXY = ∠MXZ).
Now XM passes through O and P . (Since XC and XD are tan-
gents from X to the same circle, then XC = XD. This means that
4XCO is congruent to 4XDO by side-side-side. This means that
∠OXC = ∠OXD and so O lies on the angle bisector of ∠CXD,
and so O lies on XM . Using a similar argument, P lies on XM .)
Draw a perpendicular from O to T on PE. Note that OT is parallel
to XY (since each is perpendicular to PE) and that OCET is a
rectangle (since it has three right angles).

X

Y Z

O

P

M

C D

E F
T

Consider 4XMY and 4OTP .
Each triangle is right-angled (at M and at T ).
Also, ∠Y XM = ∠POT . (This is because OT is parallel to XY , since both are perpen-
dicular to PE.)
Therefore, 4XMY is similar to 4OTP .

Thus,
XY

YM
=
OP

PT
.

Now XY = a and YM = 1
2
b.

Also, OP is the line segment joining the centres of two tangent circles, so OP = r +R.
Lastly, PT = PE−ET = R−r, since PE = R, ET = OC = r, and OCET is a rectangle.
Therefore,

a

b/2
=

R + r

R− r
2a

b
=

R + r

R− r
2a(R− r) = b(R + r)

2aR− bR = 2ar + br

R(2a− b) = r(2a+ b)

R

r
=

2a+ b

2a− b
(since 2a > b so 2a− b 6= 0, and r > 0)

Therefore,
R

r
=

2a+ b

2a− b
.
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9. Using logarithm rules log(uv) = log u + log v and log(st) = t log s for all u, v, s > 0, the first
equation becomes

(log x)(log y)− 3 log 5− 3 log y − log 8− log x = a

(log x)(log y)− log x− 3 log y − log 8− log 53 = a

(log x)(log y)− log x− 3 log y − log(8 · 125) = a

(log x)(log y)− log x− 3 log y − log(1000) = a

(log x)(log y)− log x− 3 log y − 3 = a

Similarly, the second equation becomes

(log y)(log z)− 4 log 5− 4 log y − log 16− log z = b

(log y)(log z)− 4 log y − log z − 4 log 5− log 16 = b

(log y)(log z)− 4 log y − log z − log(54 · 16) = b

(log y)(log z)− 4 log y − log z − log(10 000) = b

(log y)(log z)− 4 log y − log z − 4 = b

And the third equation becomes

(log z)(log x)− 4 log 8− 4 log x− 3 log 625− 3 log z = c

(log z)(log x)− 4 log x− 3 log z − 4 log 8− 3 log 625 = c

(log z)(log x)− 4 log x− 3 log z − log(84 · 6253) = c

(log z)(log x)− 4 log x− 3 log z − log(212 · 512) = c

(log z)(log x)− 4 log x− 3 log z − 12 = c

Since each of the steps that we have made are reversible, the original system of equations is
equivalent to the new system of equations

(log x)(log y)− log x− 3 log y − 3 = a

(log y)(log z)− 4 log y − log z − 4 = b

(log z)(log x)− 4 log x− 3 log z − 12 = c

Next, we make the substitution X = log x, Y = log y and Z = log z. (This is equivalent to
saying x = 10X , y = 10Y and z = 10Z .)
This transforms the system of equations to the equivalent system

XY −X − 3Y − 3 = a

Y Z − 4Y − Z − 4 = b

XZ − 4X − 3Z − 12 = c

We re-write the first of these three equations as X(Y − 1) − 3Y − 3 = a and then as
X(Y − 1)− 3(Y − 1)− 6 = a and then as (X − 3)(Y − 1) = a+ 6.
In a similar way, we re-write the second and third of these equations to obtain the equivalent
system

(X − 3)(Y − 1) = a+ 6

(Y − 1)(Z − 4) = b+ 8

(X − 3)(Z − 4) = c+ 24
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Next, we make the substitution p = X − 3, q = Y − 1 and r = Z − 4. (This is equivalent to
saying X = p+ 3, Y = q + 1 and Z = r + 4, or x = 10p+3, y = 10q+1 and z = 10r+4.)
This transforms the original system of equations into the equivalent system

pq = a+ 6

qr = b+ 8

pr = c+ 24

We again note that this system of equations is equivalent to the initial system of equations,
and each solution of this system corresponds with a solution of the initial system.

(a) Suppose that a = −4, b = 4 and c = −18.
Then the last version of the system is

pq = 2

qr = 12

pr = 6

Multiplying the three equations together gives p2q2r2 = 2 · 12 · 6 = 144.
Since (pqr)2 = 144, then pqr = ±12.

Therefore, r =
pqr

pq
=
±12

2
= ±6 and p =

pqr

qr
=
±12

12
= ±1 and q =

pqr

pr
=
±12

6
= ±2.

Therefore, the solutions to the last version of the system are (p, q, r) = (1, 2, 6) and
(p, q, r) = (−1,−2,−6).
Converting back to the original variables, we see that the solutions to the original system
when (a, b, c) = (−4, 4,−18) are (x, y, z) = (104, 103, 1010) and (x, y, z) = (102, 10−1, 10−2).

(b) We consider the various possibilities for the product, (a + 6)(b + 8)(c + 24), of the right
sides of the equations in the final form of the system above: whether it is positive, negative
or equal to 0.

Case 1: (a+ 6)(b+ 8)(c+ 24) < 0

As in (a), we multiply the three equations together to obtain (pqr)2 = (a+6)(b+8)(c+24).
Since the left side is at least 0 and the right side is negative, then there are no solutions
to the system of equations in this case.

Case 2: (a+ 6)(b+ 8)(c+ 24) > 0

As in (a), we multiply the three equations together to obtain (pqr)2 = (a+6)(b+8)(c+24).
Since (pqr)2 = (a + 6)(b + 8)(c + 24) and (a + 6)(b + 8)(c + 24) > 0, then
pqr = ±

√
(a+ 6)(b+ 8)(c+ 24).

Since (a+ 6)(b+ 8)(c+ 24) > 0, then
√

(a+ 6)(b+ 8)(c+ 24) is well-defined.
Also, since (a+ 6)(b+ 8)(c+ 24) > 0, then each of a+ 6, b+ 8, c+ 24 is non-zero, so we
can divide by each of these quantities.

As we did in (a), we can solve to obtain

p =
pqr

qr
=
±
√

(a+ 6)(b+ 8)(c+ 24)

b+ 8

q =
pqr

pr
=
±
√

(a+ 6)(b+ 8)(c+ 24)

c+ 24

r =
pqr

pq
=
±
√

(a+ 6)(b+ 8)(c+ 24)

a+ 6
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Since (a + 6)(b + 8)(c + 24) > 0, these are all valid fractions and there are exactly two
triples (p, q, r) that are solutions and so two triples (x, y, z) that are solutions to the
original system.

Case 3: (a+ 6)(b+ 8)(c+ 24) = 0
Suppose that exactly one of a+ 6, b+ 8 and c+ 24 equals 0.
Without loss of generality, suppose that a+ 6 = 0, b+ 8 6= 0 and c+ 24 6= 0.
Since pq = a+ 6 = 0, then p = 0 or q = 0.
In this case, either qr = b+8 or pr = c+24 will equal 0, which contradicts our assumption
that neither b+ 8 nor c+ 24 is 0.
Therefore, it cannot be the case that exactly one of a+ 6, b+ 8 and c+ 24 equals 0.

Suppose next that exactly two of a+ 6, b+ 8 and c+ 24 equal 0.
Without loss of generality, suppose that a+ 6 = b+ 8 = 0 and c+ 24 6= 0.
Since pr = c+ 24 6= 0, then p 6= 0 and r 6= 0.
Since pq = a+ 6 = 0 and qr = b+ 8 = 0 and p 6= 0 and r 6= 0, then q = 0.
In this case, any triple (p, q, r) with q = 0 and pr = c+ 24 6= 0 is a solution to the system
of equations.
Thus, when a+ 6 = b+ 8 = 0 and c+ 24 6= 0 (that is, (a, b, c) = (−6,−8, c) with c 6= 24),

each triple (p, q, r) =

(
p, 0,

c+ 24

p

)
with p 6= 0 is a solution to the system of equations.

Each of these solutions corresponds to a solution to the original system of equations in
(x, y, z), so if (a, b, c) = (−6,−8, c) with c 6= 0, then there are infinite number of solutions
to the system of equations.
Similarly, if (a, b, c) = (−6, b,−24) with b 6= −8 (that is, if p = a+6 = 0 and r = c+24 = 0
but q = b + 8 6= 0) or (a, b, c) = (a,−8,−24) with a 6= −6, then there are infinitely many
solutions (x, y, z) to the original system of equations.
Finally, we must consider the case of a+ 6 = b+ 8 = c+ 24 = 0.
Here, we must solve the system of equations

pq = 0

qr = 0

pr = 0

Each triple (p, q, r) = (0, 0, r) is a solution of this system and there are infinitely many
such solutions. (This is not all of the solutions, but represents infinitely many solutions.)
Therefore, when (a, b, c) = (−6,−8,−24), there are also infinitely many solutions to the
original system of equations.

Therefore, the system of equations has an infinite number of solutions (x, y, z) precisely
when (a, b, c) = (−6,−8, c) for some real number c or (a, b, c) = (−6, b,−24) for some real
number b or (a, b, c) = (a,−8,−24) for some real number a or (a, b, c) = (−6,−8,−24).
(This last triple is in fact included in each of the previous three families of triples.)
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10. (a) The subsets of C4 are:
{} {1} {2} {3} {4}

{1, 2} {1, 3} {1, 4} {2, 3} {2, 4} {3, 4}

{1, 2, 3} {1, 2, 4} {1, 3, 4} {2, 3, 4} {1, 2, 3, 4}

(There are 16 such subsets including the empty set {} and the complete set C4 = {1, 2, 3, 4}.)
Consider the Furoni family A = {{1, 2}, {1, 3}, {1, 4}}.
Each of the following subsets of C4 is already an element of A: {1, 2}, {1, 3}, {1, 4}.
Each of the following subsets of C4 is a subset of one or more of the elements of A:
{}, {1}, {2}, {3}, {4}.
Each of the following subsets of C4 has the property that one or more of the elements of
A is a subset of it: {1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {1, 2, 3, 4}.
Since a Furoni family of C4 cannot contain two subsets of C4 one of which is a subset of
the other, none of the subsets in either of these two lists can be added to A to form a
larger Furoni family.
This leaves the following subsets of C4 to consider as possible elements to add to A:
{2, 3}, {2, 4}, {3, 4}, {2, 3, 4}.
If {2, 3, 4} is added to A to form A′ = {{1, 2}, {1, 3}, {1, 4}, {2, 3, 4}}, then A′ is still a
Furoni family of C4 and none of {2, 3}, {2, 4}, {3, 4} can be added, since each is a subset
of {2, 3, 4}. Therefore, A′ is a Furoni family of C4 to which no other subset can be added.
If any of {2, 3}, {2, 4}, {3, 4} is added to A, then {2, 3, 4} cannot be added (since each of
these three two elements sets is a subset of {2, 3, 4}) but each of the remaining two element
sets can be still added without violating the conditions for being a Furoni family.
Thus, A′′ = {{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}} is a Furoni family of C4 to which
no other subset can be added.
Therefore, the two Furoni families of C4 that contain all of the elements of A and to which
no further subsets of C4 can be added are

A′ = {{1, 2}, {1, 3}, {1, 4}, {2, 3, 4}} A′′ = {{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}}

(b) Solution 1
Suppose that n is a positive integer and F is a Furoni family of Cn that contains ak ele-
ments that contain exactly k integers each, for each integer k from 0 to n, inclusive.
Consider each element E of F .
Each E is a subset of Cn. Suppose that a particular choice for E contains exactly k ele-
ments.
We use E to generate k!(n − k)! permutations σ of the integers in Cn = {1, 2, 3, . . . , n}
by starting with a permutation α of the elements of E and appending a permutation β of
the elements in Cn not in E.
Since there are k elements in E, there are k! possible permutations α.
Since there are n− k elements in Cn that are not in E, there are (n− k)! possible permu-
tations β.
Each possible α can have each possible β appended to it, so there are k!(n− k)! possible
permutations σ = α|β. (The notation “α|β” means the permutation of Cn formed by writ-
ing out the permutation α (of the elements of E) followed by writing out the permutation
β (of the elements of Cn not in E).)
Each of these k!(n− k)! permutations generated by E is indeed different, since if two per-
mutations σ = α|β and σ′ = α′|β′ are equal, then since α and α′ are both permutations
of the elements of E, then they have the same length and so α|β = α′|β′ means α = α′.
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This then means that β = β′ and so the permutations started out the same.
We repeat this process for each of the elements E of F .
Since, for each k, there are ak subsets of size k in F , then the total number of permutations
that this generates is

a00!(n− 0)! + a11!(n− 1)! + · · ·+ an−1(n− 1)!(n− (n− 1))1! + ann!(n− n)!

If each of these permutations is different, then this total is at most n!, since this is the
total number of permutations of the elements of Cn.
Is it possible that two elements E and G of F generate identical permutations of the
elements of Cn in this way?
Suppose that two permutations σ = α|β (generated by E) and σ′ = α′|β′ (generated by
G) are identical.
Suppose that E contains k elements and G contains k′ elements.
Either k ≤ k′ or k′ ≤ k (or both, if they are equal).
Without loss of generality, suppose that k ≤ k′.
Then the length of α (which is k) is less than or equal to the length of α′ (which is k′).
But α|β = α′|β′, so this means that the first k entries in α′ are equal to the first k entries
in α.
But the entries in α are the elements of E and the entries of α′ are the elements of G, so
this means that E is a subset of G, which cannot be the case. This is a contradiction.
Therefore, each of the permutations generated by each of the subsets of Cn contained in
F is unique.
Therefore,

a00!(n− 0)! + a11!(n− 1)! + · · ·+ an−1(n− 1)!(n− (n− 1))1! + ann!(n− n)! ≤ n!

Dividing both sides by n!, we obtain successively

a00!(n− 0)! + a11!(n− 1)! + · · ·+ an−1(n− 1)!(n− (n− 1))1! + ann!(n− n)! ≤ n!

a0
0!(n− 0)!

n!
+ a1

1!(n− 1)!

n!
+ · · ·+ an−1

(n− 1)!(n− (n− 1))1!

n!
+ an

n!(n− n)!

n!
≤ 1

a0
1(
n

0

) + a1
1(
n

1

) + · · ·+ an−1
1(
n

n− 1

) + an
1(
n

n

) ≤ 1

a0(
n

0

) +
a1(
n

1

) + · · ·+ an−1(
n

n− 1

) +
an(
n

n

) ≤ 1

as required.
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Solution 2
Suppose that n is a positive integer and that F is a randomly chosen Furoni family of Cn.
Consider L = {{}, {1}, {1, 2}, {1, 2, 3}, {1, 2, 3, . . . , n}}.
The probability that the intersection of L and F is non-empty is at most 1.
Note that since each element of L is a subset of all of those to its right in the listing of L,
then at most one of the elements of L can be in F .
If k is an integer with k ≥ 0, the probability that {1, 2, 3, . . . , k} is an element of F is
ak(
n

k

) , where ak is the number of elements in F that contain exactly k integers:

There are

(
n

k

)
subsets of Cn that contain exactly k integer.

The probability that any particular one of these subsets is {1, 2, 3, . . . , k} equals
1(
n

k

) .

Since ak of these subsets are in F , then the probability that one of these ak subsets

is {1, 2, 3, . . . , k} equals
ak(
n

k

) .

(Note that we use the convention that if k = 0, then {1, 2, 3, . . . , k} = {}.)
The probability that any of the elements of L is in F is the sum of the probability of each
element being in F , since at most one of the elements in L is in F .
Therefore,

a0(
n

0

) +
a1(
n

1

) + · · ·+ an−1(
n

n− 1

) +
an(
n

n

) ≤ 1

as required.

(c) Set M =

(
n

k

)
where k = 1

2
n if n is even and k = 1

2
(n− 1) if n is odd.

Then

(
n

r

)
≤ M for every integer r with 0 ≤ r ≤ n. (Recall that the largest entries in

Pascal’s Triangle are the one or two entries in the middle of each row. We prove this
algebraically at the end.)
From (b),

a0(
n

0

) +
a1(
n

1

) + · · ·+ an−1(
n

n− 1

) +
an(
n

n

) ≤ 1

Multiplying through by M , we obtain

a0
M(
n

0

) + a1
M(
n

1

) + · · ·+ an−1
M(
n

n− 1

) + an
M(
n

n

) ≤M

Since M is at least as large as each binomial coefficient, then each of the fractions on the
left side is larger than 1 and so

a0 + a1 + · · ·+ an−1 + an ≤ a0
M(
n

0

) + a1
M(
n

1

) + · · ·+ an−1
M(
n

n− 1

) + an
M(
n

n

) ≤M
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Therefore, the total number of elements in the Furoni family F , which is a0 +a1 + · · ·+an,
is at most M .
Is it possible to find a Furoni family of size M?

Yes – the M =

(
n

k

)
subsets of Cn of size k form a Furoni family, since no two sets of the

same size can be subsets of each other without being equal. Therefore, the largest Furoni

family of Cn has size

(
n

k

)
when n = 2k or n = 2k + 1 for some non-negative integer k.

We now prove the algebraic result above.

First, we note that

(
n

r

)
=

n!

r!(n− r)!
=

n!

(n− r)!(n− (n− r))!
=

(
n

n− r

)
.

Therefore, if

(
n

r

)
≤
(
n

k

)
for all r ≤ k, then

(
n

r

)
≤
(
n

k

)
for all k, since if s > k, then

s = n− r for some r ≤ k and so

(
n

s

)
=

(
n

r

)
≤
(
n

k

)
.

Suppose first that n = 2k for some positive integer k.

We prove that

(
n

r

)
≤
(
n

k

)
for each integer r with 0 ≤ r ≤ k:

Since n = 2k, then (
n

r

)
(
n

k

) =

(2k)!

r!(2k − r)!
(2k)!

k!k!

=
k!

r!

k!

(2k − r)!

If r = k − d for some non-negative integer d, then

k!

r!

k!

(2k − r)!
=

k!k!

(k − d)!(k + d)!
=

k(k − 1) · · · (k − d+ 1)

(k + 1)(k + 2) · · · (k + d)
=

k

k + 1

k − 1

k + 2
· · · k − d+ 1

k + d

Since the right side is the product of d non-negative fractions, each of which is
smaller than 1, then their product is smaller than 1.

Thus,

(
n

r

)
≤
(
n

k

)
if 0 ≤ r ≤ k.

Suppose next that n = 2k + 1 for some non-negative integer k.

We prove that

(
n

r

)
≤
(
n

k

)
for each integer r with 0 ≤ r ≤ k:

Since n = 2k + 1, then(
n

r

)
(
n

k

) =

(2k + 1)!

r!(2k + 1− r)!
(2k + 1)!

k!(k + 1)!

=
k!

r!

(k + 1)!

(2k + 1− r)!

If r = k − d for some non-negative integer d, then

k!

r!

(k + 1)!

(2k + 1− r)!
=

k!(k + 1)!

(k − d)!(k + 1 + d)!

=
k(k − 1) · · · (k − d+ 1)

(k + 2)(k + 3) · · · (k + 1 + d)

=
k

k + 2

k − 1

k + 3
· · · k − d+ 1

k + 1 + d
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Since the right side is the product of d non-negative fractions, each of which is
smaller than 1, then their product is smaller than 1.

Thus,

(
n

r

)
≤
(
n

k

)
if 0 ≤ r ≤ k.

This completes our proof.
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1. (a) Evaluating,

√
16 +

√
9√

16 + 9
=

4 + 3√
25

=
7

5
.

(b) Since the sum of the angles in a triangle is 180◦, then (x − 10)◦ + (x + 10)◦ + x◦ = 180◦

or (x− 10) + (x+ 10) + x = 180.
Thus, 3x = 180 and so x = 60.

(c) Suppose Bart earns $x per hour. In 4 hours, he earns 4× $x = $4x.
Then Lisa earns $2x per hour. In 6 hours, she earns 6× $2x = $12x.
Since they earn $200 in total, then 4x+ 12x = 200 or 16x = 200.
Therefore, x = 12.5.
Finally, since 2x = 25, then Lisa earns $25 per hour.

2. (a) The perimeter of the region includes the diameter and the semi-circle.
Since the radius of the region is 10, then the length of its diameter is 20.
Since the radius of the region is 10, then the circumference of an entire circle with this
radius is 2π(10) = 20π, so the arc length of the semi-circle is one-half of 20π, or 10π.
Therefore, the perimeter of the region is 10π + 20.

(b) The x-intercepts of the parabola with equation y = 10(x+ 2)(x− 5) are −2 and 5.
Since the line segment, PQ, joining these points is horizontal, then its length is the
difference in the intercepts, or 5− (−2) = 7.

(c) The slope of the line joining the points C(0, 60) and D(30, 0) is
60− 0

0− 30
=

60

−30
= −2.

Since this line passes through C(0, 60), then the y-intercept of the line is 60, and so an
equation of the line is y = −2x+ 60.
We thus want to find the point of intersection, E, between the lines with equations
y = −2x+ 60 and y = 2x.
Equating y-coordinates, we obtain −2x+ 60 = 2x or 4x = 60, and so x = 15.
Substituting x = 15 into the equation y = 2x, we obtain y = 2(15) = 30.
Therefore, the coordinates of E are (15, 30).

3. (a) We note that BD = BC + CD and that BC = 20 cm, so we
need to determine CD.
We draw a line from C to P on FD so that CP is perpendicular
to DF .
Since AC and DF are parallel, then CP is also perpendicular to
AC.
The distance between AC and DF is 4 cm, so CP = 4 cm.
Since 4ABC is isosceles and right-angled, then ∠ACB = 45◦.

A

DB C

EF

20
4

P

Thus, ∠PCD = 180◦ − ∠ACB − ∠PCA = 180◦ − 45◦ − 90◦ = 45◦.
Since 4CPD is right-angled at P and ∠PCD = 45◦, then 4CPD is also an isosceles
right-angled triangle.
Therefore, CD =

√
2CP = 4

√
2 cm.

Finally, BD = BC + CD = (20 + 4
√

2) cm.
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(b) Manipulating the given equation and noting that x 6= 0 and x 6= −1
2

since neither denom-
inator can equal 0, we obtain

x2 + x+ 4

2x+ 1
=

4

x

x(x2 + x+ 4) = 4(2x+ 1)

x3 + x2 + 4x = 8x+ 4

x3 + x2 − 4x− 4 = 0

x2(x+ 1)− 4(x+ 1) = 0

(x+ 1)(x2 − 4) = 0

(x+ 1)(x− 2)(x+ 2) = 0

Therefore, x = −1 or x = 2 or x = −2. We can check by substitution that each satisfies
the original equation.

4. (a) Solution 1
Since 900 = 302 and 30 = 2× 3× 5, then 900 = 223252.
The positive divisors of 900 are those integers of the form d = 2a3b5c, where each of a, b, c
is 0, 1 or 2.
For d to be a perfect square, the exponent on each prime factor in the prime factorization
of d must be even.
Thus, for d to be a perfect square, each of a, b, c must be 0 or 2.
There are two possibilities for each of a, b, c so 2× 2× 2 = 8 possibilities for d.
These are 203050 = 1, 223050 = 4, 203250 = 9, 203052 = 25, 223250 = 36, 223052 = 100,
203252 = 225, and 223252 = 900.
Thus, 8 of the positive divisors of 900 are perfect squares.

Solution 2
The positive divisors of 900 are

1, 2, 3, 4, 5, 6, 9, 10, 12, 15, 18, 20, 25, 30, 36, 45, 50, 60, 75, 90, 100, 150, 180, 225, 300, 450, 900

Of these, 1, 4, 9, 25, 36, 100, 225, and 900 are perfect squares (12, 22, 32, 52, 62, 102, 152, 302,
respectively).
Thus, 8 of the positive divisors of 900 are perfect squares.

(b) In isosceles triangle ABC, ∠ABC = ∠ACB, so the sides opposite these angles (AC and
AB, respectively) are equal in length.
Since the vertices of the triangle are A(k, 3), B(3, 1) and C(6, k), then we obtain

AC = AB√
(k − 6)2 + (3− k)2 =

√
(k − 3)2 + (3− 1)2

(k − 6)2 + (3− k)2 = (k − 3)2 + (3− 1)2

(k − 6)2 + (k − 3)2 = (k − 3)2 + 22

(k − 6)2 = 4

Thus, k − 6 = 2 or k − 6 = −2, and so k = 8 or k = 4.
We can check by substitution that each satisfies the original equation.
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5. (a) Bottle A contains 40 g of which 10% is acid.
Thus, it contains 0.1× 40 = 4 g of acid and 40− 4 = 36 g of water.
Bottle B contains 50 g of which 20% is acid.
Thus, it contains 0.2× 50 = 10 g of acid and 50− 10 = 40 g of water.
Bottle C contains 50 g of which 30% is acid.
Thus, it contains 0.3× 50 = 15 g of acid and 50− 15 = 35 g of water.
In total, the three bottles contain 40 + 50 + 50 = 140 g, of which 4 + 10 + 15 = 29 g is
acid and 140− 29 = 111 g is water.
The new mixture has mass 60 g of which 25% is acid.
Thus, it contains 0.25× 60 = 15 g of acid and 60− 15 = 45 g of water.
Since the total mass in the three bottles is initially 140 g and the new mixture has mass
60 g, then the remaining contents have mass 140− 60 = 80 g.
Since the total mass of acid in the three bottles is initially 29 g and the acid in the new
mixture has mass 15 g, then the acid in the remaining contents has mass 29− 15 = 14 g.

This remaining mixture is thus
14 g

80 g
× 100% = 17.5% acid.

(b) Since 3x+ 4y = 10, then 4y = 10− 3x.
Therefore, when 3x+ 4y = 10,

x2 + 16y2 = x2 + (4y)2

= x2 + (10− 3x)2

= x2 + (9x2 − 60x+ 100)

= 10x2 − 60x+ 100

= 10(x2 − 6x+ 10)

= 10(x2 − 6x+ 9 + 1)

= 10((x− 3)2 + 1)

= 10(x− 3)2 + 10

Since (x− 3)2 ≥ 0, then the minimum possible value of 10(x− 3)2 + 10 is 10(0) + 10 = 10.
This occurs when (x− 3)2 = 0 or x = 3.
Therefore, the minimum possible value of x2 + 16y2 when 3x+ 4y = 10 is 10.

6. (a) Solution 1
Suppose that the bag contains g gold balls.
We assume that Feridun reaches into the bag and removes the two balls one after the
other.
There are 40 possible balls that he could remove first and then 39 balls that he could
remove second. In total, there are 40(39) pairs of balls that he could choose in this way.
If he removes 2 gold balls, then there are g possible balls that he could remove first and
then g − 1 balls that he could remove second. In total, there are g(g − 1) pairs of gold
balls that he could remove.

We are told that the probability of removing 2 gold balls is
5

12
.

Since there are 40(39) total pairs of balls that can be chosen and g(g − 1) pairs of

gold balls that can be chosen in this way, then
g(g − 1)

40(39)
=

5

12
which is equivalent to

g(g − 1) =
5

12
(40)(39) = 650.
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Therefore, g2 − g − 650 = 0 or (g − 26)(g + 25) = 0, and so g = 26 or g = −25.
Since g > 0, then g = 26, so there are 26 gold balls in the bag.

Solution 2
Suppose that the bag contains g gold balls.
We assume that Feridun reaches into the bag and removes the two balls together.

Since there are 40 balls in the bag, there are

(
40

2

)
pairs of balls that he could choose in

this way.

Since there are g gold balls in the bag, then there are

(
g

2

)
pairs of gold balls that he could

choose in this way.

We are told that the probability of removing 2 gold balls is
5

12
.

Since there are

(
40

2

)
pairs in total that can be chosen and

(
g

2

)
pairs of gold balls that

can be chosen in this way, then

(
g

2

)
(

40

2

) =
5

12
which is equivalent to

(
g

2

)
=

5

12

(
40

2

)
.

Since

(
n

2

)
=
n(n− 1)

2
, then this equation is equivalent to

g(g − 1)

2
=

5

12

40(39)

2
= 325.

Therefore, g(g − 1) = 650 or g2 − g − 650 = 0 or (g − 26)(g + 25) = 0, and so g = 26 or
g = −25.
Since g > 0, then g = 26, so there are 26 gold balls in the bag.

(b) Suppose that the first term in the geometric sequence is t1 = a and the common ratio in
the sequence is r.
Then the sequence, which has n terms, is a, ar, ar2, ar3, . . . , arn−1.
In general, the kth term is tk = ark−1; in particular, the nth term is tn = arn−1.
Since t1tn = 3, then a · arn−1 = 3 or a2rn−1 = 3.
Since t1t2 · · · tn−1tn = 59 049, then

(a)(ar) · · · (arn−2)(arn−1) = 59 049

anrr2 · · · rn−2rn−1 = 59 049 (since there are n factors of a on the left side)

anr1+2+···+(n−2)+(n−1) = 59 049

anr
1
2
(n−1)(n) = 59 049

since 1 + 2 + · · ·+ (n− 2) + (n− 1) = 1
2
(n− 1)(n).

Since a2rn−1 = 3, then (a2rn−1)n = 3n or a2nr(n−1)(n) = 3n.

Since anr
1
2
(n−1)(n) = 59 049, then

(
anr

1
2
(n−1)(n)

)2
= 59 0492 or a2nr(n−1)(n) = 59 0492.

Since the left sides of these equations are the same, then 3n = 59 0492.
Now

59 049 = 3(19 683) = 32(6561) = 33(2187) = 34(729) = 35(243) = 36(81) = 3634 = 310

Since 59 049 = 310, then 59 0492 = 320 and so 3n = 320, which gives n = 20.
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7. (a) Let a = x− 2013 and let b = y − 2014.

The given equation becomes
ab

a2 + b2
= −1

2
, which is equivalent to 2ab = −a2 − b2 and

a2 + 2ab+ b2 = 0.
This is equivalent to (a+ b)2 = 0 which is equivalent to a+ b = 0.
Since a = x− 2013 and b = y − 2014, then x− 2013 + y − 2014 = 0 or x+ y = 4027.

(b) Let a = log10 x.
Then (log10 x)log10(log10 x) = 10 000 becomes alog10 a = 104.
Taking the base 10 logarithm of both sides and using the fact that log10(a

b) = b log10 a,
we obtain (log10 a)(log10 a) = 4 or (log10 a)2 = 4.
Therefore, log10 a = ±2 and so log10(log10 x) = ±2.

If log10(log10 x) = 2, then log10 x = 102 = 100 and so x = 10100.
If log10(log10 x) = −2, then log10 x = 10−2 = 1

100
and so x = 101/100.

Therefore, x = 10100 or x = 101/100.

We check these answers in the original equation.
If x = 10100, then log10 x = 100.
Thus, (log10 x)log10(log10 x) = 100log10 100 = 1002 = 10 000.
If x = 101/100, then log10 x = 1/100 = 10−2.
Thus, (log10 x)log10(log10 x) = (10−2)log10(10

−2) = (10−2)−2 = 104 = 10 000.

8. (a) We use the cosine law in 4ABD to determine the length of BD:

BD2 = AB2 + AD2 − 2(AB)(AD) cos(∠BAD)

We are given that AB = 75 and AD = 20, so we need to determine cos(∠BAD).
Now

cos(∠BAD) = cos(∠BAC + ∠EAD)

= cos(∠BAC) cos(∠EAD)− sin(∠BAC) sin(∠EAD)

=
AC

AB

AD

AE
− BC

AB

ED

AE

since 4ABC and 4ADE are right-angled.
Since AB = 75 and BC = 21, then by the Pythagorean Theorem,

AC =
√
AB2 −BC2 =

√
752 − 212 =

√
5625− 441 =

√
5184 = 72

since AC > 0.
Since AC = 72 and CE = 47, then AE = AC − CE = 25.
Since AE = 25 and AD = 20, then by the Pythagorean Theorem,

ED =
√
AE2 − AD2 =

√
252 − 202 =

√
625− 400 =

√
225 = 15

since ED > 0.
Therefore,

cos(∠BAD) =
AC

AB

AD

AE
− BC

AB

ED

AE
=

72

75

20

25
− 21

75

15

25
=

1440− 315

75(25)
=

1125

75(25)
=

45

75
=

3

5
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Finally,

BD2 = AB2 + AD2 − 2(AB)(AD) cos(∠BAD)

= 752 + 202 − 2(75)(20)(3
5
)

= 5625 + 400− 1800

= 4225

Since BD > 0, then BD =
√

4225 = 65, as required.

(b) Solution 1
Consider 4BCE and 4ACD.

A

B C D

E

M

N

Since 4ABC is equilateral, then BC = AC.
Since 4ECD is equilateral, then CE = CD.
Since BCD is a straight line and ∠ECD = 60◦, then ∠BCE = 180◦ − ∠ECD = 120◦.
Since BCD is a straight line and ∠BCA = 60◦, then ∠ACD = 180◦ − ∠BCA = 120◦.
Therefore, 4BCE is congruent to 4ACD (“side-angle-side”).
Since 4BCE and 4ACD are congruent and CM and CN are line segments drawn from
the corresponding vertex (C in both triangles) to the midpoint of the opposite side, then
CM = CN .
Since ∠ECD = 60◦, then 4ACD can be obtained by rotating 4BCE through an angle
of 60◦ clockwise about C.
This means that after this 60◦ rotation, CM coincides with CN .
In other words, ∠MCN = 60◦.
But since CM = CN and ∠MCN = 60◦, then

∠CMN = ∠CNM = 1
2
(180◦ − ∠MCN) = 60◦

Therefore, 4MNC is equilateral, as required.
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Solution 2
We prove that 4MNC is equilateral by introducing a coordinate system.
Suppose that C is at the origin (0, 0) with BCD along the x-axis, with B having coordi-
nates (−4b, 0) and D having coordinates (4d, 0) for some real numbers b, d > 0.
Drop a perpendicular from E to P on CD.

A

B(– 4b, 0) C D(4d, 0)

E

M
N

y

xP

Since 4ECD is equilateral, then P is the midpoint of CD.
Since C has coordinates (0, 0) and D has coordinates (4d, 0), then the coordinates of P
are (2d, 0).
Since 4ECD is equilateral, then ∠ECD = 60◦ and so 4EPC is a 30◦-60◦-90◦ triangle
and so EP =

√
3CP = 2

√
3d.

Therefore, the coordinates of E are (2d, 2
√

3d).
In a similar way, we can show that the coordinates of A are (−2b, 2

√
3b).

Now M is the midpoint of B(−4b, 0) and E(2d, 2
√

3d), so the coordinates of M are(
1
2
(−4b+ 2d), 1

2
(0 + 2

√
3d)
)

or (−2b+ d,
√

3d).

Also, N is the midpoint of A(−2b, 2
√

3b) and D(4d, 0), so the coordinates of N are(
1
2
(−2b+ 4d), 1

2
(2
√

3b+ 0)
)

or (−b+ 2d,
√

3b).
To show that 4MNC is equilateral, we show that CM = CN = MN or equivalently that
CM2 = CN2 = MN2:

CM2 = (−2b+ d− 0)2 + (
√

3d− 0)2

= (−2b+ d)2 + (
√

3d)2

= 4b2 − 4bd+ d2 + 3d2

= 4b2 − 4bd+ 4d2

CN2 = (−b+ 2d− 0)2 + (
√

3b− 0)2

= (−b+ 2d)2 + (
√

3b)2

= b2 − 4bd+ 4d2 + 3b2

= 4b2 − 4bd+ 4d2

MN2 = ((−2b+ d)− (−b+ 2d))2 + (
√

3d−
√

3b)2

= (−b− d)2 + 3(d− b)2

= b2 + 2bd+ d2 + 3d2 − 6bd+ 3b2

= 4b2 − 4bd+ 4d2

Therefore, CM2 = CN2 = MN2 and so 4MNC is equilateral, as required.
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9. (a) Let S = sin6 1◦ + sin6 2◦ + sin6 3◦ + · · ·+ sin6 87◦ + sin6 88◦ + sin6 89◦.
Since sin θ = cos(90◦ − θ), then sin6 θ = cos6(90◦ − θ), and so

S = sin6 1◦ + sin6 2◦ + · · ·+ sin6 44◦ + sin6 45◦

+ cos6(90◦ − 46◦) + cos6(90◦ − 47◦) + · · ·+ cos6(90◦ − 89◦)

= sin6 1◦ + sin6 2◦ + · · ·+ sin6 44◦ + sin6 45◦ + cos6 44◦ + cos6 43◦ + · · ·+ cos6 1◦

= (sin6 1◦ + cos6 1◦) + (sin6 2◦ + cos6 2◦) + · · ·+ (sin6 44◦ + cos6 44◦) + sin6 45◦

Since sin 45◦ = 1√
2
, then sin6 45◦ = 1

23
= 1

8
.

Also, since
x3 + y3 = (x+ y)(x2 − xy + y2) = (x+ y)((x+ y)2 − 3xy)

then substituting x = sin2 θ and y = cos2 θ, we obtain

x3 + y3 = (x+ y)((x+ y)2 − 3xy)

sin6 θ + cos6 θ = (sin2 θ + cos2 θ)((sin2 θ + cos2 θ)2 − 3 sin2 θ cos2 θ)

sin6 θ + cos6 θ = 1(1− 3 sin2 θ cos2 θ)

since sin2 θ + cos2 θ = 1.
Therefore,

S = (sin6 1◦ + cos6 1◦) + (sin6 2◦ + cos6 2◦) + · · ·+ (sin6 44◦ + cos6 44◦) + sin6 45◦

= (1− 3 sin2 1◦ cos2 1◦) + (1− 3 sin2 2◦ cos2 2◦) + · · ·+ (1− 3 sin2 44◦ cos2 44◦) + 1
8

= 44− (3 sin2 1◦ cos2 1◦ + 3 sin2 2◦ cos2 2◦ + · · ·+ 3 sin2 44◦ cos2 44◦) + 1
8

= 353
8
− 3

4
(4 sin2 1◦ cos2 1◦ + 4 sin2 2◦ cos2 2◦ + · · ·+ 4 sin2 44◦ cos2 44◦)

Since sin 2θ = 2 sin θ cos θ, then 4 sin2 θ cos2 θ = sin2 2θ, which gives

S = 353
8
− 3

4
(4 sin2 1◦ cos2 1◦ + 4 sin2 2◦ cos2 2◦ + · · ·+ 4 sin2 44◦ cos2 44◦)

= 353
8
− 3

4
(sin2 2◦ + sin2 4◦ + · · ·+ sin2 88◦)

= 353
8
− 3

4
(sin2 2◦ + sin2 4◦ + · · ·+ sin2 44◦ + sin2 46◦ + · · ·+ sin2 86◦ + sin2 88◦)

= 353
8
− 3

4
(sin2 2◦ + sin2 4◦ + · · ·+ sin2 44◦ +

cos2(90◦ − 46◦) + · · ·+ cos2(90◦ − 86◦) + cos2(90◦ − 88◦))

= 353
8
− 3

4
(sin2 2◦ + sin2 4◦ + · · ·+ sin2 44◦ + cos2 44◦ + · · ·+ cos2 4◦ + cos2 2◦)

= 353
8
− 3

4
((sin2 2◦ + cos2 2◦) + (sin2 4◦ + cos2 4◦) + · · ·+ (sin2 44◦ + cos2 44◦))

= 353
8
− 3

4
(22) (since sin2 θ + cos2 θ = 1)

= 353
8
− 132

8

= 221
8

Therefore, since S =
m

n
, then m = 221 and n = 8 satisfy the required equation.
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(b) First, we prove that f(n) =
n(n+ 1)(n+ 2)(n+ 3)

24
in two different ways.

Method 1
If an n-digit integer has digits with a sum of 5, then there are several possibilities for the
combination of non-zero digits used:

5 4, 1 3, 2 3, 1, 1 2, 2, 1 2, 1, 1, 1 1, 1, 1, 1, 1

We count the number of possible integers in each case by determining the number of
arrangements of the non-zero digits; we call the number of ways of doing this a. (For
example, the digits 4 and 1 can be arranged as 4 1 or 1 4.) We then place the leftmost
digit in such an arrangement as the leftmost digit of the n-digit integer (which must be non-
zero) and choose the positions for the remaining non-zero digits among the remaining n−1
positions; we call the number of ways of doing this b. (For example, for the arrangement
1 4, the digit 1 is in the leftmost position and the digit 4 can be in any of the remaining
n− 1 positions.) We fill the rest of the positions with 0s. The number of possible integers
in each case will be ab, since this method will create all such integers and for each of the
a arrangements of the non-zero digits, there will be b ways of arranging the digits after
the first one. We make a chart to summarize the cases, expanding each total and writing
it as a fraction with denominator 24:

Case a b ab (expanded)

5 1 1 1 =
24

24

4, 1 2 (n− 1) 2(n− 1) =
48n− 48

24

3, 2 2 (n− 1) 2(n− 1) =
48n− 48

24

3, 1, 1 3

(
n− 1

2

)
3

(
n− 1

2

)
=

36n2 − 108n+ 72

24

2, 2, 1 3

(
n− 1

2

)
3

(
n− 1

2

)
=

36n2 − 108n+ 72

24

2, 1, 1, 1 4

(
n− 1

3

)
4

(
n− 1

3

)
=

16n3 − 96n2 + 176n− 96

24

1, 1, 1, 1, 1 1

(
n− 1

4

) (
n− 1

4

)
=
n4 − 10n3 + 35n2 − 50n+ 24

24

(Note that in the second and third cases we need n ≥ 2, in the fourth and fifth cases we
need n ≥ 3, in the sixth case we need n ≥ 4, and the seventh case we need n ≥ 5. In each
case, though, the given formula works for smaller positive values of n since it is equal to
0 in each case. Note also that we say b = 1 in the first case since there is exactly 1 way of
placing 0s in all of the remaining n− 1 positions.)
f(n) is then the sum of the expressions in the last column of this table, and so

f(n) =
n4 + 6n3 + 11n2 + 6n

24
=
n(n+ 1)(n+ 2)(n+ 3)

24

as required.

Method 2
First, we create a correspondence between each integer with n digits and whose digits have
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a sum of 5 and an arrangement of five 1s and (n− 1) Xs that begins with a 1.
We can then count these integers by counting the arrangements.
Starting with such an integer, we write down an arrangement of the above type using the
following rule:

The number of 1s to the left of the first X is the first digit of the number, the
number of 1s between the first X and second X is the second digit of the number,
and so on, with the number of 1s to the right of the (n− 1)st X representing the
nth digit of the number.

For example, the integer 1010020001 would correspond to 1XX1XXX11XXXX1.
In this way, each such integer gives an arrangement of the above type.
Similarly, each arrangement of this type can be associated back to a unique integer with
the required properties by counting the number of 1s before the first X and writing this
down as the leftmost digit, counting the number of 1s between the first and second Xs and
writing this down as the second digit, and so on. Since a total of five 1s are used, then
each arrangement corresponds with an integer with n digits whose digits have a sum of 5.
Therefore, there is a one-to-one correspondence between the integers and arrangements
with the desired properties.
Thus, f(n), which equals the number of such integers, also equals the number of such
arrangements.
To count the number of such arrangements, we note that there are four 1s and n − 1 Xs
to arrange in the final 4 + (n− 1) = n+ 3 positions, since the first position is occupied by
a 1.

There are

(
n+ 3

4

)
ways to choose the positions of the remaining four 1s, and so

(
n+ 3

4

)
arrangements.

Thus, f(n) =

(
n+ 3

4

)
=

(n+ 3)!

4!(n− 1)!
=

(n+ 3)(n+ 2)(n+ 1)(n)

4!
=
n(n+ 1)(n+ 2)(n+ 3)

24
.

Next, we need to determine the positive integers n between 1 and 2014, inclusive, for which
the units digit of f(n) is 1.

Now f(n) =
n(n+ 1)(n+ 2)(n+ 3)

24
is an integer for all positive integers n, since it is

counting the number of things with a certain property.
If the units digit of n is 0 or 5, then n is a multiple of 5.
If the units digit of n is 2 or 7, then n+ 3 is a multiple of 5.
If the units digit of n is 3 or 8, then n+ 2 is a multiple of 5.
If the units digit of n is 4 or 9, then n+ 1 is a multiple of 5.
Thus, if the units digit of n is 0, 2, 3, 4, 5, 7, 8, or 9, then n(n + 1)(n + 2)(n + 3)

is a multiple of 5 and so f(n) =
n(n+ 1)(n+ 2)(n+ 3)

24
is a multiple of 5, since the

denominator contains no factors of 5 that can divide the factor from the numerator.
Therefore, if the units digit of n is 0, 2, 3, 4, 5, 7, 8, or 9, then f(n) is divisible by 5, and
so cannot have a units digit of 1.

So we consider the cases where n has a units digit of 1 or of 6; these are the only possible
values of n for which f(n) can have a units digit of 1.

We note that 3f(n) =
n(n+ 1)(n+ 2)(n+ 3)

8
, which is a positive integer for all positive

integers n.
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Also, we note that if f(n) has units digit 1, then 3f(n) has units digit 3, and if 3f(n) has
units digit 3, then f(n) must have units digit 1.
Therefore, determining the values of n for which f(n) has units digit 1 is equivalent to

determining the values of n for which
n(n+ 1)(n+ 2)(n+ 3)

8
has units digit 3.

We consider the integers n in groups of 40. (Intuitively, we do this because the problem
seems to involve multiples of 5 and multiples of 8, and 5× 8 = 40.)
If n has units digit 1, then n = 40k + 1 or n = 40k + 11 or n = 40k + 21 or n = 40k + 31
for some integer k ≥ 0.
If n has units digit 6, then n = 40k + 6 or n = 40k + 16 or n = 40k + 26 or n = 40k + 36
for some integer k ≥ 0.

If n = 40k + 1, then

3f(n) =
n(n+ 1)(n+ 2)(n+ 3)

8

=
(40k + 1)(40k + 2)(40k + 3)(40k + 4)

8
= (40k + 1)(20k + 1)(40k + 3)(10k + 1)

The units digit of 40k + 1 is 1, the units digit of 20k + 1 is 1, the units digit of 40k + 3 is
3, and the units digit of 10k + 1 is 1, so the units digit of the product is the units digit of
(1)(1)(3)(1) or 3.
In a similar way, we treat the remaining seven cases and summarize all eight cases in a
chart:

n 3f(n) simplified Units digit of 3f(n)

40k + 1 (40k + 1)(20k + 1)(40k + 3)(10k + 1) 3

40k + 11 (40k + 11)(10k + 3)(40k + 13)(20k + 7) 3

40k + 21 (40k + 21)(20k + 11)(40k + 23)(10k + 6) 8

40k + 31 (40k + 31)(10k + 8)(40k + 33)(20k + 17) 8

40k + 6 (20k + 3)(40k + 7)(10k + 2)(40k + 9) 8

40k + 16 (10k + 4)(40k + 17)(20k + 9)(40k + 19) 8

40k + 26 (20k + 13)(40k + 27)(10k + 7)(40k + 29) 3

40k + 36 (10k + 9)(40k + 37)(20k + 19)(40k + 39) 3

(Note that, for example, when n = 40k + 16, the simplified version of 3f(n) is
(10k + 4)(40k + 17)(20k + 9)(40k + 19), so the units digit of 3f(n) is the units digit
of (4)(7)(9)(9) which is the units digit of 2268, or 8.)

Therefore, f(n) has units digit 1 whenever n = 40k + 1 or n = 40k + 11 or n = 40k + 26
or n = 40k + 36 for some integer k ≥ 0.
There are 4 such integers n between each pair of consecutive multiples of 40.
Since 2000 = 50 × 40, then 2000 is the 50th multiple of 40, so there are 50 × 4 = 200
integers n less than 2000 for which the units digit of f(n) is 1.
Between 2000 and 2014, inclusive, there are two additional integers: n = 40(50)+1 = 2001
and n = 40(50) + 11 = 2011.
In total, 202 of the integers f(1), f(2), . . . , f(2014) have a units digit of 1.
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10. Throughout this solution, we use “JB” to represent “jelly bean” or “jelly beans”.
We use “T1” to represent “Type 1 move”, “T2” to represent “Type 2 move”, and so on.
We use “P0” to represent “position 0”, “P1” to represent “position 1”, and so on.
We represent the positions of the JB initially or after a move using an ordered tuple of non-
negative integers representing the number of JB at P0, P1, P2, etc. For example, the tuple
(0, 0, 1, 2, 1) would represent 0 JB at P0, 0 JB at P1, 1 JB at P2, 2 JB at P3, and 1 JB at P4.

(a) To begin, we work backwards from the final state (0, 0, 0, 0, 0, 1).
The only move that could have put 1 JB at P5 is 1 T5.
Undoing this move removes 1 JB from P5 and adds 1 JB at P4 and 1 JB at P3, giving
(0, 0, 0, 1, 1, 0).
The only move that could have put 1 JB at P4 is 1 T4.
Undoing this move removes 1 JB from P4 and adds 1 JB at P2 and 1 JB at P3, giving
(0, 0, 1, 2, 0, 0).
The only moves that could put 2 JB at P3 are 2 T3s.
Undoing these moves removes 2 JB from P3, adds 2 JB at P1 and 2 JB at P2, giving
(0, 2, 3, 0, 0, 0).
The only moves that could put 3 JB at P2 are 3 T2s.
Undoing these moves gives (3, 5, 0, 0, 0, 0).
The only moves that could put 5 JB at P1 are 5 T1s.
Undoing these moves removes 5 JB from P1 and adds 10 JB at P0, giving (13, 0, 0, 0, 0, 0).
Therefore, starting with N = 13 JB at P0 allows Fiona to win the game by making all of
the moves as above in the reverse order.
In particular, from (13, 0, 0, 0, 0, 0), 5 T1s gives (3, 5, 0, 0, 0, 0), then 3 T2s give (0, 2, 3, 0, 0, 0),
then 2 T3s give (0, 0, 1, 2, 0, 0), then 1 T4 gives (0, 0, 0, 1, 1, 0), then 1 T5 gives (0, 0, 0, 0, 0, 1),
as required.

(b) Initial Set-up
First, we note that when Fiona starts with N JB (for some fixed positive integer N), then
the game finishes in at most N − 1 moves (since she eats exactly one JB on each move).
Second, we note that the positions of the JB in the final state as well as at any intermedi-
ate state (that is, after some number of moves) must be in the list P0, P1, . . ., P(N − 1),
since each JB can move at most 1 position to the right on any given move, so no JB can
move more than N − 1 positions to the right in at most N − 1 moves.
This means that, starting with N JB, any state can be described using an N -tuple
(a0, a1, . . . , aN−2, aN−1), where ai represents the number of JB at Pi in that state.

Introduction of Fibonacci Sequence and Important Fact #1 (IF1)
We define the Fibonacci sequence by F1 = 1, F2 = 1, and Fn = Fn−1 + Fn−2 for n ≥ 3.
The initial number of JB (N) and the number of JB at various positions are connected
using the Fibonacci sequence in the following way.
At any state between the starting state (N JB at P0) and the final state, if there are ai
JB at Pi for each i from 0 to N − 1, then

N = a0F2 + a1F3 + · · ·+ aN−2FN + aN−1FN+1 (∗)

This is true because:

• It is true for the starting state, since here (a0, a1, . . . , aN−2, aN−1) = (N, 0, . . . , 0, 0)
and F2 = 1, so the right side of (∗) equals N(1) + 0 or N

• A T1 does not change the value of the right side of (∗): Since a T1 changes the state
(a0, a1, a2, . . . , aN−2, aN−1) to (a0 − 2, a1 + 1, a2, . . . , aN−2, aN−1), the right side of (∗)
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changes from
a0F2 + a1F3 + a2F4 + · · ·+ aN−2FN + aN−1FN+1

to
(a0 − 2)F2 + (a1 + 1)F3 + a2F4 + · · ·+ aN−2FN + aN−1FN+1

which is a difference of −2F2 + F3 = −2(1) + 2 = 0.

• A Ti for i ≥ 2 does not change the value of the right side of (∗): Since a Ti changes
the state (a0, a1, . . . , ai−2, ai−1, ai, . . . , aN−2, aN−1) to

(a0, a1, . . . , ai−2 − 1, ai−1 − 1, ai + 1, . . . , aN−2, aN−1)

the right side of (∗) changes from

a0F2 + a1F3 + · · ·+ ai−2Fi + ai−1Fi+1 + aiFi+2 + · · ·+ aN−2FN + aN−1FN+1

to

a0F2+a1F3+· · ·+(ai−2−1)Fi+(ai−1−1)Fi+1+(ai+1)Fi+2+· · ·+aN−2FN +aN−1FN+1

which is a difference of −Fi − Fi+1 + Fi+2 = 0 since Fi+2 = Fi+1 + Fi.

This tells us that the value of the right side of (∗) starts at N and does not change on any
subsequent move.
Therefore, at any state (a0, a1, . . . , aN−2, aN−1) after starting with N JB at P0, it is true
that

N = a0F2 + a1F3 + · · ·+ aN−2FN + aN−1FN+1 (∗)

To show that there is only one possible final state when Fiona wins the game, we assume
that there are two possible winning final states starting from N JB and show that these
in fact must be the same state.

Important Fact #2 (IF2)
To do this, we prove a property of Fibonacci numbers that will allow us to show that two
sums of three or fewer non-consecutive Fibonacci numbers cannot be equal if the Fibonacci
numbers used in each sum are not the same:

If x, y, z are positive integers with 2 ≤ x < y < z and no pair of x, y, z are
consecutive integers, then Fz < Fy + Fz < Fx + Fy + Fz < Fz+1.

Since each Fibonacci number is a positive integer, then Fz < Fy + Fz < Fx + Fy + Fz, so
we must prove that Fx + Fy + Fz < Fz+1:

Since no two of x, y, z are consecutive and x < y < z, then y < z − 1.
Since y and z are positive integers, then y ≤ z − 2.
Also, x < y − 1 ≤ z − 3.
Since x and z are integers with x < z − 3, then x ≤ z − 4.
Since the Fibonacci sequence is increasing from F2 onwards, then

Fx + Fy + Fz ≤ Fz−4 + Fz−2 + Fz < Fz−3 + Fz−2 + Fz = Fz−1 + Fz = Fz+1

Since there is a “<” in this chain of inequalities and equalities, then we obtain
that Fx + Fy + Fz < Fz+1, as required.
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Completing the Proof
Recall from the statement of the problem that a winning state consists of three or fewer
JB, each at a distinct position and no two at consecutive integer positions.
Suppose that, starting from N JB at P0, in a first winning final state with ad = 1, each
of ab and ac equal to 0 or 1 and all other ai = 0, and in a second winning final state with
aD = 1, each of aB and aC equal to 0 or 1 and all other ai = 0.
From IF1, this gives N = abFb+2 + acFc+2 +Fd+2 and N = aBFB+2 + aCFC+2 +FD+2, and
so abFb+2 + acFc+2 + Fd+2 = aBFB+2 + aCFC+2 + FD+2.
Starting from this last equation, we remove any common Fibonacci numbers from both
sides. (Recall that each term on each side is either 0 or a Fibonacci number, and Fibonacci
numbers on the same side are distinct.)
If there are no Fibonacci numbers remaining on each side, then the winning final states
are the same, as required.
What happens if there are Fibonacci numbers remaining on either side? In this case, there
must be Fibonacci numbers on each side, as otherwise we would have 0 equal to a non-zero
number.
Suppose that the largest Fibonacci number remaining on the LS is Fk and the largest
Fibonacci number remaining on the RS is Fm.
Since we have removed the common elements, then k 6= m, so we may assume that k < m;
since k and m are integers, then k ≤ m− 1.
Note that the RS must be greater than or equal to Fm, since it includes at least Fm.
Since the LS consists of at most three Fibonacci numbers, which are non-consecutive (since
b, c, d are non-consecutive) and the largest of which is Fk, then IF2 tells us that the LS is
less than Fk+1.
Since k + 1 ≤ m, then the LS is less than Fm.
Since the LS is less than Fm and the RS is greater than or equal to Fm, we have a
contradiction, since they are supposed to be equal.
Therefore, our assumption that Fibonacci numbers are left after removing the common
numbers from each side is false.
In other words, the positions of the JB in each of the winning final states are the same,
so there is indeed only one possible winning final state.
Therefore, if Fiona can win the game, then there is only one possible final state.
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(c) From the statement of the problem and IF1, we know that Fiona can win the game starting
with N JB at P0 only if N is equal to the sum of at most three distinct non-consecutive
Fibonacci numbers.
To determine the closest positive integer N to 2014 for which Fiona can win the game,
we can determine the closet positive integer to 2014 that can be written as the sum of at
most three distinct Fibonacci numbers, no two of which are consecutive.
We write out terms in the Fibonacci sequence until we reach a term larger than 2014:

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584

We note that 1597 + 377 + 34 = 2008, which is 6 away from 2014. We will show that there
we cannot achieve an answer closer to 2014. That is, we will show that we cannot achieve
any of the integers from 2009 to 2019, inclusive.

Suppose that an integer from 2009 to 2019, inclusive, can be achieved.
The Fibonacci number 2584 cannot be included in our sum, as the sum would be too large.
If our sum includes no Fibonacci number larger than 987, then our sum is at most
987 + 377 + 144 = 1508, which is not large enough.
Therefore, 1597 must be included in a sum equal to an integer in the range 2009 to 2019,
inclusive.
The remaining 0, 1 or 2 Fibonacci numbers must have a sum in the range 2009−1597 = 412
to 2019− 1597 = 422, inclusive.
No Fibonacci number larger than 377 can be used, otherwise the remaining sum would be
too large.
If the remaining sum uses no Fibonacci number larger than 233, the sum is at most
233 + 89 = 322, which is not in the desired range.
Therefore, 377 must be included in the remaining sum.
The remaining 0 or 1 Fibonacci numbers must have a sum in the range 412− 377 = 35 to
422− 377 = 45, inclusive.
There is no Fibonacci number in this range, so we cannot make a sum of at most three
distinct, non-consecutive numbers that is closer to 2014 than 2008.

Note that 2008 = 1597 + 377 + 34. Since F9 = 34, F14 = 377 and F17 = 1597, the corre-
sponding winning position would be 1 JB at each of P7, P12 and P15.
To complete our proof, we must show that we can actually achieve this final state:

We start with the final state consisting of 1 JB at each of P7, P12 and P15 and
play the game backwards as we did in (a).
Since there is 1 JB at P15, it must have come from a T15.
Undoing this move, we obtain a state consisting of 1 JB at each of P7, P12, P13
and P14. Note that the rightmost JB is now at P14.
Since there is 1 JB at P14, it must have come from a T14.
We undo this move and continue to undo moves that remove a JB from the
rightmost position remaining at each step. This process will eventually move all
of the JB back to P0.
To win the game starting with N = F9 + F14 + F17, Fiona then uses all of these
moves in the opposite order, in a similar way to the method in (a).
Thus, Fiona can achieve the winning final state of 1 JB at each of P7, P12 and
P15.

Therefore, if N = F9 + F14 + F17, then Fiona can win the game.
Thus, N = 2008 is the closest integer to 2014 for which Fiona can start with N JB at P0
and win the game.
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1. (a) The expression
√

113 + x is an integer whenever 113 + x is a perfect square.
To find the smallest positive integer x for which 113 + x is a perfect square, we find the
smallest perfect square larger than 113.
Since 102 = 100 and 112 = 121, then this perfect square must be 121.
Therefore, 113 + x = 121 or x = 8.

(b) The average of 3 and 11 is 1
2
(3 + 11) = 7. Thus a = 7.

Using this with the given information, we see that the average of 7 and b is 11.
Therefore, 1

2
(7 + b) = 11 or 7 + b = 22 and so b = 15.

(Alternatively, we could note that since 7 is 4 less than 11 (the average), then b must be
4 more than 11, so b = 11 + 4 = 15.)

(c) Let c be Charlie’s age in years and b be Bella’s age in years.
From the first sentence, c = 30 + b.
From the second sentence, c = 6b.
Combining these, we obtain 6b = 30 + b or 5b = 30, and so b = 6.
Since c = 30 + b, then c = 36, and so Charlie’s age is 36.

2. (a) Since
21

x
=

7

y
, then 21 =

7x

y
or

x

y
=

21

7
= 3.

(b) Solution 1
Since

1

3
≈ 0.3333

1

4
= 0.25

1

5
= 0.2

1

6
≈ 0.1667

then
1

5
< 0.2013 and 0.2013 <

1

4
, so n must equal 4.

(We should note as well that
1

n
decreases as n increases, so this is the only integer value

of n that works.)

Solution 2

Since
1

n+ 1
< 0.2013, then n+ 1 >

1

0.2013
or n >

1

0.2013
− 1 ≈ 3.9677.

Since
1

n
> 0.2013, then n <

1

0.2013
≈ 4.9677.

Since n is a positive integer

∗ that is smaller than a number that is approximately 4.9677, and

∗ that is larger than a number that is approximately 3.9677,

then n = 4.

(c) Since AH is perpendicular to BC, then the area of 4ABC equals 1
2
(BC)(AH).

Since we are told that this area equals 84 and AH = 8, then 84 = 1
2
(BC)(8) or 4 ·BC = 84

or BC = 21.
Also, since 4AHB is right-angled at H, then by the Pythagorean Theorem,

BH =
√
AB2 − AH2 =

√
102 − 82 =

√
36 = 6

since BH > 0. (We could also have recognized two sides of a 6-8-10 right-angled triangle.)
Since BC = 21 and BH = 6, then HC = BC −BH = 21− 6 = 15.



2013 Euclid Contest Solutions Page 3

Since 4AHC is right-angled at H, then by the Pythagorean Theorem,

AC =
√
AH2 +HC2 =

√
82 + 152 =

√
289 = 17

since AC > 0.
Finally, the perimeter of 4ABC equals AB +BC +AC or 10 + 21 + 17, which equals 48.

3. (a) The parity of an integer is whether it is even or odd.
Since the Fibonacci sequence begins 1, 1, 2, 3, 5, 8, 13, 21, . . ., then the parities of the first
eight terms are Odd, Odd, Even, Odd, Odd, Even, Odd, Odd.
In the sequence, if x and y are consecutive terms, then the next term is x+ y.
In general, suppose that x and y are integers.
If x is even and y is even, then x+ y is even. If x is even and y is odd, then x+ y is odd.
If x is odd and y is even, then x+ y is odd. If x is odd and y is odd, then x+ y is even.
Therefore, the parities of two consecutive terms x and y in the Fibonacci sequence deter-
mine the parity of the following term x+ y.
Also, once there are two consecutive terms whose parities match the parities of two earlier
consecutive terms in the sequence, then the parities will repeat in a cycle.
In particular, the parities of the fourth and fifth terms (Odd, Odd) are the same as the
parities of the first and second terms (Odd, Odd).
Therefore, the parities in the sequence repeat the cycle Odd, Odd, Even.
This cycle has length 3.
Therefore, the 99th term in the Fibonacci sequence ends one of these cycles, since 99 is a
multiple of 3.
In particular, the 99th term ends the 33rd cycle.
Each cycle contains two odd terms.
Therefore, the first 99 terms in the sequence include 2× 33 = 66 odd terms.
Finally, the 100th term in the sequence begins a new cycle, so is odd.
Therefore, the first 100 terms include 66 + 1 = 67 odd terms.

(b) Suppose that the first term in the given sequence is a and the common difference is d.
Then the first four terms are a, a+ d, a+ 2d, a+ 3d.
From the given information, a+ (a+ 2d) = 6 and (a+ d) + (a+ 3d) = 20.
The first equation simplifies to 2a+ 2d = 6 or a+ d = 3.
The second equation simplifies to 2a+ 4d = 20 or a+ 2d = 10.
Therefore, (a+ 2d)− (a+ d) = 10− 3 or d = 7.
Since a+ d = 3 and d = 7, then a = −4.
Therefore, the tenth term in the sequence is a+ 9d = −4 + 9(7) = 59.

4. (a) There are five odd digits: 1, 3, 5, 7, 9.
We consider the positive integers less than 1000 in three sets: those with one digit, those
with two digits, and those with three digits.
There are 5 positive one-digit integers with one odd digit (namely 1, 3, 5, 7, 9).
Consider the two-digit positive integers with only odd digits.
Such an integer has the form XY where X and Y are digits.
There are five possibilities for each of X and Y (since each must be odd).
Therefore, there are 5× 5 = 25 two-digit positive integers with only odd digits.
Consider the three-digit positive integers with only odd digits.
Such an integer has the form XY Z where X, Y and Z are digits.
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There are five possibilities for each of X, Y and Z (since each must be odd).
Therefore, there are 5× 5× 5 = 125 three-digit positive integers with only odd digits.
In total, there are 5 + 25 + 125 = 155 positive integers less than 1000 with only odd digits.

(b) Combining the two terms on the right side of the second equation, we obtain
4

7
=
b+ a

ab
.

Since a+ b = 16, then
4

7
=

16

ab
or ab =

16(7)

4
= 28.

Therefore, we have a+ b = 16 and ab = 28.
From the first equation, b = 16− a.
Substituting into the second equation, we obtain a(16− a) = 28 or 16a− a2 = 28, which
gives a2 − 16a+ 28 = 0.
Factoring, we obtain (a− 14)(a− 2) = 0.
Therefore, a = 14 or a = 2.
If a = 14, then b = 16− a = 2.
If a = 2, then b = 16− a = 14.
Therefore, the two solutions are (a, b) = (14, 2), (2, 14).

(We note that since
1

2
+

1

14
=

7

14
+

1

14
=

8

14
=

4

7
, then both of these pairs are actually

solutions to the original system of equations.)

5. (a) We make a table of the 36 possible combinations of rolls and the resulting sums:

2 3 5 7 11 13
2 4 5 7 9 13 15
3 5 6 8 10 14 16
5 7 8 10 12 16 18
7 9 10 12 14 18 20
11 13 14 16 18 22 24
13 15 16 18 20 24 26

Of the 36 entries in the table, 6 are prime numbers (two entries each of 5, 7 and 13).
Therefore, the probability that the sum is a prime number is 6

36
or 1

6
.

(Note that each sum is at least 4 and so must be odd to be prime. Since odd plus odd
equals even, then the only possibilities that really need to be checked are even plus odd
and odd plus even (that is, the first row and first column of the table).)

(b) First, we find the coordinates of V .
To do this, we use the given equation for the parabola and complete the square:

y = −x2+4x+1 = −(x2−4x−1) = −(x2−4x+22−22−1) = −((x−2)2−5) = −(x−2)2+5

Therefore, the coordinates of the vertex V are (2, 5).
Next, we find the coordinates of A and B.
Note that A and B are the points of intersection of the line with equation y = −x+ 1 and
the parabola with equation y = −x2 + 4x+ 1.
We equate y-values to obtain −x+ 1 = −x2 + 4x+ 1 or x2 − 5x = 0 or x(x− 5) = 0.
Therefore, x = 0 or x = 5.
If x = 0, then y = −x+ 1 = 1, and so A (which is on the y-axis) has coordinates (0, 1).
If x = 5, then y = −x+ 1 = −4, and so B has coordinates (5,−4).
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We now have the points V (2, 5), A(0, 1), B(5,−4).
This gives

AV 2 = (0− 2)2 + (1− 5)2 = 20

BV 2 = (5− 2)2 + (−4− 5)2 = 90

AB2 = (0− 5)2 + (1− (−4))2 = 50

and so AV 2 +BV 2 − AB2 = 20 + 90− 50 = 60.

6. (a) Since ABC is a quarter of a circular pizza with centre A and radius 20 cm, then
AC = AB = 20 cm.
We are also told that ∠CAB = 90◦ (one-quarter of 360◦).
Since ∠CAB = 90◦ and A, B and C are all on the circumference of the circle, then CB is
a diameter of the pan. (This is a property of circles: if X, Y and Z are three points on a
circle with ∠ZXY = 90◦, then Y Z must be a diameter of the circle.)
Since 4CAB is right-angled and isosceles, then CB =

√
2AC = 20

√
2 cm.

Therefore, the radius of the circular plate is 1
2
CB or 10

√
2 cm.

Thus, the area of the circular pan is π(10
√

2 cm)2 = 200π cm2.
The area of the slice of pizza is one-quarter of the area of a circle with radius 20 cm, or
1
4
π(20 cm)2 = 100π cm2.

Finally, the fraction of the pan that is covered is the area of the slice of pizza divided by

the area of the pan, or
100π cm2

200π cm2
=

1

2
.

(b) Suppose that the length of AF is x m.
Since the length of AB is 8 m, then the length of FB is (8− x) m.
Since 4MAF is right-angled and has an angle of 60◦, then it is 30◦-60◦-90◦ triangle.
Therefore, MF =

√
3AF , since MF is opposite the 60◦ angle and AF is opposite the 30◦

angle.
Thus, MF =

√
3x m.

Since MP = 2 m, then PF = MF −MP = (
√

3x− 2) m.
We can now look at 4BFP which is right-angled at F .
We have

tan θ =
PF

FB
=

(
√

3x− 2) m

(8− x) m
=

√
3x− 2

8− x

Therefore, (8− x) tan θ =
√

3x− 2 or 8 tan θ + 2 =
√

3x+ (tan θ)x.

This gives 8 tan θ + 2 = x(
√

3 + tan θ) or x =
8 tan θ + 2

tan θ +
√

3
.

Finally, MF =
√

3x =
8
√

3 tan θ + 2
√

3

tan θ +
√

3
m.
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7. (a) Beginning with the given equation, we have

1

cosx
− tanx = 3

1

cosx
− sinx

cosx
= 3

1− sinx = 3 cosx (since cosx 6= 0)

(1− sinx)2 = 9 cos2 x (squaring both sides)

1− 2 sinx+ sin2 x = 9(1− sin2 x)

10 sin2 x− 2 sinx− 8 = 0

5 sin2 x− sinx− 4 = 0

(5 sinx+ 4)(sinx− 1) = 0

Therefore, sinx = −4

5
or sin x = 1.

If sinx = 1, then cosx = 0 and tan x is undefined, which is inadmissible in the original
equation.

Therefore, sinx = −4

5
.

(We can check that if sinx = −4

5
, then cosx = ±3

5
and the possibility that cosx =

3

5

satisfies the original equation, since in this case
1

cosx
=

5

3
and tanx = −4

3
and the

difference between these fractions is 3.)

(b) Since f(x) = ax+b, we can determine an expression for g(x) = f−1(x) by letting y = f(x)
to obtain y = ax + b. We then interchange x and y to obtain x = ay + b which we solve

for y to obtain ay = x− b or y =
x

a
− b

a
.

Therefore, f−1(x) =
x

a
− b

a
.

Note that a 6= 0. (This makes sense since the function f(x) = b has a graph which is a
horizontal line, and so cannot be invertible.)

Therefore, the equation f(x) − g(x) = 44 becomes (ax + b) −
(
x

a
− b

a

)
= 44 or(

a− 1

a

)
x+

(
b+

b

a

)
= 44 = 0x+ 44, and this equation is true for all x.

We can proceed in two ways.

Method #1: Comparing coefficients
Since the equation (

a− 1

a

)
x+

(
b+

b

a

)
= 0x+ 44

is true for all x, then the coefficients of the linear expression on the left side must match
the coefficients of the linear expression on the right side.

Therefore, a− 1

a
= 0 and b+

b

a
= 44.

From the first of these equations, we obtain a =
1

a
or a2 = 1, which gives a = 1 or a = −1.

If a = 1, the equation b+
b

a
= 44 becomes b+ b = 44, which gives b = 22.
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If a = −1, the equation b+
b

a
= 44 becomes b− b = 44, which is not possible.

Therefore, we must have a = 1 and b = 22, and so f(x) = x+ 22.

Method #2: Trying specific values for x
Since the equation (

a− 1

a

)
x+

(
b+

b

a

)
= 0x+ 44

is true for all values of x, then it must be true for any specific values of x that we choose.

Choosing x = 0, we obtain 0 +

(
b+

b

a

)
= 44 or b+

b

a
= 44.

Choosing x = b, we obtain

(
a− 1

a

)
b+

(
b+

b

a

)
= 44 or ab+ b = 44.

We can rearrange the first of these equations to get
ab+ b

a
= 44.

Using the second equation, we obtain
44

a
= 44 or a = 1.

Since a = 1, then ab+ b = 44 gives 2b = 44 or b = 22.
Thus, f(x) = x+ 22.

In summary, the only linear function f for which the given equation is true for all x
is f(x) = x+ 22.

8. (a) First, we factor the left side of the given equation to obtain a(a2 + 2b) = 2013.
Next, we factor the integer 2013 as 2013 = 3× 671 = 3× 11× 61. Note that each of 3, 11
and 61 is prime, so we can factor 2013 no further. (We can find the factors of 3 and 11
using tests for divisibility by 3 and 11, or by systematic trial and error.)
Since 2013 = 3× 11× 61, then the positive divisors of 2013 are

1, 3, 11, 33, 61, 183, 671, 2013

Since a and b are positive integers, then a and a2 + 2b are both positive integers.
Since a and b are positive integers, then a2 ≥ a and 2b > 0, so a2 + 2b > a.
Since a(a2 + 2b) = 2013, then a and a2 + 2b must be a divisor pair of 2013 (that is, a pair
of positive integers whose product is 2013) with a < a2 + 2b.
We make a table of the possibilities:

a a2 + 2b 2b b
1 2013 2012 1006
3 671 662 331
11 183 62 31
33 61 −1028 N/A

Note that the last case is not possible, since b must be positive.
Therefore, the three pairs of positive integers that satisfy the equation are (1, 1006),
(3, 331), (11, 31).
(We can verify by substitution that each is a solution of the original equation.)
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(b) Solution 1
We successively manipulate the given equation to produce equivalent equations:

log2(2
x−1 + 3x+1) = 2x− log2(3

x)

log2(2
x−1 + 3x+1) + log2(3

x) = 2x

log2((2
x−1 + 3x+1)3x) = 2x (using log2A+ log2B = log2AB)

(2x−1 + 3x+1)3x = 22x (exponentiating both sides)

2−12x3x + 313x3x = 22x

1
2
· 2x3x + 3 · 32x = 22x

2x3x + 6 · 32x = 2 · 22x (multiplying by 2)

2x3x + 6 · (3x)2 = 2 · (2x)2

Next, we make the substitution a = 2x and b = 3x.
This gives ab+ 6b2 = 2a2 or 2a2 − ab− 6b2 = 0.
Factoring, we obtain (a− 2b)(2a+ 3b) = 0.
Therefore, a = 2b or 2a = −3b.
Since a > 0 and b > 0, then a = 2b which gives 2x = 2 · 3x.
Taking logs of both sides, we obtain x log 2 = log 2 + x log 3 and so x(log 2− log 3) = log 2

or x =
log 2

log 2− log 3
.

Solution 2
We successively manipulate the given equation to produce equivalent equations:

log2(2
x−1 + 3x+1) = 2x− log2(3

x)

log2(2
x−1 + 3x+1) + log2(3

x) = 2x

log2((2
x−1 + 3x+1)3x) = 2x (using log2A+ log2B = log2AB)

(2x−1 + 3x+1)3x = 22x (exponentiating both sides)

2−12x3x + 313x3x = 22x

1
2
· 2x3x + 3 · 32x = 22x

2x3x + 6 · 32x = 2 · 22x (multiplying by 2)

2x3x2−2x + 6 · 32x2−2x = 2 (dividing both sides by 22x 6= 0)

2−x3x + 6 · 32x2−2x = 2(
3
2

)x
+ 6

(
3
2

)2x
= 2

Next, we make the substitution t =
(
3
2

)x
, noting that

(
3
2

)2x
=
((

3
2

)x)2
= t2.

Thus, we obtain the equivalent equations

t+ 6t2 = 2

6t2 + t− 2 = 0

(3t+ 2)(2t− 1) = 0

Therefore, t = −2
3

or t = 1
2
.

Since t =
(
3
2

)x
> 0, then we must have t =

(
3
2

)x
= 1

2
.

Thus,

x = log3/2(1/2) =
log(1/2)

log(3/2)
=

log 1− log 2

log 3− log 2
=

− log 2

log 3− log 2
=

log 2

log 2− log 3
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9. (a) Suppose that the parallel line segments EF and WX are a distance of x apart.
This means that the height of trapezoid EFXW is x.
Since the side length of square EFGH is 10 and the side length of square WXY Z is 6,
then the distance between parallel line segments ZY and HG is 10− 6− x or 4− x.
Recall that the area of a trapezoid equals one-half times its height times the sum of the
lengths of the parallel sides.
Thus, the area of trapezoid EFXW is 1

2
x(EF +WX) = 1

2
x(10 + 6) = 8x.

Also, the area of trapezoid GHZY is 1
2
(4− x)(HG+ ZY ) = 1

2
(4− x)(10 + 6) = 32− 8x.

Therefore, the sum of the areas of trapezoids EFXW and GHZY is 8x+ (32− 8x) = 32.
This sum is a constant and does not depend on the position of the inner square within
the outer square, as required.

(b) We begin by “boxing in” square PQRS by drawing horizontal and vertical lines through
its vertices to form rectangle WXY Z, as shown. (Because the four quadrilaterals ABQP ,
BCRQ, CDSR, and DAPS are convex, there will not be any configurations that look
substantially different from this the diagram below.) We also label the various areas.

P
Q

R
S

A B

CD

W
X

Y
Z

a

b

c

d

e
f

g
h

r

m
n

s

Since WX is parallel to AB, then quadrilateral ABXW is a trapezoid. Similarly, quadri-
laterals BCYX, CDZY , and DAWZ are trapezoids.
We use the notation |ABQP | to denote the area of quadrilateral ABQP , and similar no-
tation for other areas.
Suppose that the side length of square ABCD is x and the side length of square PQRS
is y.
Also, we let ∠WPQ = θ.
Since each of 4WPQ, 4XQR, 4Y RS, and 4ZSP is right-angled and each of the four
angles of square PQRS is 90◦, then ∠WPQ = ∠XQR = ∠Y RS = ∠ZSP = θ. This is
because, for example,

∠XQR = 180◦−∠PQR−∠WQP = 90◦−(180◦−∠PWQ−∠WPQ) = 90◦−(90◦−θ) = θ

This fact, together with the fact that PQ = QR = RS = SP = y, allows us to conclude
that the four triangles 4WPQ, 4XQR, 4Y RS, and 4ZSP are congruent.
In particular, this tells us

∗ the four areas labelled e, f , g and h are equal (that is, e = f = g = h),

∗ PZ = QW = RX = SY = y sin θ, and

∗ WP = XQ = Y R = ZS = y cos θ.
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Combining these last two facts tells us that WZ = XW = Y X = ZY , since, for example,
WZ = WP + PZ = ZS + SY = ZY . In other words, WXY Z is a square, with side
length z, say.

Next, we show that (a+ r) + (c+ n) is equal to (b+m) + (d+ s).
Note that the sum of these two quantities is the total area between square ABCD and
square WXY Z, so equals x2 − z2.
Thus, to show that the quantities are equal, it is enough to show that (a + r) + (c + n)
equals 1

2
(x2 − z2).

Let the height of trapezoid ABXW be k and the height of trapezoid ZY CD be l.

Then |ABXW | = a+ r = 1
2
k(AB +WX) = 1

2
k(x+ z).

Also, |ZY CD| = c+ n = 1
2
l(DC + ZY ) = 1

2
l(x+ z).

Since AB, WX, ZY , and DC are parallel, then the sum of the heights of trapezoid
ABXW , square WXY Z, and trapezoid ZY CD equals the height of square ABCD, so
k + z + l = x, or k + l = x− z.
Therefore,

(a+ r) + (c+ n) = 1
2
k(x+ z) + 1

2
l(x+ z) = 1

2
(x+ z)(k+ l) = 1

2
(x+ z)(x− z) = 1

2
(x2− z2)

as required.
Therefore, (a+ r) + (c+ n) = (b+m) + (d+ s). We label this equation (∗).
Next, we show that r + n = m+ s.
Note that r = |4QXB|. This triangle can be viewed as having base QX and height equal
to the height of trapezoid ABXW , or k.
Thus, r = 1

2
(y cos θ)k.

Note that n = |4SZD|. This triangle can be viewed as having base SZ and height equal
to the height of trapezoid ZY CD, or l.
Thus, n = 1

2
(y cos θ)l.

Combining these facts, we obtain

n+ r = 1
2
(y cos θ)k + 1

2
(y cos θ)l = 1

2
y cos θ(k + l) = 1

2
y cos θ(x− z)

We note that this sum depends only on the side lengths of the squares and the angle of
rotation of the inner square, so is independent of the position of the inner square within
the outer square.
This means that we can repeat this analysis to obtain the same expression for m+ s.
Therefore, n+ r = m+ s. We label this equation (∗∗).
We subtract (∗)− (∗∗) to obtain a+ c = b+ d.
Finally, we can combine all of this information:

(|ABQP |+ |CDSR|)− (|BCRQ|+ |APSD|)
= (a+ e+ s+ c+ g +m)− (b+ f + r + d+ h+ n)

= ((a+ c)− (b+ d)) + ((m+ s)− (n+ r)) + ((e+ g)− (f + h))

= 0 + 0 + 0

since a+ c = b+ d and n+ r = m+ s and e = f = g = h.
Therefore, |ABQP |+ |CDSR| = |BCRQ|+ |APSD|, as required.



2013 Euclid Contest Solutions Page 11

10. In each part, we use “partition” to mean “multiplicative partition”. We also call the numbers
being multiplied together in a given partition the “parts” of the partition.

(a) We determine the multiplicative partitions of 64 by considering the number of parts in the
various partitions. Note that 64 is a power of 2 so any divisor of 64 is also a power of 2.
In each partition, since the order of parts is not important, we list the parts in increasing
order to make it easier to systematically find all of these.

∗ One part. There is one possibility: 64.

∗ Two parts. There are three possibilities: 64 = 2× 32 = 4× 16 = 8× 8.

∗ Three parts. We start with the smallest possible first and second parts. We keep the
first part fixed while adjusting the second and third parts. We then increase the first
part and repeat.
We get: 64 = 2× 2× 16 = 2× 4× 8 = 4× 4× 4.

∗ Four parts. A partition of 64 with four parts must include at least two 2s, since if it
didn’t, it would include at least three parts that are at least 4, and so would be too
large. With two 2s, the remaining two parts have a product of 16.
We get: 64 = 2× 2× 2× 8 = 2× 2× 4× 4.

∗ Five parts. A partition of 64 with five parts must include at least three 2s, since if it
didn’t, it would include at least three parts that are at least 4, and so would be too
large. With three 2s, the remaining two parts have a product of 8.
We get: 64 = 2× 2× 2× 2× 4.

∗ Six parts. Since 64 = 26, there is only one possibility: 64 = 2× 2× 2× 2× 2× 2.

Therefore, P (64) = 1 + 3 + 3 + 2 + 1 + 1 = 11.

(b) First, we note that 1000 = 103 = (2 · 5)3 = 2353.
We calculate the value of P (p3q3) for two distinct prime numbers p and q. It will turn out
that this value does not depend on p and q. This value will be the value of P (1000), since
1000 has this form of prime factorization.

Let n = p3q3 for distinct prime numbers p and q.
The integer n has three prime factors equal to p.
In a given partition, these can be all together in one part (as p3), can be split between
two different parts (as p and p2), or can be split between three different parts (as p, p and
p). There are no other ways to divide up three divisors of p.
Similarly, n has three prime factors equal to q which can be divided in similar ways.
We determine P (p3q3) by considering the possible combination of the number of parts
divisible by p and the number of parts divisible by q and counting partitions in each case.
In other words, we complete the following table:

Number of parts
divisible by p

1 2 3
Number of parts 1
divisible by q 2

3

We note that the table is symmetric, since the factors of p and q are interchangeable.
We proceed to consider cases, considering only those on the top left to bottom right
diagonal and and those below this diagonal in the table.
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Case 1: One part divisible by p, one part divisible by q
The partition must be p3q3 (n itself) or p3 × q3.
There are two partitions in this case.

Case 2: One part divisible by p, two parts divisible by q
The three factors of p occur together as p3. The three factors of q occur as q and q2.
The p3 can occur in one of the parts divisible by q or not.
This gives partitions p3 × q × q2 and p3q × q2 and q × p3q2.
There are three partitions in this case. Similarly, there are three partitions with one part
divisible by q and two parts divisible by p.

Case 3: One part divisible by p, three parts divisible by q
The three factors of p occur together as p3. The three factors of q occur as q, q and q.
The p3 can occur in one of the parts divisible by q or not.
This gives partitions p3 × q × q × q and p3q × q × q.
(Note that the three divisors of q are interchangeable so p3 only needs to be placed with
one of them.)
There are two partitions in this case. Similarly, there are two partitions with one part
divisible by q and three parts divisible by p.

Case 4: Two parts divisible by p, two parts divisible by q
The three factors of p occur as p and p2. The three factors of q occur as q and q2.
Each of p and p2 can occur in one of the parts divisible by q or not.
If no part is a multiple of both p and q, we have one partition: p× p2 × q × q2.
If one part is a multiple of both p and q, there are two choices for which power of p to
include in this part and two choices for which power of q to include. (There is no choice
for the remaining parts.) Thus, there are 2× 2 = 4 such partitions:

p2q2 × p× q pq2 × p2 × q p2q × p× q2 pq × p2 × q2

If two parts are a multiple of both p and q, there are two ways to choose the power of p
in the part containing just q, so there are two such partitions: pq × p2q2 and p2q × pq2.
There are seven partitions in this case.

Case 5: Two parts divisible by p, three parts divisible by q
The three factors of p occur as p and p2. The three factors of q occur as q, q and q.
Each of p and p2 can occur in one of the parts divisible by q or not.
If no part is a multiple of both p and q, we have one partition: p× p2 × q × q × q.
If one part is a multiple of both p and q, there are two choices for which power of p to
include in this part (since all powers of q are identical).
Thus, there are 2 such partitions: p2q × p× q × q and pq × p2 × q × q.
If two parts are a multiple of both p and q, there is one partition, since all of the powers
of q are identical: pq × p2q × q.
There are four partitions in this case. Similarly, there are four partitions with two parts
divisible by q and three parts divisible by p.

Case 6: Three parts divisible by p, three parts divisible by q
The three factors of p as p, p and p. The three factors of q appear as q, q and q.
Here, the number of parts in the partition that are multiples of both p and q can be 0,
1, 2 or 3. Since all of the powers of p and q are identical, the partitions are completely
determined by this and are

p× p× p× q × q × q p× p× pq × q × q p× pq × pq × q pq × pq × pq

There are four partitions in this case.
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Finally, we complete the table:

Number of parts
divisible by p

1 2 3
Number of parts 1 2 3 2
divisible by q 2 3 7 4

3 2 4 4

Adding the entries in the table, we obtain P (p3q3) = 31.
Thus, P (1000) = 31.

(c) As in (b), the value of P (n) depends only on the structure of the prime factorization of n,
not on the actual primes in the factorization.
Therefore, P (4× 5m) = P (22 × 5m) = P (p2qm) for any distinct primes p and q.
Therefore, P (4× 5m) = P (p2qm) = P (52 × 2m) = P (25× 2m).
We count the number of multiplicative partitions of N = 52×2m by considering the place-
ment of the 2s and 5s among the parts of the partitions.
Since N has only two factors of 5, these can occur in the same part, or in different parts.
Note that every factor of N is a product is of the form 5j2k for some integers j and k with
0 ≤ j ≤ 2 and 0 ≤ k ≤ m.

We first count the number of partitions where the two factors of 5 occur in the same
part.
Consider one such partition.
In this partition, the part containing the two 5s will be of the form 522k for some integer
k with 0 ≤ k ≤ m.
Thus, this partition will be of the form 522k × P , where P is a partition of 2m−k (the
remaining factors in N).
Since the order of parts does not matter, there are P (2m−k) such partitions P , and so this
number of partitions of N of this form.
Since k ranges from 0 to m, then the number of partitions where the two 5s occur in the
same part equals

P (2m) + P (2m−1) + · · ·+ P (21) + P (20)

Next, we count the number of partitions where the two factors of 5 occur in different parts.
Consider one such partition.
In this partition, the parts containing the two 5s will be of the form 5× 2a and 5× 2b for
some integers a and b with 0 ≤ a, b ≤ m and a+ b ≤ m.
Since the order of the parts within a partition does not matter, we can restrict a and
b further by requiring that 0 ≤ a ≤ b ≤ m and a + b ≤ m to avoid double-counting
partitions.
Thus, this partition will be of the form (5× 2a)× (5× 2b)× P , where P is a partition of
2m−a−b (the remaining factors in N).
Since the order of parts does not matter, there are P (2m−a−b) such partitions P , and so
this number of partitions of N of this form.

To determine the total number of partitions in this case, we need to add up P (2m−a−b)
over all possible pairs (a, b) satisfying 0 ≤ a ≤ b ≤ m and a+ b ≤ m.
To do this, we focus on the possible values of s = a + b and count the number of pairs
(a, b) that give this sum.
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If s = a+ b = 0, there is one pair (a, b), namely (a, b) = (0, 0).
If s = a+ b = 1, there is one pair (a, b), namely (a, b) = (0, 1).
If s = a+ b = 2, there are two pairs (a, b), namely (a, b) = (0, 2), (1, 1).
In general, if s is even, then 1

2
s is an integer and so there are (1

2
s+ 1) pairs (a, b), namely

(0, s), (1, s− 1), (2, s− 2), . . . , (1
2
s− 1, 1

2
s+ 1), (1

2
s, 1

2
s)

Any larger value of a would give a value of b smaller than a.
In general, if s is odd, then 1

2
s− 1

2
is an integer and so there are (1

2
s− 1

2
) + 1 = (1

2
s+ 1

2
)

pairs (a, b), namely

(0, s), (1, s− 1), (2, s− 2), . . . , (1
2
s− 3

2
, 1
2
s+ 3

2
), (1

2
s− 1

2
, 1
2
s+ 1

2
)

Any larger value of a would give a value of b smaller than a.
To summarize, if s = a + b is even, there are (1

2
s + 1) pairs (a, b) and if s = a + b is odd,

there are (1
2
s+ 1

2
) pairs (a, b).

Thus, as s increases from 0, the number of pairs (a, b) gives the sequence 1, 1, 2, 2, 3, 3, . . ..
The number in this sequence corresponding to the value of a+ b gives the number of times
that P (2m−a−b) should be included in the count of the total number of partitions in this
case.
In other words, if a + b = 0, there are 1 × P (2m) partitions, if a + b = 1, there are
1× P (2m−1) partitions, if a+ b = 2, there are 2× P (2m−2) partitions, etc.
We can rewrite this more compactly to say that for a given s, the number of pairs (a, b)

is

⌊
s+ 2

2

⌋
(where bxc is the greatest integer less than or equal to x) and so the number

of partitions is

⌊
s+ 2

2

⌋
× P (2m−s).

Therefore, the total number of partitions of N in this case is

1× P (2m) + 1× P (2m−1) + 2× P (2m−2) + 2× P (2m−3) + · · ·+
⌊
s+ 2

2

⌋
× P (2m−s) + · · ·

+
⌊m

2

⌋
× P (21) +

⌊
m+ 2

2

⌋
× P (20)

Combining the two cases and adding the corresponding expressions for the number of
partitions, we obtain that the total number of partitions is

2×P (2m)+2×P (2m−1)+3×P (2m−2)+3×P (2m−3)+· · ·+
(

1 +

⌊
s+ 2

2

⌋)
×P (2m−s)+· · ·

+

(
1 +

⌊
m+ 1

2

⌋)
× P (21) +

(
1 +

⌊
m+ 2

2

⌋)
× P (20)

and so the desired sequence is

a0 = 2

a1 = 2

a2 = 3

a3 = 3
...

as = 1 +

⌊
s+ 2

2

⌋
...
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1. (a) Since John buys 10 bags of apples, each of which contains 20 apples, then he buys a total
of 10× 20 = 200 apples.
Since he eats 8 apples a day, then it takes him 200÷ 8 = 25 days to eat these apples.

(b) Evaluating,

sin(0◦) + sin(60◦) + sin(120◦) + sin(180◦) + sin(240◦) + sin(300◦) + sin(360◦)

= 0 +
√
3
2

+
√
3
2

+ 0 + (−
√
3
2

) + (−
√
3
2

) + 0

= 0

Alternatively, we could notice that sin(60◦) = − sin(300◦) and sin(120◦) = − sin(240◦) and
sin(0◦) = sin(180◦) = sin(360◦) = 0, so the sum is 0.

(c) Since the set of integers has a sum of 420 and an average of 60, then there are 420÷60 = 7
integers in the set.
Since one integer is 120, then the remaining 6 integers have a sum of 420− 120 = 300 and
so have an average of 300÷ 6 = 50.

2. (a) Since ax+ ay = 4, then a(x+ y) = 4.
Since x+ y = 12, then 12a = 4 or a = 4

12
= 1

3
.

(b) Since the two lines are parallel, then their slopes are equal.
We re-write the given equations in the form “y = mx+ b”.
The first equation becomes 6y = −4x+ 5 or y = −4

6
x+ 5

6
or y = −2

3
x+ 5

6
.

Since the first line is not vertical, then the second line is not vertical, and so k 6= 0.
The second equation becomes ky = −6x+ 3 or y = − 6

k
x+ 3

k
.

Therefore, −2
3

= − 6
k

and so k
6

= 3
2

or k = 6× 3
2

= 9.

(c) Adding the two equations, we obtain x+ x2 = 2 or x2 + x− 2 = 0.
Factoring, we obtain (x+ 2)(x− 1) = 0, and so x = −2 or x = 1.
From the first equation, y = −x. If x = −2, then y = 2 and if x = 1, then y = −1.
Therefore, the solutions are (x, y) = (−2, 2) and (x, y) = (1,−1).
(We can check that each of these solutions satisfies both equations.)

3. (a) Since the 200 g solution is 25% salt by mass, then 1
4

of the mass (or 50 g) is salt and the
rest (150 g) is water.
When water is added, the mass of salt does not change. Therefore, the 50 g of salt initially
in the solution becomes 10% (or 1

10
) of the final solution by mass.

Therefore, the total mass of the final solution is 10× 50 = 500 g.
Thus, the mass of water added is 500− 200 = 300 g.

(b) We are told that F = 9
5
C + 32.

From the given information f = 2C + 30.
We determine an expression for the error in terms of C by first determining when f < F .
The inequality f < F is equivalent to 2C + 30 < 9

5
C + 32 which is equivalent to 1

5
C < 2

which is equivalent to C < 10.
Therefore, f < F precisely when C < 10.
Thus, for −20 ≤ C < 10, the error equals F − f = (9

5
C + 32)− (2C + 30) = 2− 1

5
C.

Also, for 10 ≤ C ≤ 35, the error equals f − F = (2C + 30)− (9
5
C + 32) = 1

5
C − 2.

When −20 ≤ C < 10, the error in terms of C is 2− 1
5
C which is linear with negative slope,

so is decreasing as C increases. Thus, the maximum value of error in this range for C occurs
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when C is smallest, that is, when C = −20. This gives an error of 2− 1
5
(−20) = 2+4 = 6.

When 10 ≤ C ≤ 35, the error in terms of C is 1
5
C−2 which is linear with positive slope, so

is increasing as C increases. Thus, the maximum value of error in this range for C occurs
when C is largest, that is, when C = 35. This gives an error of 1

5
(35)− 2 = 7− 2 = 5.

Having considered the two possible ranges for C, the maximum possible error that Gordie
would make is 6.

4. (a) Solution 1
Since the x-intercepts of the parabola with equation y = 2(x − 3)(x − 5) are x = 3 and
x = 5, then its axis of symmetry is at x = 1

2
(3 + 5) = 4.

If a horizontal line intersects the parabola at two points, then these points are symmetric
across the axis of symmetry.
Since the line y = k intersects the parabola at two points A and B with AB = 6, then
each of A and B must be 3 units from the axis of symmetry.
Therefore, the x-coordinates of A and B are 4− 3 = 1 and 4 + 3 = 7.
Thus, the coordinates of A and B, in some order, are (1, k) and (7, k).
Substituting (1, k) into the equation of the parabola gives k = 2(1− 3)(1− 5) = 16.
(Substituting (7, k) would give the same value of k.)

Solution 2
Let xA be the x-coordinate of A and xB be the x-coordinate of B. We may assume that A
is to the left of B; that is, we assume that xA < xB. Since AB is horizontal and AB = 6,
then xB − xA = 6.
Since A and B are the points of intersection between the line with equation y = k and
the parabola with equation y = 2(x − 3)(x − 5), then we can solve for xA and xB by
equating values of y to obtain the equation k = 2(x − 3)(x − 5), which is equivalent to
k = 2(x2 − 8x+ 15) or 2x2 − 16x+ (30− k) = 0.
Using the quadratic formula, we obtain

xA, xB =
16±

√
(−16)2 − 4(2)(30− k)

2(2)

Thus, xA =
16−

√
162 − 4(2)(30− k)

2(2)
and xB =

16 +
√

162 − 4(2)(30− k)

2(2)
.

Since xB − xA = 6, then

16 +
√

162 − 4(2)(30− k)

2(2)
−

16−
√

162 − 4(2)(30− k)

2(2)
= 6

2
√

162 − 4(2)(30− k)

2(2)
= 6√

256− (240− 8k) = 12√
16 + 8k = 12

16 + 8k = 144

8k = 128

k = 16

Therefore, k = 16.
We can double check that the line with equation y = 16 intersects the parabola with
equation y = 2(x−3)(x−5) at the points (1, 16) and (7, 16), which are a distance 6 apart.
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(b) Let n = (3a+ 6a+ 9a+ 12a+ 15a) + (6b+ 12b+ 18b+ 24b+ 30b).
First, we simplify the given expression for n to obtain

n = (3a+ 6a+ 9a+ 12a+ 15a) + (6b+ 12b+ 18b+ 24b+ 30b) = 45a+ 90b

We then factor the right side to obtain n = 45(a+ 2b) = 3251(a+ 2b).
If a+ 2b = 5, then n = 3252 = (3× 5)2, which is a perfect square.
Two pairs of positive integers (a, b) that satisfy a + 2b = 5 are (a, b) = (3, 1) and
(a, b) = (1, 2).
Another value of a + 2b for which n is a perfect square is a + 2b = 20, since here
n = 325120 = 32512251 = 322252 = (3× 2× 5)2.
A pair of positive integers (a, b) that satisfies a+ 2b = 20 is (18, 1).
Therefore, three pairs of positive integers (a, b) with the required property are (3, 1), (1, 2), (18, 1).
(There are infinitely many other pairs with this property.)

5. (a) Solution 1
First, we calculate the side lengths of 4ABC:

AB =
√

(0− 3)2 + (5− 0)2 =
√

34

BC =
√

(3− 8)2 + (0− 3)2 =
√

34

AC =
√

(0− 8)2 + (5− 3)2 =
√

68

Since AB = BC and AC =
√

2AB =
√

2BC, then
4ABC is an isosceles right-angled triangle, with the
right angle at B.
Therefore, ∠ACB = 45◦.

y

x
O

C (8, 3)

B (3, 0)

A (0, 5)

Solution 2
As in Solution 1, AB = BC =

√
34.

Line segment AB has slope 5−0
0−3 = −5

3
.

Line segment BC has slope 0−3
3−8 = 3

5
.

Since the product of these two slopes is −1, then AB and BC are perpendicular.
Therefore, 4ABC is right-angled at B.
Since AB = BC, then 4ABC is an isosceles right-angled triangle, so ∠ACB = 45◦.

Solution 3
As in Solution 1, AB = BC =

√
34 and AC =

√
68.

Using the cosine law,

AB2 = AC2 +BC2 − 2(AC)(BC) cos(∠ACB)

34 = 68 + 34− 2(
√

68)(
√

34) cos(∠ACB)

0 = 68− 2(
√

2
√

34)(
√

34) cos(∠ACB)

0 = 68− 68
√

2 cos(∠ACB)

68
√

2 cos(∠ACB) = 68

cos(∠ACB) = 1√
2

Since cos(∠ACB) = 1√
2

and 0◦ < ∠ACB < 180◦, then ∠ACB = 45◦.
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(b) Draw perpendiculars from P and Q to X and Y , respectively, on SR.

P Q

RS

7

88

X Y

Since PQ is parallel to SR (because PQRS is a trapezoid) and PX and QY are perpen-
dicular to SR, then PQY X is a rectangle.
Thus, XY = PQ = 7 and PX = QY .
Since 4PXS and 4QY R are right-angled with PS = QR and PX = QY , then these
triangles are congruent, and so SX = Y R.
Since XY = 7 and SR = 15, then SX + 7 + Y R = 15 or 2× SX = 8 and so SX = 4.
By the Pythagorean Theorem in 4PXS,

PX2 = PS2 − SX2 = 82 − 42 = 64− 16 = 48

Now PR is the hypotenuse of right-angled 4PXR.
Since PR > 0, then by the Pythagorean Theorem,

PR =
√
PX2 +XR2 =

√
48 + (7 + 4)2 =

√
48 + 112 =

√
48 + 121 =

√
169 = 13

Therefore, PR = 13.

6. (a) Solution 1
There are two possibilities: either each player wins three games or one player wins more
games than the other.
Since the probability that each player wins three games is 5

16
, then the probability that

any one player wins more games than the other is 1− 5
16

= 11
16

.
Since each of Blaise and Pierre is equally likely to win any given game, then each must be
equally likely to win more games than the other.
Therefore, the probability that Blaise wins more games than Pierre is 1

2
× 11

16
= 11

32
.

Solution 2
We consider the results of the 6 games as a sequence of 6 Bs or Ps, with each letter a B
if Blaise wins the corresponding game or P if Pierre wins.
Since the two players are equally skilled, then the probability that each wins a given game
is 1

2
. This means that the probability of each letter being a B is 1

2
and the probability of

each letter being a P is also 1
2
.

Since each sequence consists of 6 letters, then the probability of a particular sequence
occurring is (1

2
)6 = 1

64
, because each of the letters is specified.

Since they play 6 games in total, then the probability that Blaise wins more games than
Pierre is the sum of the probabilities that Blaise wins 4 games, that Blaise wins 5 games,
and that Blaise wins 6 games.
If Blaise wins 6 games, then the sequence consists of 6 Bs. The probability of this is 1

64
,

since there is only one way to arrange 6 Bs.
If Blaise wins 5 games, then the sequence consists of 5 Bs and 1 P. The probability of this
is 6 × 1

64
= 6

64
, since there are 6 possible positions in the list for the 1 P (eg. PBBBBB,
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BPBBBB, BBPBBB, BBBPBB, BBBBPB, BBBBBP).
The probability that Blaise wins 4 games is

(
6
2

)
× 1

64
= 15

64
, since there are

(
6
2

)
= 15 ways

for 4 Bs and 2 Ps to be arranged.
Therefore, the probability that Blaise wins more games than Pierre is 1

64
+ 6

64
+ 15

64
= 22

64
= 11

32
.

(b) Using exponent rules and arithmetic, we manipulate the given equation:

3x+2 + 2x+2 + 2x = 2x+5 + 3x

3x32 + 2x22 + 2x = 2x25 + 3x

9(3x) + 4(2x) + 2x = 32(2x) + 3x

8(3x) = 27(2x)
3x

2x
=

27

8(
3

2

)x

=

(
3

2

)3

Since the two expressions are equal and the bases are equal, then the exponents must be
equal, so x = 3.

7. (a) Since AB = AC, then 4ABC is isosceles and ∠ABC = ∠ACB. Note that ∠BAC = θ.

A

E

B C

D

The angles in 4ABC add to 180◦, so ∠ABC + ∠ACB + ∠BAC = 180◦.

Thus, 2∠ACB + θ = 180◦ or ∠ABC = ∠ACB = 1
2
(180◦ − θ) = 90◦ − 1

2
θ.

Now 4BCD is isosceles as well with BC = BD and so ∠CDB = ∠DCB = 90◦ − 1
2
θ.

Since the angles in 4BCD add to 180◦, then

∠CBD = 180◦ − ∠DCB − ∠CDB = 180◦ − (90◦ − 1
2
θ)− (90◦ − 1

2
θ) = θ

Now ∠EBD = ∠ABC − ∠DBC = (90◦ − 1
2
θ)− θ = 90◦ − 3

2
θ.

Since BE = ED, then ∠EDB = ∠EBD = 90◦ − 3
2
θ.

Therefore, ∠BED = 180◦ − ∠EBD − ∠EDB = 180◦ − (90◦ − 3
2
θ)− (90◦ − 3

2
θ) = 3θ.
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(b) Let O be the centre of the ferris wheel and B the lowest point on the wheel.
Since the radius of the ferris wheel is 9 m (half of the diameter of 18 m) and B is 1 m
above the ground, then O is 9 + 1 = 10 m above the ground.
Let ∠TOP = θ.

P

T

Q16 

18 

1 m

B

O

9 θ 2θ

R

G

Since the ferris wheel rotates at a constant speed, then in 8 seconds, the angle through
which the wheel rotates is twice the angle through which it rotates in 4 seconds. In other
words, ∠TOQ = 2θ.
Draw a perpendicular from P to R on TB and from Q to G on TB.
Since P is 16 m above the ground and O is 10 m above the ground, then OR = 6 m.
Since OP is a radius of the circle, then OP = 9 m.

Looking at right-angled 4ORP , we see that cos θ =
OR

OP
=

6

9
=

2

3
.

Since cos θ = 2
3
< 1√

2
= cos(45◦), then θ > 45◦.

This means that 2θ > 90◦, which means that Q is below the horizontal diameter through
O and so G is below O.
Since ∠TOQ = 2θ, then ∠QOG = 180◦ − 2θ.
Kolapo’s height above the ground at Q equals 1 m plus the length of BG.
Now BG = OB −OG. We know that OB = 9 m.
Also, considering right-angled 4QOG, we have

OG = OQ cos(∠QOG) = 9 cos(180◦ − 2θ) = −9 cos(2θ) = −9(2 cos2 θ − 1)

Since cos θ = 2
3
, then OG = −9(2(2

3
)2 − 1) = −9(8

9
− 1) = 1 m.

Therefore, BG = 9− 1 = 8 m and so Q is 1 + 8 = 9 m above the ground.

8. (a) Solution 1
The hour hand and minute hand both turn at constant rates. Since the hour hand moves
1
12

of the way around the clock in 1 hour and the minute hand moves all of the way around
the clock in 1 hour, then the minute hand turns 12 times as quickly as the hour hand.

12

6

39

1
2

4
57

8

10
11

12

6

39

1
2

4
57

8

10
11

Before After

Suppose also that the hour hand moves through an angle of x◦ between Before and After.
Therefore, the minute hand moves through an angle of (360◦ − x◦) between Before and
After, since these two angles add to 360◦.
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Since the minute hand moves 12 times as quickly as the hour hand, then
360◦ − x◦

x◦
= 12

or 360− x = 12x and so 13x = 360, or x = 360
13

.

In one hour, the hour hand moves through 1
12
× 360◦ = 30◦.

Since the hour hand is moving for t hours, then we have 30◦t = (360
13

)◦ and so t = 360
30(13)

= 12
13

.

Solution 2
Suppose that Jimmy starts painting x hours after 9:00 a.m. and finishes painting y hours
after 10:00 a.m., where 0 < x < 1 and 0 < y < 1.
Since t is the amount of time in hours that he spends painting, then t = (1−x)+y, because
he paints for (1− x) hours until 10:00 a.m., and then for y hours until his finishing time.
The hour hand and minute hand both turn at constant rates.
The minute hand turns 360◦ in one hour and the hour hand turns 1

12
× 360◦ = 30◦ in one

hour.
Thus, in x hours, where 0 < x < 1, the minute hand turns (360x)◦ and the hour hand
turns (30x)◦.
In the Before picture, the minute hand is (360x)◦ clockwise from the 12 o’clock position.
In the After picture, the minute hand is (360y)◦ clockwise from the 12 o’clock position.
The 9 is 9×30◦ = 270◦ clockwise from the 12 o’clock position and the 10 is 10×30◦ = 300◦

clockwise from the 12 o’clock position.
Therefore, in the Before picture, the hour hand is 270◦ + (30x)◦ clockwise from the 12
o’clock position, and in the After picture, the hour hand is 300◦ + (30y)◦ clockwise from
the 12 o’clock position.
Because the hour and minute hands have switched places from the Before to the After po-
sitions, then we can equate the corresponding positions to obtain (360x)◦ = 300◦+ (30y)◦

(or 360x = 300 + 30y) and (360y)◦ = 270◦ + (30x)◦ (or 360y = 270 + 30x).
Dividing both equations by 30, we obtain 12x = 10 + y and 12y = 9 + x.
Subtracting the second equation from the first, we obtain 12x− 12y = 10 + y − 9− x or
−1 = 13y − 13x.
Therefore, y − x = − 1

13
and so t = (1− x) + y = 1 + y − x = 1− 1

13
= 12

13
.

(b) We manipulate the given equation into a sequence of equivalent equations:

log5x+9(x
2 + 6x+ 9) + logx+3(5x

2 + 24x+ 27) = 4

log(x2 + 6x+ 9)

log(5x+ 9)
+

log(5x2 + 24x+ 27)

log(x+ 3)
= 4 (using the “change of base” formula)

log((x+ 3)2)

log(5x+ 9)
+

log((5x+ 9)(x+ 3))

log(x+ 3)
= 4 (factoring)

2 log(x+ 3)

log(5x+ 9)
+

log(5x+ 9) + log(x+ 3)

log(x+ 3)
= 4 (using logarithm rules)

2

(
log(x+ 3)

log(5x+ 9)

)
+

log(5x+ 9)

log(x+ 3)
+

log(x+ 3)

log(x+ 3)
= 4 (rearranging fractions)
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Making the substitution t =
log(x+ 3)

log(5x+ 9)
, we obtain successively

2t+
1

t
+ 1 = 4

2t2 + 1 + t = 4t

2t2 − 3t+ 1 = 0

(2t− 1)(t− 1) = 0

Therefore, t = 1 or t = 1
2
.

If
log(x+ 3)

log(5x+ 9)
= 1, then log(x+ 3) = log(5x+ 9) or x+ 3 = 5x+ 9, which gives 4x = −6

or x = −3
2
.

If
log(x+ 3)

log(5x+ 9)
=

1

2
, then 2 log(x + 3) = log(5x + 9) or log((x + 3)2) = log(5x + 9) or

(x+ 3)2 = 5x+ 9.
Here, x2 + 6x+ 9 = 5x+ 9 or x2 + x = 0 or x(x+ 1) = 0, and so x = 0 or x = −1.
Therefore, there are three possible values for x: x = 0, x = −1 and x = −3

2
.

We should check each of these in the original equation.
If x = 0, the left side of the original equation is log9 9 + log3 27 = 1 + 3 = 4.
If x = −1, the left side of the original equation is log4 4 + log2 8 = 1 + 3 = 4.
If x = −3

2
, the left side of the original equation is log3/2(9/4) + log3/2(9/4) = 2 + 2 = 4.

Therefore, the solutions are x = 0,−1,−3
2
.

9. (a) Suppose that the auditorium with these properties has r rows and c columns of chairs.
Then there are rc chairs in total.
Each chair is empty, is occupied by a boy, or is occupied by a girl.
Since there are 14 boys in each row, then there are 14r chairs occupied by boys.
Since there are 10 girls in each column, then there are 10c chairs occupied by girls.
Since there are exactly 3 empty chairs, then the total number of chairs can also be written
as 14r + 10c+ 3.
Therefore, rc = 14r + 10c+ 3.
We proceed to find all pairs of positive integers r and c that satisfy this equation. We note
that since there are 14 boys in each row, then there must be at least 14 columns (that is,
c ≥ 14) and since there are 10 girls in each column, then there must be at least 10 rows
(that is, r ≥ 10).
Manipulating the equation,

rc = 14r + 10c+ 3

rc− 14r = 10c+ 3

r(c− 14) = 10c+ 3

r =
10c+ 3

c− 14

r =
10c− 140 + 143

c− 14

r =
10c− 140

c− 14
+

143

c− 14

r = 10 +
143

c− 14
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Since r is an integer, then 10 +
143

c− 14
is an integer, so

143

c− 14
must be an integer.

Therefore, c− 14 is a divisor of 143. Since c ≥ 14, then c− 14 ≥ 0, so c− 14 is a positive
divisor of 143.
Since 143 = 11× 13, then its positive divisors are 1, 11, 13, 143.
We make a table of the possible values of c − 14 along with the resulting values of c, r

(calculated using r = 10 +
143

c− 14
) and rc:

c− 14 c r rc
1 15 153 2295
11 25 23 575
13 27 21 567
143 157 11 1727

Therefore, the four possible values for rc are 567, 575, 1727, 2295. That is, the smallest
possible number of chairs in the auditorium is 567.
(Can you create a grid with 27 columns and 21 rows that has the required properties?)

(b) Solution 1
We use the notation |PMQN | to represent the area of quadrilateral |PMQN |, |4APD|
to represent the area of 4APD, and so on.
We want to show that |PMQN | = |4APD|+ |4BQC|.
This is equivalent to showing

|PMQN |+ |4DPN |+ |4CQN | = |4APD|+ |4DPN |+ |4BQC|+ |4CQN |

which is equivalent to showing

|4DMC| = |4DAN |+ |4CBN |

since combining quadrilateral PMQN with4DPN and4CQN gives4DMC, combining
4APD with 4DPN gives 4DAN , and combining 4BQC with 4CQN gives 4CBN .
Suppose that DC has length x and DN has length tx for some t with 0 < t < 1.
Then NC = DC −DN = x− tx = (1− t)x.
Suppose also that the height of A above DC is a, the height of B above DC is b and the
height of M above DC is m.

A
M

B

C

Q

ND

P

a
b

tx (1  t)x

m

E F G

Figure 1

Then |4DAN | = 1
2
(tx)(a) and |4CBN | = 1

2
((1− t)x)b so

|4DAN |+ |4CBN | = 1
2
(txa+ (1− t)xb) = 1

2
x(ta+ (1− t)b)

Also, |4DMC| = 1
2
xm.

In order to prove that |4DMC| = |4DAN |+ |4CBN |, we need to show that 1
2
xm equals
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1
2
x(ta+ (1− t)b) which is equivalent to showing that m is equal to ta+ (1− t)b.

In Figure 2, we draw a horizontal line from A to BG, meeting MF at R and BG at S.
Since MF and BG are vertical and ARS is horizontal, then these line segments are
perpendicular.
Since AE = a, MF = m and BG = b, then MR = m− a and BS = b− a.

A
M

B

a
bm

E F G

SR

Figure 2

Now 4ARM is similar to 4ASB, since each is right-angled and they share a common
angle at A.

Therefore,
MR

BS
=
AM

AB
=
NC

DC
.

Since MR = m− a and BS = b− a, then
MR

BS
=
m− a
b− a

.

Since
AM

AB
=
NC

DC
, then

MR

BS
=

(1− t)x
x

= 1− t.

Comparing these two expressions, we obtain
m− a
b− a

= (1− t) or m− a = (b− a)(1− t) or

m = a+ b(1− t) + (t− 1)a = ta+ (1− t)b, as required.

This concludes the proof, and so |PMQN | = |4APD|+ |4BQC|, as required.

Solution 2

Let AM = x and MB = y. Then AB = x+ y and so
AM

AB
=

x

x+ y
.

Let NC = nx for some real number n.

Since
NC

DC
=
AM

AB
, then

nx

DC
=

x

x+ y
and so DC = n(x+ y).

This tells us that DN = DC −NC = n(x+ y)− nx = ny.
Join M to N and label the areas as shown in the diagram:

A
M

B

C

Q

ND

P

x
y

ny nx

r

s

t

w

v

u

z
k

We repeatedly use the fact that triangles with a common height have areas in proportion
to the lengths of their bases.
For example, 4MDN and 4MNC have a common height from line segment to DC to
M and so the ratio of their areas equals the ratio of the lengths of their bases.

In other words,
w + r

u+ v
=
nx

ny
=
x

y
. Thus, w + r =

x

y
(u+ v).
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Also, the ratio of the area of 4NAM to the area of 4NMB equals the ratio of AM to
MB.

This gives
k + v

s+ w
=
x

y
or k + v =

x

y
(s+ w).

Next, we join A to C and relabel the areas divided by this new line segment as shown:

A
M

B

C

Q

ND

P

x
y

ny nx

s

t

w2
u

z w1
v2

v1
k1

r2

(The unlabelled triangle adjacent to the one labelled k1 has area k2 and the unlabelled
triangle adjacent to the one labelled r2 has area r1.)
Consider 4ANC and 4ADN .
As above, the ratio of their areas equals the ratio of their bases.

Thus,
k2 + v2 + w2 + r2

z + u
=
nx

ny
=
x

y
, and so k2 + v2 + w2 + r2 =

x

y
(z + u).

Consider 4CAM and 4CMB.
As above, the ratio of their areas equals the ratio of their bases.

Thus,
k1 + v1 + w1 + r1

s+ t
=
x

y
, and so k1 + v1 + w1 + r1 =

x

y
(s+ t).

Adding k2 + v2 + w2 + r2 =
x

y
(z + u) and k1 + v1 + w1 + r1 =

x

y
(s+ t) gives

(k1 + k2) + (v1 + v2) + (w1 + w2) + (r1 + r2) =
x

y
(s+ t+ z + u)

or
k + v + w + r =

x

y
(s+ t+ z + u)

Since k + v =
x

y
(s+ w) and w + r =

x

y
(u+ v), then

x

y
(s+ w) +

x

y
(u+ v) =

x

y
(s+ t+ z + u)

which gives
s+ w + u+ v = s+ t+ z + u

or
w + v = t+ z

But w + v is the area of quadrilateral PMQN , z is the area of 4APD and t is the area
of 4BQC. In other words, the area of quadrilateral PMQN equals the sum of the areas
of 4APD and 4PQC, as required.
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10. (a) The Eden sequences from {1, 2, 3, 4, 5} are

1 3 5 1, 2 1, 4 3, 4 1, 2, 3 1, 2, 5 1, 4, 5 3, 4, 5 1, 2, 3, 4 1, 2, 3, 4, 5

There are 12 such sequences.

We present a brief justification of why these are all of the sequences.

∗ An Eden sequence of length 1 consists of a single odd integer. The possible choices
are 1 and 3 and 5.

∗ An Eden sequence of length 2 consists of an odd integer followed by a larger even
integer. Since the only possible even integers here are 2 and 4, then the possible
sequences are 1, 2 and 1, 4 and 3, 4.

∗ An Eden sequence of length 3 starts with an Eden sequence of length 2 and appends
(that is, adds to the end) a larger odd integer. Starting with 1,2, we form 1,2,3 and
1,2,5. Starting with 1,4, we form 1,4,5. Starting with 3,4, we form 3,4,5.

∗ An Eden sequence of length 4 starts with an Eden sequence of length 3 and appends
a larger even integer. Since 2 and 4 are the only possible even integers, then the only
possible sequence here is 1,2,3,4.

∗ An Eden sequence of length 5 from {1, 2, 3, 4, 5} must include all 5 elements, so is
1,2,3,4,5.

(b) We will prove that, for all positive integers n ≥ 3, we have e(n) = e(n− 1) + e(n− 2) + 1.
Thus, if e(18) = m, then e(19) = e(18) + e(17) + 1 = m+ 4181 and

e(20) = e(19) + e(18) + 1 = (m+ 4181) +m+ 1

Since e(20) = 17710, then 17710 = 2m+ 4182 or 2m = 13528 and so m = 6764.
Therefore, e(18) = 6764 and e(19) = 6764 + 4181 = 10945.

So we must prove that, for all positive integers n ≥ 3, we have e(n) = e(n−1)+e(n−2)+1.

To simplify the reading, we use a number of abbreviations:

∗ ES means “Eden sequence”

∗ ES(m) means “Eden sequence from {1, 2, 3, . . . ,m}
∗ ESE and ESO mean “Eden sequence of even length” and “Eden sequence of odd

length”, respectively

∗ ESE(m) and ESO(m) mean “Eden sequence of even length from {1, 2, 3, . . . ,m}” and
“Eden sequence of odd length from {1, 2, 3, . . . ,m}”, respectively

Method 1
For each positive integer n, let A(n) be the number of ESE(n), and let B(n) be the number
of ESO(n).
Then e(n) = A(n) +B(n) for each positive integer n.
Note also that for each positive integer n ≥ 2, we have e(n) ≥ e(n−1) and A(n) ≥ A(n−1)
and B(n) ≥ B(n−1). This is because every ES(n−1) is also an ES(n) because it satisfies
the three required conditions. So there are at least as many ES(n) as there are ES(n− 1).
(The same argument works to show that there are at least as many ESE(n) as there are
ESE(n− 1), and at least as many ESO(n) as there are ESO(n− 1).)

Note that if k is a positive integer, then 2k + 1 is odd and 2k is even.
The following four facts are true for every positive integer k ≥ 1:
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(i) A(2k + 1) = A(2k)

(ii) B(2k) = B(2k − 1)

(iii) A(2k) = A(2k − 1) +B(2k − 1)

(iv) B(2k + 1) = A(2k) +B(2k) + 1

Here are justifications for these facts:

(i) An ESE must end with an even integer. Thus, an ESE(2k+ 1) cannot include 2k+ 1,
since it would then have to include a larger even positive integer, which it cannot.
Therefore, an ESE(2k + 1) has largest term at most 2k and so is an ES(2k).
Thus, A(2k + 1) ≤ A(2k).
But from above, A(2k + 1) ≥ A(2k), and so A(2k + 1) = A(2k).

(ii) An ESO must end with an odd integer. Thus, an ESO(2k) cannot include 2k, since
it would then have to include a larger odd positive integer, which it cannot.
Therefore, an ESO(2k) has largest term at most 2k − 1 and so is an ESO(2k − 1).
Thus, B(2k) ≤ B(2k − 1).
But from above, B(2k) ≥ B(2k − 1), and so B(2k) = B(2k − 1).

(iii) An ESE(2k) either includes 2k or does not include 2k.
If such a sequence includes 2k, then removing the 2k produces an ESO(2k− 1). Also,
every ESO(2k − 1) can be produced in this way.
Therefore, the number of sequences in this case is B(2k − 1).
If such a sequence does not include 2k, then the sequence can be thought of as an
ESE(2k − 1). Note that every ESE(2k − 1) is an ESE(2k).
Therefore, the number of sequences in this case is A(2k − 1).
Thus, A(2k) = A(2k − 1) +B(2k − 1).

(iv) An ESO(2k + 1) is either the one term sequence 2k + 1, or includes 2k + 1 and more
terms, or does not include 2k + 1.
There is 1 sequence of the first kind.
As in (iii), there are A(2k) sequences of the second kind and B(2k) sequences of the
third kind.
Thus, B(2k + 1) = 1 + A(2k) +B(2k).

Combining these facts, for each positive integer k, we obtain

e(2k + 1) = A(2k + 1) +B(2k + 1)

= A(2k) + (A(2k) +B(2k) + 1)

= (A(2k) +B(2k)) + A(2k) + 1

= e(2k) + (A(2k − 1) +B(2k − 1)) + 1

= e(2k) + e(2k − 1) + 1

and

e(2k) = A(2k) +B(2k)

= (A(2k − 1) +B(2k − 1)) +B(2k − 1)

= e(2k − 1) + (A(2k − 2) +B(2k − 2) + 1)

= e(2k − 1) + e(2k − 2) + 1

Therefore, for all positive integers n ≥ 3, we have e(n) = e(n−1)+e(n−2)+1, as required.
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Method 2
Let n be a positive integer with n ≥ 3, and consider the ES(n).
We divide the sequences into three sets:

(i) The sequence 1 (there is 1 such sequence)

(ii) The sequences which begin with 1 and have more than 1 term

(iii) The sequences which do not begin with 1

We show that in case (ii) there are e(n− 1) sequences and in case (iii) there are e(n− 2)
sequences. This will show that e(n) = 1 + e(n− 1) + e(n− 2), as required.

(ii) Consider the set of ES(n) that begin with 1. We call this set of sequences P .
We remove the 1 from each of these and consider the set of resulting sequences. We
call this set Q. Note that the number of sequences in P and in Q is the same.
Each of the sequences in Q includes numbers from the set {2, 3, . . . , n}, is increasing,
and has even terms in odd positions and odd terms in even positions (since each term
has been shifted one position to the left).
The sequences in Q are in a one-to-one correspondence with the ES(n − 1) (we call
this set of sequences R) and so there are exactly e(n − 1) of them (and so e(n − 1)
sequences in P ).
We can show that this one-to-one correspondence exists by subtracting 1 from each
term of each sequence in Q, to form a set of sequences S. Each of the resulting
sequences is distinct, includes numbers from the set {1, 2, 3, . . . , n− 1}, is increasing,
and has odd terms in odd positions and even terms in even positions (since each term
has been reduced by 1). Also, each sequence in R can be obtained in this way (since
adding 1 to each term in one of these ES gives a distinct sequence in Q).
Therefore, the number of sequences in this case is e(n− 1).

(iii) Consider the set of ES(n) that do not begin with 1. We call this set of sequences T .
Since each sequence in T does not begin with 1, then the minimum number in each
sequence is 3.
Thus, each of the sequences in T includes numbers from the set {3, 4, . . . , n}, is in-
creasing, and has odd terms in odd positions and even terms in even positions.
The sequences in T are in a one-to-one correspondence with the ES(n − 2) (we call
this set of sequences U) and so there are exactly e(n− 2) of them.
We can show that this one-to-one correspondence exists by subtracting 2 from each
term of each sequence in T , to form a set of sequences V . Each of the resulting se-
quences is distinct, includes numbers from the set {1, 2, 3, . . . , n − 2}, is increasing,
and has odd terms in odd positions and even terms in even positions (since each term
has been reduced by 2). Also, each sequence in U can be obtained in this way (since
adding 2 to each term in one of these ES gives a distinct sequence in U).
Therefore, the number of sequences in this case is e(n− 2).

This concludes our proof and shows that e(n) = 1 + e(n− 1) + e(n− 2), as required.
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1. (a) Since (x+ 1) + (x+ 2) + (x+ 3) = 8 + 9 + 10, then 3x+ 6 = 27 or 3x = 21 and so x = 7.

(b) Since
√

25 +
√
x = 6, then squaring both sides gives 25 +

√
x = 36 or

√
x = 11.

Since
√
x = 11, then squaring both sides again, we obtain x = 112 = 121.

Checking,
√

25 +
√

121 =
√

25 + 11 =
√

36 = 6, as required.

(c) Since (a, 2) is the point of intersection of the lines with equations y = 2x−4 and y = x+k,
then the coordinates of this point must satisfy both equations.
Using the first equation, 2 = 2a− 4 or 2a = 6 or a = 3.
Since the coordinates of the point (3, 2) satisfy the equation y = x+ k, then 2 = 3 + k or
k = −1.

2. (a) Since the side length of the original square is 3 and an equilateral triangle of side length 1
is removed from the middle of each side, then each of the two remaining pieces of each
side of the square has length 1.
Also, each of the two sides of each of the equilateral triangles that are shown has length 1.

1

1 1

1

Therefore, each of the 16 line segments in the figure has length 1, and so the perimeter of
the figure is 16.

(b) Since DC = DB, then 4CDB is isosceles and ∠DBC = ∠DCB = 15◦.
Thus, ∠CDB = 180◦ − ∠DBC − ∠DCB = 150◦.
Since the angles around a point add to 360◦, then

∠ADC = 360◦ − ∠ADB − ∠CDB = 360◦ − 130◦ − 150◦ = 80◦ .

(c) By the Pythagorean Theorem in4EAD, we have EA2+AD2 = ED2 or 122+AD2 = 132,
and so AD =

√
169− 144 = 5, since AD > 0.

By the Pythagorean Theorem in 4ACD, we have AC2 + CD2 = AD2 or AC2 + 42 = 52,
and so AC =

√
25− 16 = 3, since AC > 0.

(We could also have determined the lengths of AD and AC by recognizing 3-4-5 and
5-12-13 right-angled triangles.)
By the Pythagorean Theorem in 4ABC, we have AB2 + BC2 = AC2 or AB2 + 22 = 32,
and so AB =

√
9− 4 =

√
5, since AB > 0.

3. (a) Solution 1

Since we want to make 15 − y

x
as large as possible, then we want to subtract as little as

possible from 15.

In other words, we want to make
y

x
as small as possible.

To make a fraction with positive numerator and denominator as small as possible, we
make the numerator as small as possible and the denominator as large as possible.
Since 2 ≤ x ≤ 5 and 10 ≤ y ≤ 20, then we make x = 5 and y = 10.

Therefore, the maximum value of 15− y

x
is 15− 10

5
= 13.
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Solution 2
Since y is positive and 2 ≤ x ≤ 5, then 15 − y

x
≤ 15 − y

5
for any x with 2 ≤ x ≤ 5 and

positive y.

Since 10 ≤ y ≤ 20, then 15− y

5
≤ 15− 10

5
for any y with 10 ≤ y ≤ 20.

Therefore, for any x and y in these ranges, 15− y

x
≤ 15− 10

5
= 13, and so the maximum

possible value is 13 (which occurs when x = 5 and y = 10).

(b) Solution 1
First, we add the two given equations to obtain

(f(x) + g(x)) + (f(x)− g(x)) = (3x+ 5) + (5x+ 7)

or 2f(x) = 8x+ 12 which gives f(x) = 4x+ 6.
Since f(x) + g(x) = 3x+ 5, then g(x) = 3x+ 5− f(x) = 3x+ 5− (4x+ 6) = −x− 1.
(We could also find g(x) by subtracting the two given equations or by using the second of
the given equations.)
Since f(x) = 4x+ 6, then f(2) = 14.
Since g(x) = −x− 1, then g(2) = −3.
Therefore, 2f(2)g(2) = 2× 14× (−3) = −84.

Solution 2
Since the two given equations are true for all values of x, then we can substitute x = 2 to
obtain

f(2) + g(2) = 11

f(2)− g(2) = 17

Next, we add these two equations to obtain 2f(2) = 28 or f(2) = 14.
Since f(2) + g(2) = 11, then g(2) = 11− f(2) = 11− 14 = −3.
(We could also find g(2) by subtracting the two equations above or by using the second
of these equations.)
Therefore, 2f(2)g(2) = 2× 14× (−3) = −84.

4. (a) We consider choosing the three numbers all at once.
We list the possible sets of three numbers that can be chosen:

{1, 2, 3} {1, 2, 4} {1, 2, 5} {1, 3, 4} {1, 3, 5} {1, 4, 5} {2, 3, 4} {2, 3, 5} {2, 4, 5} {3, 4, 5}

We have listed each in increasing order because once the numbers are chosen, we arrange
them in increasing order.
There are 10 sets of three numbers that can be chosen.
Of these 10, the 4 sequences 1, 2, 3 and 1, 3, 5 and 2, 3, 4 and 3, 4, 5 are arithmetic sequences.
Therefore, the probability that the resulting sequence is an arithmetic sequence is 4

10
or 2

5
.
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(b) Solution 1
Join B to D.

AB

C

D

60

Consider 4CBD.
Since CB = CD, then ∠CBD = ∠CDB = 1

2
(180◦ − ∠BCD) = 1

2
(180◦ − 60◦) = 60◦.

Therefore, 4BCD is equilateral, and so BD = BC = CD = 6.
Consider 4DBA.
Note that ∠DBA = 90◦ − ∠CBD = 90◦ − 60◦ = 30◦.
Since BD = BA = 6, then ∠BDA = ∠BAD = 1

2
(180◦ − ∠DBA) = 1

2
(180◦ − 30◦) = 75◦.

We calculate the length of AD.

Method 1

By the Sine Law in 4DBA, we have
AD

sin(∠DBA)
=

BA

sin(∠BDA)
.

Therefore, AD =
6 sin(30◦)

sin(75◦)
=

6× 1
2

sin(75◦)
=

3

sin(75◦)
.

Method 2
If we drop a perpendicular from B to P on AD, then P is the midpoint of AD since
4BDA is isosceles. Thus, AD = 2AP .
Also, BP bisects ∠DBA, so ∠ABP = 15◦.
Now, AP = BA sin(∠ABP ) = 6 sin(15◦).
Therefore, AD = 2AP = 12 sin(15◦).

Method 3
By the Cosine Law in 4DBA,

AD2 = AB2 +BD2 − 2(AB)(BD) cos(∠ABD)

= 62 + 62 − 2(6)(6) cos(30◦)

= 72− 72(
√
3
2

)

= 72− 36
√

3

Therefore, AD =
√

36(2−
√

3) = 6
√

2−
√

3 since AD > 0.
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Solution 2
Drop perpendiculars from D to Q on BC and from D to R on BA.

AB

C

D

60

Q

R

Then CQ = CD cos(∠DCQ) = 6 cos(60◦) = 6× 1
2

= 3.

Also, DQ = CD sin(∠DCQ) = 6 sin(60◦) = 6×
√
3
2

= 3
√

3.
Since BC = 6, then BQ = BC − CQ = 6− 3 = 3.
Now quadrilateral BQDR has three right angles, so it must have a fourth right angle and
so must be a rectangle.
Thus, RD = BQ = 3 and RB = DQ = 3

√
3.

Since AB = 6, then AR = AB −RB = 6− 3
√

3.
Since 4ARD is right-angled at R, then using the Pythagorean Theorem and the fact that
AD > 0, we obtain

AD =
√
RD2 + AR2 =

√
32 + (6− 3

√
3)2 =

√
9 + 36− 36

√
3 + 27 =

√
72− 36

√
3

which we can rewrite as AD =
√

36(2−
√

3) = 6
√

2−
√

3.

5. (a) Let n be the original number and N be the number when the digits are reversed. Since
we are looking for the largest value of n, we assume that n > 0.
Since we want N to be 75% larger than n, then N should be 175% of n, or N = 7

4
n.

Suppose that the tens digit of n is a and the units digit of n is b. Then n = 10a+ b.
Also, the tens digit of N is b and the units digit of N is a, so N = 10b+ a.
We want 10b + a = 7

4
(10a + b) or 4(10b + a) = 7(10a + b) or 40b + 4a = 70a + 7b or

33b = 66a, and so b = 2a.
This tells us that that any two-digit number n = 10a + b with b = 2a has the required
property.
Since both a and b are digits then b < 10 and so a < 5, which means that the possible
values of n are 12, 24, 36, and 48.
The largest of these numbers is 48.

(b) We “complete the rectangle” by drawing a horizontal line through C which meets the
y-axis at P and the vertical line through B at Q.

y

x
O

C (k, 5)

B (4, 0)

A (0, 3)

P Q
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Since C has y-coordinate 5, then P has y-coordinate 5; thus the coordinates of P are
(0, 5).
Since B has x-coordinate 4, then Q has x-coordinate 4.
Since C has y-coordinate 5, then Q has y-coordinate 5.
Therefore, the coordinates of Q are (4, 5), and so rectangle OPQB is 4 by 5 and so has
area 4× 5 = 20.
Now rectangle OPQB is made up of four smaller triangles, and so the sum of the areas of
these triangles must be 20.
Let us examine each of these triangles:

• 4ABC has area 8 (given information)

• 4AOB is right-angled at O, has height AO = 3 and base OB = 4, and so has area
1
2
× 4× 3 = 6.

• 4APC is right-angled at P , has height AP = 5 − 3 = 2 and base PC = k − 0 = k,
and so has area 1

2
× k × 2 = k.

• 4CQB is right-angled at Q, has height QB = 5 − 0 = 5 and base CQ = 4 − k, and
so has area 1

2
× (4− k)× 5 = 10− 5

2
k.

Since the sum of the areas of these triangles is 20, then 8 + 6 +k+ 10− 5
2
k = 20 or 4 = 3

2
k

and so k = 8
3
.

6. (a) Solution 1
Suppose that the distance from point A to point B is d km.
Suppose also that rc is the speed at which Serge travels while not paddling (i.e. being
carried by just the current), that rp is the speed at which Serge travels with no current
(i.e. just from his paddling), and rp+c his speed when being moved by both his paddling
and the current.
It takes Serge 18 minutes to travel from A to B while paddling with the current.

Thus, rp+c =
d

18
km/min.

It takes Serge 30 minutes to travel from A to B with just the current.

Thus, rc =
d

30
km/min.

But rp = rp+c − rc =
d

18
− d

30
=

5d

90
− 3d

90
=

2d

90
=

d

45
km/min.

Since Serge can paddle the d km from A to B at a speed of
d

45
km/min, then it takes him

45 minutes to paddle from A to B with no current.

Solution 2
Suppose that the distance from point A to point B is d km, the speed of the current of
the river is r km/h, and the speed that Serge can paddle is s km/h.

Since the current can carry Serge from A to B in 30 minutes (or
1

2
h), then

d

r
=

1

2
.

When Serge paddles with the current, his speed equals his paddling speed plus the speed
of the current, or (s+ r) km/h.

Since Serge can paddle with the current from A to B in 18 minutes (or
3

10
h), then

d

r + s
=

3

10
.

The time to paddle from A to B with no current would be
d

s
h.
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Since
d

r
=

1

2
, then

r

d
= 2.

Since
d

r + s
=

3

10
, then

r + s

d
=

10

3
.

Therefore,
s

d
=
r + s

d
− r

d
=

10

3
− 2 =

4

3
.

Thus,
d

s
=

3

4
, and so it would take Serge

3

4
of an hour, or 45 minutes, to paddle from A

to B with no current.

Solution 3
Suppose that the distance from point A to point B is d km, the speed of the current of
the river is r km/h, and the speed that Serge can paddle is s km/h.

Since the current can carry Serge from A to B in 30 minutes (or
1

2
h), then

d

r
=

1

2
or

d = 1
2
r.

When Serge paddles with the current, his speed equals his paddling speed plus the speed
of the current, or (s+ r) km/h.

Since Serge can paddle with the current from A to B in 18 minutes (or
3

10
h), then

d

r + s
=

3

10
or d = 3

10
(r + s).

Since d = 1
2
r and d = 3

10
(r + s), then 1

2
r = 3

10
(r + s) or 5r = 3r + 3s and so s = 2

3
r.

To travel from A to B with no current, the time in hours that it takes is
d

s
=

1
2
r

2
3
r

=
3

4
, or

45 minutes.

(b) First, we note that a 6= 0. (If a = 0, then the “parabola” y = a(x− 2)(x− 6) is actually
the horizontal line y = 0 which intersects the square all along OR.)
Second, we note that, regardless of the value of a 6= 0, the parabola has x-intercepts 2 and
6, and so intersects the x-axis at (2, 0) and (6, 0), which we call K(2, 0) and L(6, 0). This
gives KL = 4.
Third, we note that since the x-intercepts of the parabola are 2 and 6, then the axis of
symmetry of the parabola has equation x = 1

2
(2 + 6) = 4.

Since the axis of symmetry of the parabola is a vertical line of symmetry, then if the
parabola intersects the two vertical sides of the square, it will intersect these at the same
height, and if the parabola intersects the top side of the square, it will intersect it at two
points that are symmetrical about the vertical line x = 4.
Fourth, we recall that a trapezoid with parallel sides of lengths a and b and height h has
area 1

2
h(a+ b).

We now examine three cases.
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Case 1: a < 0
Here, the parabola opens downwards.
Since the parabola intersects the square at four points, it must intersect PQ at points
M and N . (The parabola cannot intersect the vertical sides of the square since it gets
“narrower” towards the vertex.)

y

x

P

O R

Q (8, 8)

x = 4

K L

MN

Since the parabola opens downwards, then MN < KL = 4.
Since the height of the trapezoid equals the height of the square (or 8), then the area of
the trapezoid is 1

2
h(KL+MN) which is less than 1

2
(8)(4 + 4) = 32.

But the area of the trapezoid must be 36, so this case is not possible.

Case 2: a > 0; M and N on PQ
We have the following configuration:

y

x

P

O R

Q (8, 8)

x = 4

K L

MN

Here, the height of the trapezoid is 8, KL = 4, and M and N are symmetric about x = 4.
Since the area of the trapezoid is 36, then 1

2
h(KL+MN) = 36 or 1

2
(8)(4 +MN) = 36 or

4 +MN = 9 or MN = 5.
Thus, M and N are each 5

2
units from x = 4, and so N has coordinates (3

2
, 8).

Since this point lies on the parabola with equation y = a(x − 2)(x − 6), then
8 = a(3

2
− 2)(3

2
− 6) or 8 = a(−1

2
)(−9

2
) or 8 = 9

4
a or a = 32

9
.



2011 Euclid Contest Solutions Page 9

Case 3: a > 0; M and N on QR and PO
We have the following configuration:

y

x

P

O R

x = 4

K L

MN

Q

Here, KL = 4, MN = 8, and M and N have the same y-coordinate.
Since the area of the trapezoid is 36, then 1

2
h(KL + MN) = 36 or 1

2
h(4 + 8) = 36 or

6h = 36 or h = 6.
Thus, N has coordinates (0, 6).
Since this point lies on the parabola with equation y = a(x − 2)(x − 6), then
6 = a(0− 2)(0− 6) or 6 = 12a or a = 1

2
.

Therefore, the possible values of a are 32
9

and 1
2
.

7. (a) Solution 1
Consider a population of 100 people, each of whom is 75 years old and who behave ac-
cording to the probabilities given in the question.
Each of the original 100 people has a 50% chance of living at least another 10 years, so
there will be 50%× 100 = 50 of these people alive at age 85.
Each of the original 100 people has a 20% chance of living at least another 15 years, so
there will be 20%× 100 = 20 of these people alive at age 90.
Since there is a 25% (or 1

4
) chance that an 80 year old person will live at least another 10

years (that is, to age 90), then there should be 4 times as many of these people alive at
age 80 than at age 90.
Since there are 20 people alive at age 90, then there are 4 × 20 = 80 of the original 100
people alive at age 80.
In summary, of the initial 100 people of age 75, there are 80 alive at age 80, 50 alive at
age 85, and 20 people alive at age 90.
Because 50 of the 80 people alive at age 80 are still alive at age 85, then the probability
that an 80 year old person will live at least 5 more years (that is, to age 85) is 50

80
= 5

8
, or

62.5%.

Solution 2
Suppose that the probability that a 75 year old person lives to 80 is p, the probability
that an 80 year old person lives to 85 is q, and the probability that an 85 year old person
lives to 90 is r.
We want to the determine the value of q.
For a 75 year old person to live at least another 10 years, they must live another 5 years
(to age 80) and then another 5 years (to age 85). The probability of this is equal to pq.
We are told in the question that this is equal to 50% or 0.5.
Therefore, pq = 0.5.
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For a 75 year old person to live at least another 15 years, they must live another 5 years
(to age 80), then another 5 years (to age 85), and then another 5 years (to age 90). The
probability of this is equal to pqr. We are told in the question that this is equal to 20%
or 0.2.
Therefore, pqr = 0.2
Similarly, since the probability that an 80 year old person will live another 10 years is
25%, then qr = 0.25.

Since pqr = 0.2 and pq = 0.5, then r =
pqr

pq
=

0.2

0.5
= 0.4.

Since qr = 0.25 and r = 0.4, then q =
qr

r
=

0.25

0.4
= 0.625.

Therefore, the probability that an 80 year old man will live at least another 5 years is
0.625, or 62.5%.

(b) Using logarithm rules, the given equation is equivalent to 22 log10 x = 3(2 · 2log10 x) + 16 or
(2log10 x)2 = 6 · 2log10 x + 16.
Set u = 2log10 x. Then the equation becomes u2 = 6u+ 16 or u2 − 6u− 16 = 0.
Factoring, we obtain (u− 8)(u+ 2) = 0 and so u = 8 or u = −2.
Since 2a > 0 for any real number a, then u > 0 and so we can reject the possibility that
u = −2.
Thus, u = 2log10 x = 8 which means that log10 x = 3.
Therefore, x = 1000.

8. (a) First, we determine the first entry in the 50th row.
Since the first column is an arithmetic sequence with common difference 3, then the 50th
entry in the first column (the first entry in the 50th row) is 4 + 49(3) = 4 + 147 = 151.
Second, we determine the common difference in the 50th row by determining the second
entry in the 50th row.
Since the second column is an arithmetic sequence with common difference 5, then the
50th entry in the second column (that is, the second entry in the 50th row) is 7 + 49(5)
or 7 + 245 = 252.
Therefore, the common difference in the 50th row must be 252− 151 = 101.
Thus, the 40th entry in the 50th row (that is, the number in the 50th row and the 40th
column) is 151 + 39(101) = 151 + 3939 = 4090.

(b) We follow the same procedure as in (a).
First, we determine the first entry in the Rth row.
Since the first column is an arithmetic sequence with common difference 3, then the Rth
entry in the first column (that is, the first entry in the Rth row) is 4 + (R − 1)(3) or
4 + 3R− 3 = 3R + 1.
Second, we determine the common difference in the Rth row by determining the second
entry in the Rth row.
Since the second column is an arithmetic sequence with common difference 5, then the
Rth entry in the second column (that is, the second entry in the Rth row) is 7+(R−1)(5)
or 7 + 5R− 5 = 5R + 2.
Therefore, the common difference in the Rth row must be (5R+ 2)− (3R+ 1) = 2R+ 1.
Thus, the Cth entry in the Rth row (that is, the number in the Rth row and the Cth
column) is

3R + 1 + (C − 1)(2R + 1) = 3R + 1 + 2RC + C − 2R− 1 = 2RC +R + C
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(c) Suppose that N is an entry in the table, say in the Rth row and Cth column.
From (b), then N = 2RC +R + C and so 2N + 1 = 4RC + 2R + 2C + 1.
Now 4RC + 2R + 2C + 1 = 2R(2C + 1) + 2C + 1 = (2R + 1)(2C + 1).
Since R and C are integers with R ≥ 1 and C ≥ 1, then 2R + 1 and 2C + 1 are each
integers that are at least 3.
Therefore, 2N + 1 = (2R + 1)(2C + 1) must be composite, since it is the product of two
integers that are each greater than 1.

9. (a) If n = 2011, then 8n− 7 = 16081 and so
√

8n− 7 ≈ 126.81.

Thus,
1 +
√

8n− 7

2
≈ 1 + 126.81

2
≈ 63.9.

Therefore, g(2011) = 2(2011)+

⌊
1 +

√
8(2011)− 7

2

⌋
= 4022+b63.9c = 4022+63 = 4085.

(b) To determine a value of n for which f(n) = 100, we need to solve the equation

2n−
⌊

1 +
√

8n− 7

2

⌋
= 100 (∗)

We first solve the equation

2x− 1 +
√

8x− 7

2
= 100 (∗∗)

because the left sides of (∗) and (∗∗) do not differ by much and so the solutions are likely
close together. We will try integers n in (∗) that are close to the solutions to (∗∗).
Manipulating (∗∗), we obtain

4x− (1 +
√

8x− 7) = 200

4x− 201 =
√

8x− 7

(4x− 201)2 = 8x− 7

16x2 − 1608x+ 40401 = 8x− 7

16x2 − 1616x+ 40408 = 0

2x2 − 202x+ 5051 = 0

By the quadratic formula,

x =
202±

√
2022 − 4(2)(5051)

2(2)
=

202±
√

396

4
=

101±
√

99

2

and so x ≈ 55.47 or x ≈ 45.53.
We try n = 55, which is close to 55.47:

f(55) = 2(55)−

⌊
1 +

√
8(55)− 7

2

⌋
= 110−

⌊
1 +
√

433

2

⌋

Since
√

433 ≈ 20.8, then
1 +
√

433

2
≈ 10.9, which gives

⌊
1 +
√

433

2

⌋
= 10.

Thus, f(55) = 110− 10 = 100.
Therefore, a value of n for which f(n) = 100 is n = 55.
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(c) We want to show that each positive integer m is in the range of f or the range of g, but
not both.
To do this, we first try to better understand the “complicated” term of each of the func-
tions – that is, the term involving the greatest integer function.
In particular, we start with a positive integer k ≥ 1 and try to determine the positive

integers n that give

⌊
1 +
√

8n− 7

2

⌋
= k.

By definition of the greatest integer function, the equation

⌊
1 +
√

8n− 7

2

⌋
= k is equiv-

alent to the inequality k ≤ 1 +
√

8n− 7

2
< k + 1, from which we obtain the following set

of equivalent inequalities

2k ≤ 1 +
√

8n− 7 < 2k + 2
2k − 1 ≤

√
8n− 7 < 2k + 1

4k2 − 4k + 1 ≤ 8n− 7 < 4k2 + 4k + 1
4k2 − 4k + 8 ≤ 8n < 4k2 + 4k + 8
1
2
(k2 − k) + 1 ≤ n < 1

2
(k2 + k) + 1

If we define Tk = 1
2
k(k + 1) = 1

2
(k2 + k) to be the kth triangular number for k ≥ 0, then

Tk−1 = 1
2
(k − 1)(k) = 1

2
(k2 − k).

Therefore,

⌊
1 +
√

8n− 7

2

⌋
= k for Tk−1 + 1 ≤ n < Tk + 1.

Since n is an integer, then

⌊
1 +
√

8n− 7

2

⌋
= k is true for Tk−1 + 1 ≤ n ≤ Tk.

When k = 1, this interval is T0 + 1 ≤ n ≤ T1 (or 1 ≤ n ≤ 1). When k = 2, this interval
is T1 + 1 ≤ n ≤ T2 (or 2 ≤ n ≤ 3). When k = 3, this interval is T2 + 1 ≤ n ≤ T3 (or
4 ≤ n ≤ 6). As k ranges over all positive integers, these intervals include every positive
integer n and do not overlap.
Therefore, we can determine the range of each of the functions f and g by examining the
values f(n) and g(n) when n is in these intervals.

For each non-negative integer k, define Rk to be the set of integers greater than k2 and
less than or equal to (k + 1)2. Thus, Rk = {k2 + 1, k2 + 2, . . . , k2 + 2k, k2 + 2k + 1}.
For example, R0 = {1}, R1 = {2, 3, 4}, R2 = {5, 6, 7, 8, 9}, and so on. Every positive
integer occurs in exactly one of these sets.
Also, for each non-negative integer k define Sk = {k2 + 2, k2 + 4, . . . , k2 + 2k} and define
Qk = {k2 + 1, k2 + 3, . . . , k2 + 2k + 1}. For example, S0 = {}, S1 = {3}, S2 = {6, 8},
Q0 = {1}, Q1 = {2, 4}, Q2 = {5, 7, 9}, and so on. Note that Rk = Qk ∪ Sk so every
positive integer occurs in exactly one Qk or in exactly one Sk, and that these sets do not
overlap since no two Sk’s overlap and no two Qk’s overlap and no Qk overlaps with an Sk.

We determine the range of the function g first.

For Tk−1 + 1 ≤ n ≤ Tk, we have

⌊
1 +
√

8n− 7

2

⌋
= k and so

2Tk−1 + 2 ≤ 2n ≤ 2Tk

2Tk−1 + 2 + k ≤ 2n+

⌊
1 +
√

8n− 7

2

⌋
≤ 2Tk + k

k2 − k + 2 + k ≤ g(n) ≤ k2 + k + k
k2 + 2 ≤ g(n) ≤ k2 + 2k
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Note that when n is in this interval and increases by 1, then the 2n term causes the value
of g(n) to increase by 2.
Therefore, for the values of n in this interval, g(n) takes precisely the values k2 + 2,
k2 + 4, k2 + 6, . . . , k2 + 2k.
In other words, the range of g over this interval of its domain is precisely the set Sk.
As k ranges over all positive integers (that is, as these intervals cover the domain of g),
this tells us that the range of g is precisely the integers in the sets S1,S2,S3, . . ..
(We could also include S0 in this list since it is the empty set.)

We note next that f(1) = 2−
⌊

1 +
√

8− 7

2

⌋
= 1, the only element of Q0.

For k ≥ 1 and Tk + 1 ≤ n ≤ Tk+1, we have

⌊
1 +
√

8n− 7

2

⌋
= k + 1 and so

2Tk + 2 ≤ 2n ≤ 2Tk+1

2Tk + 2− (k + 1) ≤ 2n−
⌊

1 +
√

8n− 7

2

⌋
≤ 2Tk+1 − (k + 1)

k2 + k + 2− k − 1 ≤ f(n) ≤ (k + 1)(k + 2)− k − 1
k2 + 1 ≤ f(n) ≤ k2 + 2k + 1

Note that when n is in this interval and increases by 1, then the 2n term causes the value
of f(n) to increase by 2.
Therefore, for the values of n in this interval, f(n) takes precisely the values k2 + 1,
k2 + 3, k2 + 5, . . . , k2 + 2k + 1.
In other words, the range of f over this interval of its domain is precisely the set Qk.
As k ranges over all positive integers (that is, as these intervals cover the domain of f),
this tells us that the range of f is precisely the integers in the sets Q0,Q1,Q2, . . ..

Therefore, the range of f is the set of elements in the sets Q0,Q1,Q2, . . . and the range
of g is the set of elements in the sets S0,S1,S2, . . .. These ranges include every positive
integer and do not overlap.

10. (a) Suppose that ∠KAB = θ.
Since ∠KAC = 2∠KAB, then ∠KAC = 2θ and ∠BAC = ∠KAC + ∠KAB = 3θ.
Since 3∠ABC = 2∠BAC, then ∠ABC = 2

3
× 3θ = 2θ.

Since ∠AKC is exterior to 4AKB, then ∠AKC = ∠KAB + ∠ABC = 3θ.
This gives the following configuration:

C

BA

K

θ
2θ

2θ

3θ
b

c

d x

a  x

Now 4CAK is similar to 4CBA since the triangles have a common angle at C and
∠CAK = ∠CBA.
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Therefore,
AK

BA
=
CA

CB
or

d

c
=
b

a
and so d =

bc

a
.

Also,
CK

CA
=
CA

CB
or

a− x
b

=
b

a
and so a− x =

b2

a
or x = a− b2

a
=
a2 − b2

a
, as required.

(b) From (a), bc = ad and a2 − b2 = ax and so we obtain

LS = (a2 − b2)(a2 − b2 + ac) = (ax)(ax+ ac) = a2x(x+ c)

and
RS = b2c2 = (bc)2 = (ad)2 = a2d2

In order to show that LS = RS, we need to show that x(x+ c) = d2 (since a > 0).

Method 1: Use the Sine Law
First, we derive a formula for sin 3θ which we will need in this solution:

sin 3θ = sin(2θ + θ)

= sin 2θ cos θ + cos 2θ sin θ

= 2 sin θ cos2 θ + (1− 2 sin2 θ) sin θ

= 2 sin θ(1− sin2 θ) + (1− 2 sin2 θ) sin θ

= 3 sin θ − 4 sin3 θ

Since ∠AKB = 180◦−∠KAB−∠KBA = 180◦− 3θ, then using the Sine Law in 4AKB
gives

x

sin θ
=

d

sin 2θ
=

c

sin(180◦ − 3θ)

Since sin(180◦ − X) = sinX, then sin(180◦ − 3θ) = sin 3θ, and so x =
d sin θ

sin 2θ
and

c =
d sin 3θ

sin 2θ
. This gives

x(x+ c) =
d sin θ

sin 2θ

(
d sin θ

sin 2θ
+
d sin 3θ

sin 2θ

)
=

d2 sin θ

sin2 2θ
(sin θ + sin 3θ)

=
d2 sin θ

sin2 2θ
(sin θ + 3 sin θ − 4 sin3 θ)

=
d2 sin θ

sin2 2θ
(4 sin θ − 4 sin3 θ)

=
4d2 sin2 θ

sin2 2θ
(1− sin2 θ)

=
4d2 sin2 θ cos2 θ

sin2 2θ

=
4d2 sin2 θ cos2 θ

(2 sin θ cos θ)2

=
4d2 sin2 θ cos2 θ

4 sin2 θ cos2 θ
= d2
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as required.

We could have instead used the formula sinA + sinB = 2 sin

(
A+B

2

)
cos

(
A−B

2

)
to

show that sin 3θ + sin θ = 2 sin 2θ cos θ, from which

sin θ(sin 3θ + sin θ) = sin θ(2 sin 2θ cos θ) = 2 sin θ cos θ sin 2θ = sin2 2θ

Method 2: Extend AB
Extend AB to E so that BE = BK = x and join KE.

C

BA

K

θ
2θ

2θ

3θ
b

c

d x

a  x

x E

Now 4KBE is isosceles with ∠BKE = ∠KEB.
Since ∠KBA is the exterior angle of 4KBE, then ∠KBA = 2∠KEB = 2θ.
Thus, ∠KEB = ∠BKE = θ.
But this also tells us that ∠KAE = ∠KEA = θ.
Thus, 4KAE is isosceles and so KE = KA = d.

C

BA

K

θ
2θ

2θ

3θ
b

c

d x

a  x

x Eθ

d

So 4KAE is similar to 4BKE, since each has two angles equal to θ.

Thus,
KA

BK
=
AE

KE
or

d

x
=
c+ x

d
and so d2 = x(x+ c), as required.

Method 3: Use the Cosine Law and the Sine Law
We apply the Cosine Law in 4AKB to obtain

AK2 = BK2 +BA2 − 2(BA)(BK) cos(∠KBA)

d2 = x2 + c2 − 2cx cos(2θ)

d2 = x2 + c2 − 2cx(2 cos2 θ − 1)

Using the Sine Law in 4AKB, we get
x

sin θ
=

d

sin 2θ
or

sin 2θ

sin θ
=
d

x
or

2 sin θ cos θ

sin θ
=
d

x

and so cos θ =
d

2x
.
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Combining these two equations,

d2 = x2 + c2 − 2cx

(
2d2

4x2
− 1

)
d2 = x2 + c2 − cd2

x
+ 2cx

d2 +
cd2

x
= x2 + 2cx+ c2

d2 +
cd2

x
= (x+ c)2

xd2 + cd2 = x(x+ c)2

d2(x+ c) = x(x+ c)2

d2 = x(x+ c)

as required (since x+ c 6= 0).

(c) Solution 1
Our goal is to find a triple of positive integers that satisfy the equation in (b) and are the
side lengths of a triangle.
First, we note that if (A,B,C) is a triple of real numbers that satisfies the equation in
(b) and k is another real number, then the triple (kA, kB, kC) also satisfies the equation
from (b), since

(k2A2−k2B2)(k2A2−k2B2+kAkC) = k4(A2−B2)(A2−B2+AC) = k4(B2C2) = (kB)2(kC)2

Therefore, we start by trying to find a triple (a, b, c) of rational numbers that satisfies
the equation in (b) and forms a triangle, and then “scale up” this triple to form a triple
(ka, kb, kc) of integers.
To do this, we rewrite the equation from (b) as a quadratic equation in c and solve for c
using the quadratic formula.
Partially expanding the left side from (b), we obtain

(a2 − b2)(a2 − b2) + ac(a2 − b2) = b2c2

which we rearrange to obtain

b2c2 − c(a(a2 − b2))− (a2 − b2)2 = 0

By the quadratic formula,

c =
a(a2 − b2)±

√
a2(a2 − b2)2 + 4b2(a2 − b2)2

2b2
=
a(a2 − b2)±

√
(a2 − b2)2(a2 + 4b2)

2b2

Since ∠BAC > ∠ABC, then a > b and so a2 − b2 > 0, which gives

c =
a(a2 − b2)± (a2 − b2)

√
a2 + 4b2

2b2
=

(a2 − b2)
2b2

(a±
√
a2 + 4b2)

Since a2 + 4b2 > 0, then
√
a2 + 4b2 > a, so the positive root is

c =
(a2 − b2)

2b2
(a+

√
a2 + (2b)2)
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We try to find integers a and b that give a rational value for c. We will then check to see
if this triple (a, b, c) forms the side lengths of a triangle, and then eventually scale these
up to get integer values.
One way for the value of c to be rational (and in fact the only way) is for

√
a2 + (2b)2 to

be an integer, or for a and 2b to be the legs of a Pythagorean triple.
Since

√
32 + 42 is an integer, then we try a = 3 and b = 2, which gives

c =
(32 − 22)

2 · 22
(3 +

√
32 + 42) = 5

and so (a, b, c) = (3, 2, 5). Unfortunately, these lengths do not form a triangle, since
3 + 2 = 5.
(The Triangle Inequality tells us that three positive real numbers a, b and c form a triangle
if and only if a+ b > c and a+ c > b and b+ c > a.)
We can continue to try small Pythagorean triples.
Now 152 + 82 = 172, but a = 15 and b = 4 do not give a value of c that forms a triangle
with a and b.
However, 162 + 302 = 342, so we can try a = 16 and b = 15 which gives

c =
(162 − 152)

2 · 152
(16 +

√
162 + 302) =

31

450
(16 + 34) =

31

9

Now the lengths (a, b, c) = (16, 15, 31
9

) do form the sides of a triangle since a + b > c and
a+ c > b and b+ c > a.
Since these values satisfy the equation from (b), then we can scale them up by a factor of
k = 9 to obtain the triple (144, 135, 31) which satisfies the equation from (b) and are the
side lengths of a triangle.
(Using other Pythagorean triples, we could obtain other triples of integers that work.)

Solution 2
We note that the equation in (b) involves only a, b and c and so appears to depend only
on the relationship between the angles ∠CAB and ∠CBA in 4ABC.
Using this premise, we use 4ABC, remove the line segment AK and draw the altitude
CF .

C

BA
3θ 2θ

b a

a cos 2θb cos 3θ F

Because we are only looking for one triple that works, we can make a number of assump-
tions that may or may not be true in general for such a triangle, but which will help us
find an example.
We assume that 3θ and 2θ are both acute angles; that is, we assume that θ < 30◦.
In 4ABC, we have AF = b cos 3θ, BF = a cos 2θ, and CF = b sin 3θ = a sin 2θ.
Note also that c = b cos 3θ + a cos 2θ.
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One way to find the integers a, b, c that we require is to look for integers a and b and an
angle θ with the properties that b cos 3θ and a cos 2θ are integers and b sin 3θ = a sin 2θ.
Using trigonometric formulae,

sin 2θ = 2 sin θ cos θ

cos 2θ = 2 cos2 θ − 1

sin 3θ = 3 sin θ − 4 sin3 θ

(from the calculation in (a), Solution 1, Method 1)

cos 3θ = cos(2θ + θ)

= cos 2θ cos θ − sin 2θ sin θ

= (2 cos2 θ − 1) cos θ − 2 sin2 θ cos θ

= (2 cos2 θ − 1) cos θ − 2(1− cos2 θ) cos θ

= 4 cos3 θ − 3 cos θ

So we can try to find an angle θ < 30◦ with cos θ a rational number and then integers a
and b that make b sin 3θ = a sin 2θ and ensure that b cos 3θ and a cos 2θ are integers.
Since we are assuming that θ < 30◦, then cos θ >

√
3
2
≈ 0.866.

The rational number with smallest denominator that is larger than
√
3
2

is 7
8
, so we try the

acute angle θ with cos θ = 7
8
.

In this case, sin θ =
√

1− cos2 θ =
√
15
8

, and so

sin 2θ = 2 sin θ cos θ = 2× 7
8
×
√
15
8

= 7
√
15

32

cos 2θ = 2 cos2 θ − 1 = 2× 49
64
− 1 = 17

32

sin 3θ = 3 sin θ − 4 sin3 θ = 3×
√
15
8
− 4× 15

√
15

512
= 33

√
15

128

cos 3θ = 4 cos3 θ − 3 cos θ = 4× 343
512
− 3× 7

8
= 7

128

To have b sin 3θ = a sin 2θ, we need 33
√
15

128
b = 7

√
15

32
a or 33b = 28a.

To ensure that b cos 3θ and a cos 2θ are integers, we need 7
128
b and 17

32
a to be integers, and

so a must be divisible by 32 and b must be divisible by 128.
The integers a = 33 and b = 28 satisfy the equation 33b = 28a.
Multiplying each by 32 gives a = 1056 and b = 896 which satisfy the equation 33b = 28a
and now have the property that b is divisible by 128 (with quotient 7) and a is divisible
by 32 (with quotient 33).
With these values of a and b, we obtain c = b cos 3θ+a cos 2θ = 896× 7

128
+1056× 17

32
= 610.

We can then check that the triple (a, b, c) = (1056, 896, 610) satisfies the equation from
(b), as required.
As in our discussion in Solution 1, each element of this triple can be divided by 2 to obtain
the “smaller” triple (a, b, c) = (528, 448, 305) that satisfies the equation too.
Using other values for cos θ and integers a and b, we could obtain other triples (a, b, c) of
integers that work.
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1. (a) Solution 1
Since 3x = 27, then 3x+2 = 3x32 = 27 · 9 = 243.

Solution 2
Since 3x = 27 and 27 = 33, then x = 3.
Therefore, 3x+2 = 35 = 243.

(b) Since 2531359x = 2731459, then x =
2731459

2531359
= 2231 = 12.

(c) The lines y = x+ 2 and y = −1
2
x+ 2 both pass through the point B on the y-axis.

Since the y-intercept of the line y = x+ 2 is 2, then B has coordinates (0, 2).
Next, we find the x-intercepts of each of the two lines by setting y = 0.
If y = x+ 2 and y = 0, then x+ 2 = 0 or x = −2, so A has coordinates (−2, 0).
If y = −1

2
x+ 2 and y = 0, then 0 = −1

2
x+ 2 or 1

2
x = 2, and so x = 4.

Thus, C has coordinates (4, 0).
Since BO and AC are perpendicular, then we can treat AC as the base of 4ABC and
BO as its height.
Note that BO = 2 and AC = 4− (−2) = 6.
Therefore, the area of 4ABC is 1

2
× AC ×BO = 1

2
× 6× 2 = 6.

2. (a) Let r, g and b be the masses of the red, green and blue packages, respectively.
We are told that r + g + b = 60, r + g = 25, and g + b = 50.
Subtracting the second equation from the first, we obtain b = 60− 25 = 35.
Substituting into the third equation, we obtain g = 50− b = 50− 35 = 15.
Therefore, the mass of the green package is 15 kg.

(b) Suppose that a palindrome p is the sum of the three consecutive integers a− 1, a, a+ 1.
In this case, p = (a− 1) + a+ (a+ 1) = 3a, so p is a multiple of 3.
The largest palindromes less than 200 are 191, 181, 171.
Note that 191 and 181 are not divisible by 3, but 171 is divisible by 3.
One way to check these without using a calculator is to use the test for divisibility by 3:

A positive integer is divisible by 3 if and only if the sum of its digits is divisible
by 3.

Therefore, 191 and 181 cannot be the sum of three consecutive integers.
The integer 171 can be written as 56 + 57 + 58, so 171 is the largest palindrome less than
200 that is the sum of three consecutive integers.

(c) Solution 1
Since (x+ 1)(x− 1) = 8, then x2 − 1 = 8 or x2 = 9.
Thus, (x2 + x)(x2 − x) = x(x+ 1)x(x− 1) = x2(x+ 1)(x− 1) = 9(8) = 72.

Solution 2
Since (x+ 1)(x− 1) = 8, then x2 − 1 = 8 or x2 = 9, so x = ±3.
If x = 3, then (x2 + x)(x2 − x) = (32 + 3)(32 − 3) = (9 + 3)(9− 3) = 12(6) = 72.
If x = −3, then (x2 + x)(x2 − x) = ((−3)2 + (−3))((−3)2 − (−3)) = (9− 3)(9 + 3) = 72.
In either case, (x2 + x)(x2 − x) = 72.

3. (a) Solution 1
Bea spends 60 minutes flying from H to F , 30 minutes at F , 45 minutes flying from F to
G, 60 minutes at G, and then flies from G to H.
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Thus, her total time is 60 + 30 + 45 + 60 = 195 minutes plus the length of time that it
takes her to fly from G to H.
Since Bea flies at a constant speed, then the ratio of the two distances equals the ratio of
the corresponding times.

Therefore,
HF

GF
=

60 minutes

45 minutes
=

4

3
.

Since 4FGH is right-angled at F , then 4FGH must be similar to a 3-4-5 triangle, and

so
HG

GF
=

5

3
.

In particular, this means that the ratio of the times flying H to G and F to G is also 5
3
.

Thus, it takes her 5
3
× 45 = 75 minutes to fly from G to H.

In conclusion, Bea is away from her hive for 195 + 75 = 270 minutes.

Solution 2
Bea spends 60 minutes flying from H to F , 30 minutes at F , 45 minutes flying from F to
G, 60 minutes at G, and then flies from G to H.
Thus, her total time is 60 + 30 + 45 + 60 = 195 minutes plus the length of time that it
takes her to fly from G to H.
Since Bea flies at a constant speed, then the ratio of the two distances equals the ratio of
the corresponding times.
Therefore, we can use the Pythagorean Theorem on the times to obtain

Time G to H =
√

(Time H to F )2 + (Time F to G)2 =
√

602 + 452 =
√

5625 = 75 min

since the time is positive.
In conclusion, Bea is away from her hive for 195 + 75 = 270 minutes.

(b) Solution 1
Since ∠OPB = 90◦, then OP and PB are perpendicular, so the product of their slopes
is −1.

The slope of OP is
4− 0

p− 0
=

4

p
and the slope of PB is

4− 0

p− 10
=

4

p− 10
.

Therefore, we need

4

p
· 4

p− 10
= −1

16 = −p(p− 10)

p2 − 10p+ 16 = 0

(p− 2)(p− 8) = 0

and so p = 2 or p = 8. Since each these steps is reversible, then 4OPB is right-angled
precisely when p = 2 and p = 8.

Solution 2
Since 4OPB is right-angled at P , then OP 2 +PB2 = OB2 by the Pythagorean Theorem.
Note that OB = 10 since O has coordinates (0, 0) and B has coordinates (10, 0).
Also, OP 2 = (p−0)2 + (4−0)2 = p2 + 16 and PB2 = (10−p)2 + (4−0)2 = p2−20p+ 116.
Therefore,

(p2 + 16) + (p2 − 20p+ 116) = 102

2p2 − 20p+ 32 = 0

p2 − 10p+ 16 = 0
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and so (p − 2)(p − 8) = 0, or p = 2 or p = 8. Since each these steps is reversible, then
4OPB is right-angled precisely when p = 2 and p = 8.

4. (a) Suppose that Thurka bought x goats and y helicopters.
Then 19x+ 17y = 201.
Since x and y are non-negative integers, then 19x ≤ 201 so x ≤ 10.
If x = 10, then 17y = 201− 19x = 11, which does not have an integer solution because 11
is not divisible by 17.
If x = 9, then 17y = 201− 19x = 30, which does not have an integer solution.
If x = 8, then 17y = 201− 19x = 49, which does not have an integer solution.
If x = 7, then 17y = 201− 19x = 68, so y = 4.
Therefore, 19(7) + 17(4) = 201, and so Thurka buys 7 goats and 4 helicopters.
(We can check that x = 0, 1, 2, 3, 4, 5, 6 do not give values of y that work.)

(b) Solution 1
Manipulating algebraically,

(x+ 8)4 = (2x+ 16)2

(x+ 8)4 − 22(x+ 8)2 = 0

(x+ 8)2((x+ 8)2 − 22) = 0

(x+ 8)2((x+ 8) + 2)((x+ 8)− 2) = 0

(x+ 8)2(x+ 10)(x+ 6) = 0

Therefore, x = −8 or x = −10 or x = −6.

Solution 2
Manipulating algebraically,

(x+ 8)4 = (2x+ 16)2

(x+ 8)4 − 22(x+ 8)2 = 0

(x+ 8)2((x+ 8)2 − 22) = 0

(x+ 8)2(x2 + 16x+ 64− 4) = 0

(x+ 8)2(x2 + 16x+ 60) = 0

(x+ 8)2(x+ 10)(x+ 6) = 0

Therefore, x = −8 or x = −10 or x = −6.

Solution 3
Since (x+ 8)4 = (2x+ 16)2, then (x+ 8)2 = 2x+ 16 or (x+ 8)2 = −(2x+ 16).
From the first equation, x2 +16x+64 = 2x+16 or x2 +14x+48 = 0 or (x+6)(x+8) = 0.
From the second equation, x2 + 16x + 64 = −2x − 16 or x2 + 18x + 80 = 0 or
(x+ 10)(x+ 8) = 0.
Therefore, x = −8 or x = −10 or x = −6.
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5. (a) Solution 1
We use the fact that g(x) = g(f(f−1(x))).
Since f(x) = 2x+ 1, then to determine f−1(x) we solve x = 2y+ 1 for y to get 2y = x− 1
or y = 1

2
(x− 1). Thus, f−1(x) = 1

2
(x− 1).

Since g(f(x)) = 4x2 + 1, then

g(x) = g(f(f−1(x)))

= g(f(1
2
(x− 1)))

= 4(1
2
(x− 1))2 + 1

= 4 · 1
4
(x− 1)2 + 1

= (x− 1)2 + 1

= x2 − 2x+ 2

Solution 2
We use the expressions for f(x) and g(f(x)) to construct g(x).
Since f(x) is linear and g(f(x)) is quadratic, then it is likely that g(x) is also quadratic.
Since f(x) = 2x+ 1, then (f(x))2 = 4x2 + 4x+ 1.
Since g(f(x)) has no term involving x, then we subtract 2f(x) (to remove the 4x term)
to get

(f(x))2 − 2f(x) = (4x2 + 4x+ 1)− 2(2x+ 1) = 4x2 − 1

To get g(f(x)) from this, we add 2 to get 4x2 + 1.
Therefore, g(f(x)) = (f(x))2 − 2f(x) + 2, and so an expression for g(x) is x2 − 2x+ 2.

Solution 3
We use the expressions for f(x) and g(f(x)) to construct g(x).
Since f(x) is linear and g(f(x)) is quadratic, then it is likely that g(x) is also quadratic.
Suppose that g(x) = ax2 + bx+ c for some real numbers a, b, c.
Then

g(f(x)) = g(2x+ 1)

= a(2x+ 1)2 + b(2x+ 1) + c

= a(4x2 + 4x+ 1) + b(2x+ 1) + c

= 4ax2 + (4a+ 2b)x+ (a+ b+ c)

Since we are told that g(f(x)) = 4x2 + 1, then we can compare coefficients to deduce that
4a = 4 and 4a+ 2b = 0 and a+ b+ c = 1.
From the first equation, a = 1.
From the second equation, b = −2a = −2.
From the third equation, c = 1− a− b = 2.
Therefore, an expression for g(x) is x2 − 2x+ 2.

(b) Solution 1
Since the sum of the first two terms is 40 and the sum of the first three terms is 76, then
the third term is 76− 40 = 36.
Since the sum of the first three terms is 76 and the sum of the first four terms is 130, then
the fourth term is 130− 76 = 54.
Since the third term is 36 and the fourth term is 54, then the common ratio in the geo-
metric sequence is 54

36
= 3

2
.

Therefore, the fifth term is 54 · 3
2

= 81 and the sixth term is 81 · 3
2

= 243
2

.



2010 Euclid Contest Solutions Page 6

Also, the second term is 36÷ 3
2

= 36 · 2
3

= 24 and the first term is 24÷ 3
2

= 24 · 2
3

= 16.
Thus, the first six terms of the sequence are 16, 24, 36, 54, 81, 243

2
.

Since the first term equals 24 and the common ratio is 3
2
, then the nth term in the sequence

is 24

(
3

2

)n−1

=
3n−1

2n−5
.

When n ≥ 6, this is a fraction whose numerator is odd and whose denominator is even,
and so, when n ≥ 6, the nth term is not an integer. (An odd integer is never divisible by
an even integer.)
Therefore, there will be 5 integers in the sequence.

Solution 2
Suppose that a is the first term and r is the common ratio between consecutive terms (so
that ar is the second term, ar2 is the third term, and so on).
From the given information, a+ar = 40 and a+ar+ar2 = 76 and a+ar+ar2+ar3 = 130.
Subtracting the first equation from the second, we obtain ar2 = 36.
Subtracting the second equation from the third, we obtain ar3 = 54.

Since ar3 = 54 and ar2 = 36, then r =
ar3

ar2
=

54

36
=

3

2
.

Since ar2 = 36 and r = 3
2
, then a(3

2
)2 = 36 or 9

4
a = 36 or a = 4

9
· 36 = 16.

Since a = 16 and r = 3
2
, then the first six terms of the sequence are 16, 24, 36, 54, 81, 243

2
.

Since the first term equals 24 and the common ratio is 3
2
, then the nth term in the sequence

is 24

(
3

2

)n−1

=
3n−1

2n−5
.

When n ≥ 6, this is a fraction whose numerator is odd and whose denominator is even,
and so, when n ≥ 6, the nth term is not an integer. (An odd integer is never divisible by
an even integer.)
Therefore, there will be 5 integers in the sequence.

6. (a) In a 30◦-60◦-90◦ triangle, the ratio of the side opposite the 90◦ to the side opposite the
60◦ angle is 2 :

√
3.

Note that each of4ABC, 4ACD, 4ADE, 4AEF , 4AFG, and4AGH is a 30◦-60◦-90◦

triangle.

Therefore,
AH

AG
=
AG

AF
=
AF

AE
=
AE

AD
=
AD

AC
=
AC

AB
=

2√
3

.

Thus, AH = 2√
3
AG =

(
2√
3

)2

AF =
(

2√
3

)3

AE =
(

2√
3

)4

AD =
(

2√
3

)5

AC =
(

2√
3

)6

AB.

(In other words, to get from AB = 1 to the length of AH, we multiply by the “scaling
factor” 2√

3
six times.)

Therefore, AH =
(

2√
3

)6

= 64
27

.

(b) Solution 1
Since 4AFD is right-angled at F , then by the Pythagorean Theorem,

AD =
√
AF 2 + FD2 =

√
42 + 22 =

√
20 = 2

√
5

since AD > 0.
Let ∠FAD = β.
Since ABCD is a rectangle, then ∠BAF = 90◦ − β.
Since 4AFD is right-angled at F , then ∠ADF = 90◦ − β.
Since ABCD is a rectangle, then ∠BDC = 90◦ − (90◦ − β) = β.
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D

A B

CE

F

90  

90  

Therefore, 4BFA, 4AFD, and 4DFE are all similar as each is right-angled and has
either an angle of β or an angle of 90◦ − β (and hence both of these angles).

Therefore,
AB

AF
=
DA

DF
and so AB = 4(2

√
5)

2
= 4
√

5.

Also,
FE

FD
=
FD

FA
and so FE = 2(2)

4
= 1.

Since ABCD is a rectangle, then BC = AD = 2
√

5, and DC = AB = 4
√

5.
Finally, the area of quadrilateral BCEF equals the area of4DCB minus the area4DFE.
Thus, the required area is

1
2
(DC)(CB)− 1

2
(DF )(FE) = 1

2
(4
√

5)(2
√

5)− 1
2
(2)(1) = 20− 1 = 19

Solution 2
Since 4AFD is right-angled at F , then by the Pythagorean Theorem,

AD =
√
AF 2 + FD2 =

√
42 + 22 =

√
20 = 2

√
5

since AD > 0.
Let ∠FAD = β.
Since ABCD is a rectangle, then ∠BAF = 90◦ − β. Since 4BAF is right-angled at F ,
then ∠ABF = β.
Since 4AFD is right-angled at F , then ∠ADF = 90◦ − β.
Since ABCD is a rectangle, then ∠BDC = 90◦ − (90◦ − β) = β.

D

A B

CE

F

90  

90  

Looking at 4AFD, we see that sin β =
FD

AD
=

2

2
√

5
=

1√
5

, cos β =
AF

AD
=

4

2
√

5
=

2√
5

,

and tan β =
FD

AF
=

2

4
=

1

2
.

Since AF = 4 and ∠ABF = β, then AB =
AF

sin β
=

4
1√
5

= 4
√

5.

Since FD = 2 and ∠FDE = β, then FE = FD tan β = 2 · 1
2

= 1.

Since ABCD is a rectangle, then BC = AD = 2
√

5, and DC = AB = 4
√

5.
Finally, the area of quadrilateral EFBC equals the area of4DCB minus the area4DFE.
Thus, the required area is

1
2
(DC)(CB)− 1

2
(DF )(FE) = 1

2
(4
√

5)(2
√

5)− 1
2
(2)(1) = 20− 1 = 19
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7. (a) Using the facts that 9 = 32 and 27 = 33, and the laws for manipulating exponents, we
have

3x−19
3

2x2 = 27

3x−1(32)
3

2x2 = 33

3x−13
3

x2 = 33

3x−1+ 3
x2 = 33

When two powers of 3 are equal, their exponents must be equal so

x− 1 +
3

x2
= 3

x3 − x2 + 3 = 3x2 (multiplying by x2)

x3 − 4x2 + 3 = 0

Since x = 1 satisfies the equation, then x−1 is a factor of the left side. Using long division
or synthetic division, we can factor this out to get (x− 1)(x2 − 3x− 3) = 0.
Using the quadratic formula, the quadratic equation x2 − 3x− 3 = 0 has roots

x =
3±

√
(−3)2 − 4(1)(−3)

2
=

3±
√

21

2

Therefore, the solutions to the original equation are x = 1 and x =
3±
√

21

2
.

(b) To determine the points of intersection, we equate y values of the two curves and obtain
log10(x

4) = (log10 x)3.
Since log10(a

b) = b log10 a, the equation becomes 4 log10 x = (log10 x)3.
We set u = log10 x and so the equation becomes 4u = u3, or u3 − 4u = 0.
We can factor the left side as u3 − 4u = u(u2 − 4) = u(u+ 2)(u− 2).
Therefore, u(u+ 2)(u− 2) = 0, and so u = 0 or u = −2 or u = 2.
Therefore, log10 x = 0 or log10 x = −2 or log10 x = 2.
Therefore, x = 1 or x = 1

100
or x = 100.

Finally, we must calculate the y-coordinates of the points of intersection. Since one of the
original curves is y = (log10 x)3, we can calculate the corresponding values of y by using
the fact that y = u3.
The corresponding values of y are y = 03 = 0 and y = (−2)3 = −8 and y = 23 = 8.
Therefore, the points of intersection are (1, 0), ( 1

100
,−8) and (100, 8).

8. (a) If Oi-Lam tosses 3 heads, then George has no coins to toss, so cannot toss exactly 1 head.
If Oi-Lam tosses 2, 1 or 0 heads, then George has at least one coin to toss, so can toss
exactly 1 head.
Therefore, the following possibilities exist:

∗ Oi-Lam tosses 2 heads out of 3 coins and George tosses 1 head out of 1 coin

∗ Oi-Lam tosses 1 head out of 3 coins and George tosses 1 head out of 2 coins

∗ Oi-Lam tosses 0 heads out of 3 coins and George tosses 1 head out of 3 coins

We calculate the various probabilities.
If 3 coins are tossed, there are 8 equally likely possibilities: HHH, HHT, HTH, THH, TTH,

THT, HTT, TTT. Each of these possibilities has probability
(

1
2

)3
= 1

8
. Therefore,
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∗ the probability of tossing 0 heads out of 3 coins is 1
8

∗ the probability of tossing 1 head out of 3 coins is 3
8

∗ the probability of tossing 2 heads out of 3 coins is 3
8

∗ the probability of tossing 3 heads out of 3 coins is 1
8

If 2 coins are tossed, there are 4 equally likely possibilities: HH, HT, TH, TT. Each of

these possibilities has probability
(

1
2

)2
= 1

4
. Therefore, the probability of tossing 1 head

out of 2 coins is 2
4

= 1
2
.

If 1 coin is tossed, the probability of tossing 1 head is 1
2
.

To summarize, the possibilities are

∗ Oi-Lam tosses 2 heads out of 3 coins (with probability 3
8
) and George tosses 1 head

out of 1 coin (with probability 1
2
)

∗ Oi-Lam tosses 1 head out of 3 coins (with probability 3
8
) and George tosses 1 head

out of 2 coins (with probability 1
2
)

∗ Oi-Lam tosses 0 heads out of 3 coins (with probability 1
8
) and George tosses 1 head

out of 3 coins (with probability 3
8
)

Therefore, the overall probability is 3
8
· 1

2
+ 3

8
· 1

2
+ 1

8
· 3

8
= 27

64
.

(b) Suppose ∠PAR = x◦ and ∠QDR = y◦.

A D

R

P QB C
x

y

Since PR and PA are radii of the larger circle, then 4PAR is isosceles.
Thus, ∠PRA = ∠PAR = x◦.
Since QD and QR are radii of the smaller circle, then 4QRD is isosceles.
Thus, ∠QRD = ∠QDR = y◦.
In4ARD, the sum of the angles is 180◦, so x◦+(x◦+40◦+y◦)+y◦ = 180◦ or 2x+2y = 140
or x+ y = 70.
Therefore, ∠CPD = x◦ + 40◦ + y◦ = (x+ y + 40)◦ = 110◦.

9. (a) (i) Solution 1
LS = cot θ − cot 2θ

=
cos θ

sin θ
− cos 2θ

sin 2θ

=
sin 2θ cos θ − cos 2θ sin θ

sin θ sin 2θ

=
sin(2θ − θ)
sin θ sin 2θ

=
sin θ

sin θ sin 2θ

=
1

sin 2θ
= RS

as required.
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Solution 2

LS = cot θ − cot 2θ

=
cos θ

sin θ
− cos 2θ

sin 2θ

=
cos θ

sin θ
− cos 2θ

2 sin θ cos θ

=
2 cos2 θ − cos 2θ

2 sin θ cos θ

=
2 cos2 θ − (2 cos2 θ − 1)

sin 2θ

=
1

sin 2θ
= RS

as required.

(ii) We use (i) to note that
1

sin 8◦
= cot 4◦ − cot 8◦ and

1

sin 16◦
= cot 8◦ − cot 16◦ and so

on. Thus,

S =
1

sin 8◦
+

1

sin 16◦
+

1

sin 32◦
+ · · ·+ 1

sin 4096◦
+

1

sin 8192◦

= (cot 4◦ − cot 8◦) + (cot 8◦ − cot 16◦) + (cot 16◦ − cot 32◦) +

· · ·+ (cot 2048◦ − cot 4096◦) + (cot 4096◦ − cot 8192◦)

= cot 4◦ − cot 8192◦

since the sum “telescopes”.
Since the cotangent function has a period of 180◦, and 8100◦ is a multiple of 180◦,
then cot 8192◦ = cot 92◦.
Therefore,

S = cot 4◦ − cot 92◦

=
cos 4◦

sin 4◦
− cos 92◦

sin 92◦

=
cos 4◦

sin 4◦
− − sin 2◦

cos 2◦

=
cos 4◦

2 sin 2◦ cos 2◦
+

sin 2◦

cos 2◦

=
cos 4◦ + 2 sin2 2◦

2 sin 2◦ cos 2◦

=
(1− 2 sin2 2◦) + 2 sin2 2◦

sin 4◦

=
1

sin 4◦

Therefore, α = 4◦.
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(b) Solution 1
We use the notation A = ∠BAC, B = ∠ABC and C = ∠ACB.
We need to show that A < 1

2
(B + C). Since the sum of the angles in 4ABC is 180◦,

then B + C = 180◦ − A, and so this inequality is equivalent to A < 1
2
(180◦ − A) which is

equivalent to 3
2
A < 90◦ or A < 60◦.

So we need to show that A < 60◦.
We know that a < 1

2
(b + c). Thus, 2a < b + c and so 4a2 < b2 + c2 + 2bc because all

quantities are positive.
Using the cosine law in 4ABC, we obtain a2 = b2 + c2 − 2bc cosA.
Therefore,

4a2 < b2 + c2 + 2bc

4(b2 + c2 − 2bc cosA) < b2 + c2 + 2bc

4b2 + 4c2 − 8bc cosA < b2 + c2 + 2bc

4b2 + 4c2 − 8bc cosA < b2 + c2 + 2bc+ 3(b− c)2 (since (b− c)2 ≥ 0)

4b2 + 4c2 − 8bc cosA < b2 + c2 + 2bc+ 3b2 − 6bc+ 3c2

4b2 + 4c2 − 8bc cosA < 4b2 + 4c2 − 4bc

−8bc cosA < −4bc

cosA > 1
2

(since 8bc > 0)

Since 2a < b + c, then a cannot be the longest side of 4ABC (that is, we cannot have
a ≥ b and a ≥ c), so A must be an acute angle.
Therefore, cosA > 1

2
implies A < 60◦, as required.

Solution 2
We use the notation A = ∠BAC, B = ∠ABC and C = ∠ACB.
We need to show that A < 1

2
(B + C). Since the sum of the angles in 4ABC is 180◦,

then B + C = 180◦ − A, and so this inequality is equivalent to A < 1
2
(180◦ − A) which is

equivalent to 3
2
A < 90◦ or A < 60◦.

So we need to show that A < 60◦.
We know that a < 1

2
(b+ c) which implies 2a < b+ c.

Using the sine law in 4ABC, we obtain
a

sinA
=

b

sinB
=

c

sinC
, which gives b =

a sinB

sinA

and c =
a sinC

sinA
.

Therefore, we obtain equivalent inequalities

2a < b+ c

2a <
a sinB

sinA
+
a sinC

sinA
2a sinA < a sinB + a sinC (since sinA > 0 for 0◦ < A < 180◦)

2 sinA < sinB + sinC

since a > 0. Next, we use the trigonometric formula sinB+sinC = 2 sin

(
B + C

2

)
cos

(
B − C

2

)
.

Since cos θ ≤ 1 for any θ, then sinB + sinC ≤ 2 sin

(
B + C

2

)
· 1 = 2 sin

(
B + C

2

)
.



2010 Euclid Contest Solutions Page 12

Therefore,

2 sinA < sinB + sinC ≤ 2 sin

(
B + C

2

)
2 sinA < 2 sin

(
B + C

2

)
2 sinA < 2 sin

(
180◦ − A

2

)
4 sin(1

2
A) cos(1

2
A) < 2 sin(90◦ − 1

2
A)

2 sin(1
2
A) cos(1

2
A) < cos(1

2
A)

Since 0◦ < A < 180◦, then cos(1
2
A) > 0, so sin(1

2
A) < 1

2
.

Since 2a < b + c, then a cannot be the longest side of 4ABC, so A must be an acute
angle.
Therefore, 1

2
A < 30◦ or A < 60◦, as required.

10. Denote the side lengths of a triangle by a, b and c, with 0 < a ≤ b ≤ c.
In order for these lengths to form a triangle, we need c < a+ b and b < a+ c and a < b+ c.
Since 0 < a ≤ b ≤ c, then b < a + c and a < b + c follow automatically, so only c < a + b ever
needs to be checked.
Instead of directly considering triangles and sets of triangle, we can consider triples (a, b, c) and
sets of triples (a, b, c) with the appropriate conditions.
For each positive integer k ≥ 3, we use the notation Sk to denote the set of triples of positive
integers (a, b, c) with 0 < a ≤ b ≤ c and c < a+ b and a+ b+ c = k.
In this case, c < a+ b and a+ b+ c = k, so c+ c < a+ b+ c = k, so 2c < k or c < 1

2
k.

Also, if 0 < a ≤ b ≤ c and a+ b+ c = k, then k = a+ b+ c ≤ c+ c+ c, so 3c ≥ k or c ≥ 1
3
k.

(a) Consider T (10), which is the number of elements in S10.
We want to find all possible triples (a, b, c) of integers with 0 < a ≤ b ≤ c and c < a + b
and a+ b+ c = 10.
We need c < 10

2
= 5 and c ≥ 10

3
. Thus, c = 4.

Therefore, we need 0 < a ≤ b ≤ 4 and a+ b = 6.
There are two possibilities: (a, b, c) = (2, 4, 4) or (a, b, c) = (3, 3, 4).
Therefore, T (10) = 2.

Consider T (11). We want to find all possible triples (a, b, c) of integers with 0 < a ≤ b ≤ c
and c < a+ b and a+ b+ c = 11.
We need c < 11

2
and c ≥ 11

3
. Thus, c = 4 or c = 5.

If c = 4, we need 0 < a ≤ b ≤ 4 and a+ b = 7.
There is only one possibility: (a, b, c) = (3, 4, 4).
If c = 5, we need 0 < a ≤ b ≤ 5 and a+ b = 6.
There are three possibilities: (a, b, c) = (1, 5, 5) or (a, b, c) = (2, 4, 5) or (a, b, c) = (3, 3, 5).
Therefore, T (11) = 4.

Consider T (12). We want to find all possible triples (a, b, c) of integers with 0 < a ≤ b ≤ c
and c < a+ b and a+ b+ c = 12.
We need c < 12

2
and c ≥ 12

3
. Thus, c = 4 or c = 5.

If c = 4, we need 0 < a ≤ b ≤ 4 and a+ b = 8.
There is only one possibility: (a, b, c) = (4, 4, 4).
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If c = 5, we need 0 < a ≤ b ≤ 5 and a+ b = 7.
There are two possibilities: (a, b, c) = (2, 5, 5) or (a, b, c) = (3, 4, 5).
Therefore, T (12) = 3.

(b) We show that T (2m) = T (2m − 3) by creating a one-to-one correspondence between the
triples in S2m and the triples S2m−3.
Note that S2m is the set of triples (a, b, c) of positive integers with 0 < a ≤ b ≤ c, with
c < a+ b, and with a+ b+ c = 2m.
Also, S2m−3 is the set of triples (A,B,C) of positive integers with 0 < A ≤ B ≤ C, with
C < A+B, and with A+B + C = 2m− 3.

Consider a triple (a, b, c) in S2m and a corresponding triple (a− 1, b− 1, c− 1).
We show that (a− 1, b− 1, c− 1) is in S2m−3:

∗ Since (a, b, c) is in S2m, then c < 1
2
(2m) = m. This means that b ≤ c ≤ m − 1, so

a = 2m− b− c ≥ 2. Therefore, a− 1, b− 1 and c− 1 are positive integers since a, b
and c are positive integers with 2 ≤ a ≤ b ≤ c.

∗ Since 2 ≤ a ≤ b ≤ c, then 1 ≤ a− 1 ≤ b− 1 ≤ c− 1, so 0 < a− 1 ≤ b− 1 ≤ c− 1.

∗ Since a+ b+ c = 2m, then c = 2m− (a+ b) so a+ b and c have the same parity.
Since c < a + b, then c ≤ a + b − 2. (In other words, it cannot be the case that
c = a+ b−1.) Therefore, c−1 ≤ (a−1)+(b−1)−1; that is, c−1 < (a−1)+(b−1).

∗ Since a+ b+ c = 2m, then (a− 1) + (b− 1) + (c− 1) = 2m− 3.

Therefore, (a− 1, b− 1, c− 1) is in S2m−3, since it satisfies all of the conditions of S2m−3.
Note as well that two different triples in S2m correspond to two different triples in S2m−3.
Thus, every triple in S2m corresponds to a different triple in S2m−3.
Thus, T (2m) ≤ T (2m− 3).

Consider a triple (A,B,C) in S2m−3 and a corresponding triple (A+ 1, B + 1, C + 1).
We show that (A+ 1, B + 1, C + 1) is in S2m:

∗ Since (A,B,C) is in S2m−3, then A, B and C are positive integers, so A + 1, B + 1
and C + 1 are positive integers.

∗ Since 0 < A ≤ B ≤ C, then 1 < A+1 ≤ B+1 ≤ C+1, so 0 < A+1 ≤ B+1 ≤ C+1.

∗ Since C < A+B, then C + 1 < (A+ 1) + (B + 1)− 1 so C + 1 < (A+ 1) + (B + 1).

∗ Since A+B + C = 2m− 3, then (A+ 1) + (B + 1) + (C + 1) = 2m.

Therefore, (A+ 1, B + 1, C + 1) is in S2m.
Note again that two different triples in S2m−3 correspond to two different triples in S2m.
Thus, every triple in S2m−3 corresponds to a different triple in S2m.
Therefore, T (2m− 3) ≤ T (2m).

Since T (2m) ≤ T (2m− 3) and T (2m− 3) ≤ T (2m), then T (2m) = T (2m− 3).

(c) We will use two important facts:

(F1) T (2m) = T (2m− 3) for every positive integer m ≥ 3, and

(F2) T (k) ≤ T (k + 2) for every positive integer k ≥ 3

We proved (F1) in (b).
Next, we prove (F2):

Consider a triple (a, b, c) in Sk and a corresponding triple (a, b + 1, c + 1). We
show that the triple (a, b+ 1, c+ 1) is in Sk+2:

∗ Since a, b and c are positive integers, then a, b + 1 and c + 1 are positive
integers.
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∗ Since 0 < a ≤ b ≤ c, then 0 < a ≤ b+ 1 ≤ c+ 1.

∗ Since c < a+ b, then c+ 1 < a+ (b+ 1).

∗ Since a+ b+ c = k, then a+ (b+ 1) + (c+ 1) = k + 2.

Therefore, (a, b + 1, c + 1) is in Sk+2. Note that, using this correspondence,
different triples in Sk correspond different triples in Sk+2. Thus, every triple in
Sk corresponds to a different triple in Sk+2. This proves that T (k) ≤ T (k + 2).

Suppose that n = N is the smallest positive integer for which T (n) > 2010.
Then N must be odd:

If N was even, then by (F1), T (N − 3) = T (N) > 2010 and so n = N − 3 would
be an integer smaller than N with T (n) > 2010. This contradicts the fact that
n = N is the smallest such integer.

Therefore, we want to find the smallest odd positive integer N for which T (N) > 2010.
Next, we note that if we can find an odd positive integer n such that T (n) > 2010 ≥
T (n− 2), then we will have found the desired value of n:

This is because n and n− 2 are both odd, and by property (F2), any smaller odd
positive integer k will give T (k) ≤ T (n − 2) ≤ 2010 and any larger odd positive
integer m will give T (m) ≥ T (n) > 2010.

We show that N = 309 is the desired value of N by showing that T (309) > 2010 and
T (307) ≤ 2010.

Calculation of T (309)

We know that 309
3
≤ c < 309

2
, so 103 ≤ c ≤ 154.

For each admissible value of c, we need to count the number of pairs of positive integers
(a, b) with a ≤ b ≤ c and a+ b = 309− c.
For example, if c = 154, then we need a ≤ b ≤ 154 and a+ b = 155.
This gives pairs (1, 154), (2, 153), . . . , (76, 79), (77, 78), of which there are 77.
Also, if c = 153, then we need a ≤ b ≤ 153 and a+ b = 156.
This gives pairs (3, 153), . . . , (77, 79), (78, 78), of which there are 76.
In general, if c is even, then the minimum possible value of a occurs when b is as large as
possible – that is, when b = c, so a ≥ 309− 2c.
Also, the largest possible value of a occurs when a and b are as close to equal as possible.
Since c is even, then 309− c is odd, so a and b cannot be equal, but they can differ by 1.
In this case, a = 154− 1

2
c and b = 155− 1

2
c.

Therefore, if c is even, there are (154− 1
2
c)− (309− 2c) + 1 = 3

2
c− 154 possible pairs (a, b)

and so 3
2
c− 154 possible triples.

In general, if c is odd, then the minimum possible value of a occurs when b is as large as
possible – that is, when b = c, so a ≥ 309− 2c.
Also, the largest possible value of a occurs when a and b are as close to equal as possible.
Since c is odd, then 309− c is even, so a and b can be equal. In this case, a = 1

2
(309− c).

Therefore, if c is odd, there are 1
2
(309− c)− (309− 2c) + 1 = 3

2
c− 307

2
possible pairs (a, b)

and so 3
2
c− 307

2
possible triples.

The possible even values of c are 104, 106, . . . , 152, 154 (there are 26 such values) and the
possible odd values of c are 103, 105, . . . , 151, 153 (there are 26 such values).
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Therefore,

T (309) =
(

3
2
(104)− 154

)
+
(

3
2
(106)− 154

)
+ · · ·+

(
3
2
(154)− 154

)
+(

3
2
(103)− 307

2

)
+
(

3
2
(105)− 307

2

)
+ · · ·+

(
3
2
(153)− 307

2

)
= 3

2
(104 + 106 + · · ·+ 154)− 26 · 154 + 3

2
(103 + 105 + · · ·+ 153)− 26 · 307

2

= 3
2
(103 + 104 + 105 + 106 + · · ·+ 153 + 154)− 26 · 154− 26 · 307

2

= 3
2
· 1

2
(103 + 154)(52)− 26 · 154− 26 · 307

2

= 3
2
(26)(257)− 26 · 154− 26 · 307

2

= 2028

Therefore, T (309) > 2010, as required.

Calculation of T (307)

We know that 307
3
≤ c < 307

2
, so 103 ≤ c ≤ 153.

For each admissible value of c, we need to count the number of pairs of positive integers
(a, b) with a ≤ b ≤ c and a+ b = 307− c.
This can be done in a similar way to the calculation of T (309) above.
If n is even, there are 3

2
c− 153 possible triples.

If n is odd, there are 3
2
c− 305

2
possible triples.

The possible even values of c are 104, 106, . . . , 150, 152 (there are 25 such values) and the
possible odd values of c are 103, 105, . . . , 151, 153 (there are 26 such values).
Therefore,

T (307) =
(

3
2
(104)− 153

)
+
(

3
2
(106)− 153

)
+ · · ·+

(
3
2
(152)− 153

)
+(

3
2
(103)− 305

2

)
+
(

3
2
(105)− 305

2

)
+ · · ·+

(
3
2
(153)− 305

2

)
= 3

2
(104 + 106 + · · ·+ 152)− 25 · 153 + 3

2
(103 + 105 + · · ·+ 153)− 26 · 305

2

= 3
2
(103 + 104 + 105 + 106 + · · ·+ 152 + 153)− 25 · 153− 26 · 305

2

= 3
2
· 1

2
(103 + 153)(51)− 25 · 153− 26 · 305

2

= 3
2
(51)(128)− 25 · 153− 26 · 305

2

= 2002

Therefore, T (307) < 2010, as required.

Therefore, the smallest positive integer n such that T (n) > 2010 is n = 309.

As a final note, we discuss briefly how one could guess that the answer was near N = 309.

Consider the values of T (n) for small odd positive integers n.
In (a), by considering the possible values of c from smallest (roughly 1

3
n) to largest

(roughly 1
2
n), we saw that T (11) = 1 + 3 = 4.

If we continue to calculate T (n) for a few more small odd values of n we will see
that:

T (13) = 2 + 3 = 5

T (15) = 1 + 2 + 4 = 7

T (17) = 1 + 3 + 4 = 8

T (19) = 2 + 3 + 5 = 10

T (21) = 1 + 2 + 4 + 5 = 12

T (23) = 1 + 3 + 4 + 6 = 14
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The pattern that seems to emerge is that for n odd, T (n) is roughly equal to the
sum of the integers from 1 to 1

4
n, with one out of every three integers removed.

Thus, T (n) is roughly equal to 2
3

of the sum of the integers from 1 to 1
4
n.

Therefore, T (n) ≈ 2
3
· 1

2
(1

4
n)(1

4
n+ 1) ≈ 2

3
· 1

2
(1

4
n)2 ≈ 1

48
n2.

It makes sense to look for an odd positive integer n with T (n) ≈ 2010.
Thus, we are looking for a value of n that roughly satisfies 1

48
n2 ≈ 2010 or

n2 ≈ 96480 or n ≈ 310.
Since n is odd, then it makes sense to consider n = 309, as in the solution above.
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1. (a) We rewrite 6x + 3y = 21 as 3y = −6x + 21 or y = −2x + 7.
Thus, the slope is −2.

(b) Solution 1

Since the slope of the line segment is 3, then
c− 0

5− 1
= 3, and so

c

4
= 3 or c = 12.

Solution 2
Since the slope of the line segment is 3, then for every unit that we move to the right, we
move 3 units up.
Since (5, c) is 4 units to the right of (1, 0), then it is 3(4) = 12 units up from (1, 0), so
c = 0 + 12 = 12.

(c) Solution 1

The given line segment joins (0, 4) to (8,−4), so has slope
4− (−4)

0− 8
=

8

−8
= −1.

Since the y-intercept of the line segment is 4, then the equation of the line passing through
A and B is y = −x + 4.
Since the point (k, k) lies on the line, then k = −k + 4 or 2k = 4 and so k = 2.

Solution 2
We label the point (k, k) as K.
Since K lies on the line segment AB, then the slope of AK equals the slope of AB.

Line segment AB joins (0, 4) to (8,−4), so has slope
4− (−4)

0− 8
=

8

−8
= −1.

Line segment AK joins (0, 4) to (k, k), so has slope
k − 4

k − 0
.

Therefore,
k − 4

k
= −1 or k − 4 = −k or 2k = 4 and so k = 2.

2. (a) Solution 1

If a quadratic equation has the form ax2 + bx + c = 0, then the sum of its roots is − b

a
.

Here, the sum of the roots must be −
(

(−6)
1

)
= 6.

Solution 2
Since x2 − 6x− 7 = 0, then (x− 7)(x + 1) = 0.
Thus, the roots are x = 7 and x = −1.
The sum of these roots is 7 + (−1) = 6.

(b) Solution 1

If a quadratic equation has the form ax2 + bx + c = 0, then the product of its roots is
c

a
.

Here, the product of the roots must be −20
5

= −4.

Solution 2
Since 5x2 − 20 = 0, then x2 − 4 = 0 or (x− 2)(x + 2) = 0.
Thus, the roots are x = 2 and x = −2.
The product of these roots is 2(−2) = −4.

(c) Solution 1

If a cubic equation has the form a3 + bx2 + cx + d = 0, then the sum of its roots is − b

a
.

Here, the sum of the three roots is −
(−6

1

)
= 6.

The average of three numbers is their sum divided by 3, so the average of the three roots
is 6

3
= 2.
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Solution 2
Since x3 − 6x2 + 5x = 0, then x(x2 − 6x + 5) = 0 or x(x− 5)(x− 1) = 0.
The three roots of this equation are x = 0, x = 1 and x = 5.
The average of these numbers is 1

3
(0 + 1 + 5) = 1

3
(6) = 2.

3. (a) Since AB = AD = BD, then 4BDA is equilateral.
Thus, ∠ABD = ∠ADB = ∠DAB = 60◦.
Also, ∠DAE = 180◦ − ∠ADE − ∠AED = 180◦ − 60◦ − 90◦ = 30◦.
Since CAE is a straight line, then ∠CAD = 180◦ − ∠DAE = 180◦ − 30◦ = 150◦.
Now AC = AD so 4CAD is isosceles, which gives ∠CDA = ∠DCA.
Since the sum of the angles in 4CAD is 180◦ and ∠CDA = ∠DCA, then

∠CDA = 1
2
(180◦ − ∠CAD) = 1

2
(180◦ − 150◦) = 15◦

Thus, ∠CDB = ∠CDA + ∠ADB = 15◦ + 60◦ = 75◦.

(b) Solution 1
Since ABCD is a rectangle, then AB = CD = 40 and AD = BC = 30.
By the Pythagorean Theorem, BD2 = AD2 + AB2 and since BD > 0, then

BD =
√

302 + 402 =
√

900 + 1600 =
√

2500 = 50

We calculate the area of 4ADB is two different ways.
First, using AB as base and AD as height, we obtain an area of 1

2
(40)(30) = 600.

Next, using DB as base and AF as height, we obtain an area of 1
2
(50)x = 25x.

We must have 25x = 600 and so x = 600
25

= 24.

Solution 2
Since ABCD is a rectangle, then AB = CD = 40 and AD = BC = 30.
By the Pythagorean Theorem, BD2 = AD2 + AB2 and since BD > 0, then

BD =
√

302 + 402 =
√

900 + 1600 =
√

2500 = 50

Since 4DAB is right-angled at A, then sin(∠ADB) =
AB

BD
=

40

50
=

4

5
.

But 4ADF is right-angled at F and ∠ADF = ∠ADB.

Therefore, sin(∠ADF ) =
AF

AD
=

x

30
.

Thus,
x

30
=

4

5
and so x = 4

5
(30) = 24.

Solution 3
Since ABCD is a rectangle, then AB = CD = 40 and AD = BC = 30.
By the Pythagorean Theorem, BD2 = AD2 + AB2 and since BD > 0, then

BD =
√

302 + 402 =
√

900 + 1600 =
√

2500 = 50

Note that 4BFA is similar to 4BAD, since each is right-angled and they share a com-
mon angle at B.

Thus,
AF

AB
=

AD

BD
and so

x

30
=

40

50
which gives x =

30(40)

50
= 24.
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4. (a) Solution 1
The sum of the terms in an arithmetic sequence is equal to the average of the first and
last terms times the number of terms.
If n is the number of terms in the sequence, then 1

2
(1 + 19)n = 70 or 10n = 70 and so

n = 7.

Solution 2
Let n be the number of terms in the sequence and d the common difference.
Since the first term is 1 and the nth term equals 19, then 1 + (n − 1)d = 19 and so
(n− 1)d = 18.
Since the sum of the terms in the sequence is 70, then 1

2
n(1 + 1 + (n− 1)d) = 70.

Thus, 1
2
n(2 + 18) = 70 or 10n = 70 and so n = 7.

(b) Solution 1
Since the given equation is true for all values of x, then it is true for any particular value
of x that we try.
If x = −3, the equation becomes a(−3 + b(0)) = 2(3) or −3a = 6 and so a = −2.
If x = 0, the equation becomes −2(0 + b(3)) = 2(6) or −6b = 12 and so b = −2.
Therefore, a = −2 and b = −2.

Solution 2
We expand both sides of the equation:

a(x + b(x + 3)) = 2(x + 6)

a(x + bx + 3b) = 2x + 12

ax + abx + 3ab = 2x + 12

(a + ab)x + 3ab = 2x + 12

Since this equation is true for all values of x, then the coefficients on the left side and right
side must be equal, so a + ab = 2 and 3ab = 12.
From the second equation, ab = 4 so the first equation becomes a + 4 = 2 or a = −2.
Since ab = 4, then −2b = 4 and so b = −2.
Thus, a = b = −2.

5. (a) Solution 1
Drop a perpendicular from C to P on AD.

A B
D

C

3
77

P

Since 4ACB is isosceles, then AP = PB.
Since 4CDP is a 30◦-60◦-90◦ triangle, then PD = 1

2
(CD) = 3

2
.

Thus, AP = AD − PD = 8− 3
2

= 13
2
.

This tells us that DB = PB − PD = AP − PD = 13
2
− 3

2
= 5.

Solution 2
Since 4ACB is symmetric about the vertical line through C, we can reflect CD in this
vertical line, finding point E on AD with CE = 3 and ∠CED = 60◦.
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A B
D

C

3
77

6060

3

E

Then 4CDE has two 60◦ angles, so must have a third, and so is equilateral.
Therefore, ED = CD = CE = 3 and so DB = AE = AD − ED = 8− 3 = 5.

Solution 3
Since ∠CDB = 180◦−∠CDA = 180◦− 60◦ = 120◦, then using the cosine law in 4CDB,
we obtain

CB2 = CD2 + DB2 − 2(CD)(DB) cos(∠CDB)

72 = 32 + DB2 − 2(3)(DB) cos(120◦)

49 = 9 + DB2 − 6(DB)
(
−1

2

)
0 = DB2 + 3DB − 40

0 = (DB − 5)(DB + 8)

Since DB > 0, then DB = 5.

(b) Solution 1
Since 4ABC is right-angled at C, then sin B = cos A.

Therefore, 2 cos A = 3 tan A =
3 sin A

cos A
or 2 cos2 A = 3 sin A.

Using the fact that cos2 A = 1− sin2 A, this becomes 2− 2 sin2 A = 3 sin A
or 2 sin2 A + 3 sin A− 2 = 0 or (2 sin A− 1)(sin A + 2) = 0.
Since sin A is between −1 and 1, then sin A = 1

2
.

Since A is an acute angle, then A = 30◦.

Solution 2

Since 4ABC is right-angled at C, then sin B =
b

c
and tan A =

a

b
.

Thus, the given equation is
2b

c
=

3a

b
or 2b2 = 3ac.

Using the Pythagorean Theorem, b2 = c2 − a2 and so we obtain 2c2 − 2a2 = 3ac or
2c2 − 3ac− 2a2 = 0.
Factoring, we obtain (c− 2a)(2c + a) = 0.
Since a and c must both be positive, then c = 2a.
Since 4ABC is right-angled, the relation c = 2a means that 4ABC is a 30◦-60◦-90◦

triangle, with A = 30◦.

6. (a) The number of integers between 100 and 999 inclusive is 999− 100 + 1 = 900.
An integer n in this range has three digits, say a, b and c, with the hundreds digit equal
to a.
Note that 0 ≤ b ≤ 9 and 0 ≤ c ≤ 9 and 1 ≤ a ≤ 9.
To have a + b + c = 24, then the possible triples for a, b, c in some order are 9,9,6; 9,8,7;
8,8,8. (There cannot be three 9’s. If there are two 9’s, the the other digit equals 6. If there
is one 9, the second and third digits add to 15 but are both less than 9, so must equal 8
and 7. If there are zero 9’s, the maximum for each digit is 8, and so each digt must be 8
in order for the sum of all three to equal 24.)
If the digits are 9, 9 and 6, there are 3 arrangements: 996, 969, 699.
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If the digits are 9, 8 and 7, there are 6 arrangements: 987, 978, 897, 879, 798, 789.
If the digits are 8, 8 and 8, there is only 1 arrangement: 888.
Therefore, there are 3 + 6 + 1 = 10 integers n in the range 100 to 999 with the sum of the
digits of n equal to 24.
The required probability equals the number of possible values of n with the sum of digits
equal to 24 divided by the total number of integers in the range, or 10

900
= 1

90
.

(b) Since Alice drives at 60 km/h, then she drives 1 km every minute.
Since Alice drove from G to F in 45 minutes, then the distance from G to F is 45 km.
Let the distance from E to G be d km and let Bob’s speed be B km/h.

Since Bob drove from G to E in 20 minutes (or 1
3

of an hour), then
d

B
=

1

3
. Thus, d = 1

3
B.

The time that it took Bob to drive from F to G was 45
B

hours.
The time that it took Alice to drive from E to G was d

60
hours.

Since the time that it took each of Alice and Bob to reach G was the same, then
d

60
=

45

B
and so Bd = 45(60) = 2700.
Thus, B

(
1
3
B

)
= 2700 so B2 = 8100 or B = 90 since B > 0.

Therefore, Bob’s speed was 90 km/h.

7. (a) Completing the square on the original parabola, we obtain

y = x2 − 2x + 4 = x2 − 2x + 1− 1 + 4 = (x− 1)2 + 3

Therefore, the vertex of the original parabola is (1, 3).
Since the new parabola is a translation of the original parabola and has x-intercepts 3 and
5, then its equation is y = 1(x− 3)(x− 5) = x2 − 8x + 15.
Completing the square here, we obtain

y = x2 − 8x + 15 = x2 − 8x + 16− 16 + 15 = (x− 4)2 − 1

Therefore, the vertex of the new parabola is (4,−1).
Thus, the point (1, 3) is translated p units to the right and q units down to reach (4,−1),
so p = 3 and q = 4.

(b) First, we determine the coordinates of A.
The area of 4ABC is 4. We can think of AC as its base, and its height being the distance
from B to the x-axis.
If the coordinates of A are (a, 0), then the base has length 4− a and the height is 4.
Thus, 1

2
(4− a)(4) = 4, so 4− a = 2 and so a = 2.

Therefore, the coordinates of A are (2, 0).

Next, we determine the equation of the parabola.
The parabola has x-intercepts 2 and 4, so has equation y = k(x− 2)(x− 4).
Since the parabola passes through (0,−4) as well, then −4 = k(−2)(−4) so k = −1

2
.

Therefore, the parabola has equation y = −1
2
(x− 2)(x− 4).

Next, we determine the coordinates of D, the vertex of the parabola.
Since the x-intercepts are 2 and 4, then the x-coordinate of the vertex is the average of
these, or 3.
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The y-coordinate of D can be obtained from the equation of the parabola; we obtain
y = −1

2
(3− 2)(3− 4) = −1

2
(1)(−1) = 1

2
.

Thus, the coordinates of D are (3, 1
2
).

Lastly, we determine the area of 4BDC, whose vertices have coordinates B(0,−4),
D(3, 1

2
), and C(4, 0).

Method 1
We proceed be “completing the rectangle”. That is, we draw the rectangle with horizontal
sides along the lines y = 1

2
and y = −4 and vertical sides along the lines x = 0 and x = 4.

We label this rectangle as BPQR.

C

D

B

P Q

R

The area of 4BDC equals the area of the rectangle minus the areas of 4BPD, 4DQC
and 4CRB.
Rectangle BPQR has height 4 + 1

2
= 9

2
and width 4.

4BPD has height 9
2

and base 3.

4DQC has height 1
2

and base 1.

4CRB has height 4 and base 4.

Therefore, the area of 4BDC is 4(9
2
)− 1

2
(9

2
)(3)− 1

2
(1

2
)(1)− 1

2
(4)(4) = 18− 27

4
− 1

4
− 8 = 3.

Method 2
We determine the coordinates of E, the point where BD crosses the x-axis.

C

D

B

E

Once we have done this, then the area of 4BDC equals the sum of the areas of 4ECB
and 4ECD.
Since B has coordinates (0,−4) and D has coordinates (3, 1

2
), then the slope of BD is

1
2
− (−4)

3− 0
=

9
2

3
=

3

2
.

Since B is on the y-axis, then the equation of the line through B and D is y = 3
2
x− 4.

To find the x-coordinate of E, we set y = 0 to obtain 0 = 3
2
x− 4 or 3

2
x = 4 or x = 8

3
.

We think of EC as the base of each of the two smaller triangles. Note that EC = 4− 8
3

= 4
3
.

Thus, the area of 4ECD is 1
2
(4

3
)(1

2
) = 1

3
.

Also, the area of 4ECB is 1
2
(4

3
)(4) = 8

3
.

Therefore, the area of 4BDC is 1
3

+ 8
3

= 3.
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8. (a) Since PQ is parallel to AB, then it is parallel to DC and is perpendicular to BC.
Drop perpendiculars from A to E on PQ and from P to F on DC.

A B

CD

P QE

F
Then ABQE and PQCF are rectangles. Thus, EQ = x, which means that PE = r − x
and FC = r, which means that DF = y − r.
Let BQ = b and QC = c. Thus, AE = b and PF = c.
The area of trapezoid ABQP is 1

2
(x + r)b.

The area of trapezoid PQCD is 1
2
(r + y)c.

Since these areas are equal, then 1
2
(x + r)b = 1

2
(r + y)c, which gives

x + r

r + y
=

c

b
.

Since AE is parallel to PF , then ∠PAE = ∠DPF and 4AEP is similar to 4PFD.

Thus,
AE

PE
=

PF

DF
which gives

b

r − x
=

c

y − r
or

c

b
=

y − r

r − x
.

Combining
x + r

r + y
=

c

b
and

c

b
=

y − r

r − x
gives

x + r

r + y
=

y − r

r − x
or (x+r)(r−x) = (r+y)(y−r).

From this, we get r2 − x2 = y2 − r2 or 2r2 = x2 + y2, as required.

(b) Join O to A, B and C.

O

BA

D

C

Since AB is tangent to the circle at A, then ∠OAB = 90◦.
By the Pythagorean Theorem in 4OAB, we get OA2 + AB2 = OB2 or r2 + p2 = OB2.
In 4ODC, we have OD = DC = q and OC = r.
By the cosine law,

OC2 = OD2 + DC2 − 2(OD)(DC) cos(∠ODC)

r2 = q2 + q2 − 2q2 cos(∠ODC)

cos(∠ODC) =
2q2 − r2

2q2

In 4ODB, we have ∠ODB = ∠ODC.
Thus, using the cosine law again,

OB2 = OD2 + DB2 − 2(OD)(DB) cos(∠ODB)

= q2 + (2q)2 − 2(q)(2q)

(
2q2 − r2

2q2

)
= q2 + 4q2 − 2(2q2 − r2)

= q2 + 2r2

So OB2 = r2 + p2 = q2 + 2r2, which gives p2 = q2 + r2, as required.



2009 Euclid Contest Solutions Page 9

9. (a) First, we convert each of the logarithms to a logarithm with base 2:

1 + log4 x = 1 +
log2 x

log2 4
= 1 +

log2 x

2
= 1 + 1

2
log2 x

log8 4x =
log2 4x

log2 8
=

log2 4 + log2 x

3
= 2

3
+ 1

3
log2 x

Let y = log2 x. Then the three terms are y, 1 + 1
2
y, and 2

3
+ 1

3
y. Since these three are in

geometric sequence, then

y

1 + 1
2
y

=
1 + 1

2
y

2
3

+ 1
3
y

y(2
3

+ 1
3
y) = (1 + 1

2
y)2

2
3
y + 1

3
y2 = 1 + y + 1

4
y2

8y + 4y2 = 12 + 12y + 3y2

y2 − 4y − 12 = 0

(y − 6)(y + 2) = 0

Therefore, y = log2 x = 6 or y = log2 x = −2, which gives x = 26 = 64 or x = 2−2 = 1
4
.

(b) Solution 1
Rotate a copy of 4PSU by 90◦ counterclockwise around P , forming a new triangle PQV .
Note that V lies on the extension of RQ.

P

R

Q

S

T

U

V

Then PV = PU by rotation.
Also, ∠V PT = ∠V PQ + ∠QPT = ∠UPS + ∠QPT = 90◦ − ∠UPT = 90◦ − 45◦.
This tells us that 4PTU is congruent to 4PTV , by “side-angle-side”.
Thus, the perimeter of 4RUT equals

UR + RT + UT = UR + RT + TV

= UR + RT + TQ + QV

= UR + RQ + SU

= SU + UR + RQ

= SR + RQ

= 8

That is, the perimeter of 4RUT always equals 8, so the maximum possible perimeter is 8.
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Solution 2
Let ∠SPU = θ. Note that 0◦ ≤ θ ≤ 45◦.

Then tan θ =
SU

PS
, so SU = 4 tan θ.

Since SR = 4, then UR = SR− SU = 4− 4 tan θ.
Since ∠UPT = 45◦, then ∠QPT = 90◦ − 45◦ − θ = 45◦ − θ.

Thus, tan(45◦ − θ) =
QT

PQ
and so QT = 4 tan(45◦ − θ).

Since QR = 4, then RT = 4− 4 tan(45◦ − θ).

But tan(A − B) =
tan A− tan B

1 + tan A tan B
, so tan(45◦ − θ) =

tan(45◦)− tan θ

1 + tan (45◦) tan θ
=

1− tan θ

1 + tan θ
,

since tan(45◦) = 1.

This gives RT = 4− 4

(
1− tan θ

1 + tan θ

)
=

4 + 4 tan θ

1 + tan θ
− 4− 4 tan θ

1 + tan θ
=

8 tan θ

1 + tan θ
.

By the Pythagorean Theorem in 4URT , we obtain

UT =
√

UR2 + RT 2

=

√
(4− 4 tan θ)2 +

(
8 tan θ

1 + tan θ

)2

= 4

√
(1− tan θ)2 +

(
2 tan θ

1 + tan θ

)2

= 4

√(
1− tan2 θ

1 + tan θ

)2

+

(
2 tan θ

1 + tan θ

)2

= 4

√
1− 2 tan2 θ + tan4 θ + 4 tan2 θ

(1 + tan θ)2

= 4

√
1 + 2 tan2 θ + tan4 θ

(1 + tan θ)2

= 4

√
(1 + tan2 θ)2

(1 + tan θ)2

= 4

(
1 + tan2 θ

1 + tan θ

)
Therefore, the perimeter of 4URT is

UR + RT + UT = 4− 4 tan θ +
8 tan θ

1 + tan θ
+ 4

(
1 + tan2 θ

1 + tan θ

)
= 4

(
1− tan2 θ

1 + tan θ
+

2 tan θ

1 + tan θ
+

1 + tan2 θ

1 + tan θ

)
= 4

(
2 + 2 tan θ

1 + tan θ

)
= 8

Thus, the perimeter is always 8, regardless of the value of θ, so the maximum possible
perimeter is 8.
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10. Throughout this problem, we represent the states of the n plates as a string of 0’s and 1’s (called
a binary string) of length n of the form p1p2 · · · pn, with the rth digit from the left (namely pr)
equal to 1 if plate r contains a gift and equal to 0 if plate r does not. We call a binary string
of length n allowable if it satisfies the requirements – that is, if no two adjacent digits both
equal 1. Note that digit pn is also “adjacent” to digit p1, so we cannot have p1 = pn = 1.

(a) Suppose that p1 = 1.
Then p2 = p7 = 0, so the string is of the form 10p3p4p5p60.
Since k = 3, then 2 of p3, p4, p5, p6 equal 1, but in such a way that no two adjacent digits
are both 1.
The possible strings in this case are 1010100, 1010010 and 1001010.

Suppose that p1 = 0. Then p2 can equal 1 or 0.
If p2 = 1, then p3 = 0 as well. This means that the string is of the form 010p4p5p6p7,
which is the same as the general string in the first case, but shifted by 1 position around
the circle, so there are again 3 possibilities.
If p2 = 0, then the string is of the form 00p3p4p5p6p7 and 3 of the digits p3, p4, p5, p6, p7

equal 1 in such a way that no 2 adjacent digits equal 1.
There is only 1 way in which this can happen: 0010101.
Overall, this gives 7 possible configurations, so f(7, 3) = 7.

(b) Solution 1
An allowable string p1p2 · · · pn−1pn has (p1, pn) = (1, 0), (0, 1), or (0, 0).
Define g(n, k, 1, 0) to be the number of allowable strings of length n, containing k 1’s, and
with (p1, pn) = (1, 0).
We define g(n, k, 0, 1) and g(n, k, 0, 0) in a similar manner.
Note that f(n, k) = g(n, k, 1, 0) + g(n, k, 0, 1) + g(n, k, 0, 0).

Consider the strings counted by g(n, k, 0, 1).
Since pn = 1, then pn−1 = 0. Since p1 = 0, then p2 can equal 0 or 1.
We remove the first and last digits of these strings.
We obtain strings p2p3 · · · pn−2pn−1 that is strings of length n− 2 containing k − 1 1’s.
Since pn−1 = 0, then the first and last digits of these strings are not both 1. Also, since
the original strings did not contain two consecutive 1’s, then these new strings does not
either.
Therefore, p2p3 · · · pn−2pn−1 are allowable strings of length n− 2 containing k− 1 1’s, with
pn−1 = 0 and p2 = 1 or p2 = 0.
The number of such strings with p2 = 1 and pn−1 = 0 is g(n−2, k−1, 1, 0) and the number
of such strings with p2 = 0 and pn−1 = 0 is g(n− 2, k − 1, 0, 0).
Thus, g(n, k, 0, 1) = g(n− 2, k − 1, 1, 0) + g(n− 2, k − 1, 0, 0).

Consider the strings counted by g(n, k, 0, 0).
Since p1 = 0 and pn = 0, then we can remove pn to obtain strings p1p2 · · · pn−1 of length
n − 1 containing k 1’s. These strings are allowable since p1 = 0 and the original strings
were allowable.
Note that we have p1 = 0 and pn−1 is either 0 or 1.
So the strings p1p2 · · · pn−1 are allowable strings of length n− 1 containing k 1’s, starting
with 0, and ending with 0 or 1.
The number of such strings with p1 = 0 and pn−1 = 0 is g(n − 1, k, 0, 0) and the number
of such strings with p1 = 0 and pn−1 = 1 is g(n− 1, k, 0, 1).
Thus, g(n, k, 0, 0) = g(n− 1, k, 0, 0) + g(n− 1, k, 0, 1).
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Consider the strings counted by g(n, k, 1, 0).
Here, p1 = 1 and pn = 0. Thus, pn−1 can equal 0 or 1. We consider these two sets sepa-
rately.
If pn−1 = 0, then the string p1p2 · · · pn−1 is an allowable string of length n− 1, containing
k 1’s, beginning with 1 and ending with 0.
Therefore, the number of strings counted by g(n, k, 1, 0) with pn−1 = 0 is equal to
g(n− 1, k, 1, 0).
If pn−1 = 1, then the string p2p3 · · · pn−1 is of length n− 2, begins with 0 and ends with 1.
Also, it contains k − 1 1’s (having removed the original leading 1) and is allowable since
the original string was.
Therefore, the number of strings counted by g(n, k, 1, 0) with pn−1 = 1 is equal to
g(n− 2, k − 1, 0, 1).

Therefore,

f(n, k) = g(n, k, 1, 0) + g(n, k, 0, 1) + g(n, k, 0, 0)

= (g(n− 1, k, 1, 0) + g(n− 2, k − 1, 0, 1))

+(g(n− 2, k − 1, 1, 0) + g(n− 2, k − 1, 0, 0))

+(g(n− 1, k, 0, 0) + g(n− 1, k, 0, 1))

= (g(n− 1, k, 1, 0) + g(n− 1, k, 0, 1) + g(n− 1, k, 0, 0))

+(g(n− 2, k − 1, 0, 1) + g(n− 2, k − 1, 1, 0) + g(n− 2, k − 1, 0, 0))

= f(n− 1, k) + f(n− 2, k − 1)

as required.

Solution 2
We develop an explicit formula for f(n, k) by building these strings.
Consider the allowable strings of length n that include k 1’s. Either pn = 0 or pn = 1.

Consider first the case when pn = 0. (Here, p1 can equal 0 or 1.)
These strings are all of the form p1p2p3 · · · pn−10.
In this case, since a 1 is always followed by a 0 and the strings end with 0, we can build
these strings using blocks of the form 10 and 0. Any combination of these blocks will be
an allowable string, as each 1 will always be both preceded and followed by a 0.
Thus, these strings can all be built using k 10 blocks and n − 2k 0 blocks. This gives k
1’s and k + (n − 2k) = n − k 0’s. Note that any string built with these blocks will be
allowable and will end with a 0, and any such allowable string can be built in this way.
The number of ways of arranging k blocks of one kind and n− 2k blocks of another kind

is

(
k + (n− 2k)

k

)
, which simplifies to

(
n− k

k

)
.

Consider next the case when pn = 1.
Here, we must have pn−1 = p1 = 0, since these are the two digits adjacent to pn.
Thus, these strings are all of the form 0p2p3 · · · 01.
Consider the strings formed by removing the first and last digits.
These strings are allowable, are of length n − 2, include k − 1 1’s, end with 0, and can
begin with 0 or 1.
Again, since a 1 is always followed by a 0 and the strings end with 0, we can build these
strings using blocks of the form 10 and 0. Any combination of these blocks will be an
allowable string, as each 1 will always be both preceded and followed by a 0.

Translating our method of counting from the first case, there are

(
(n− 2)− (k − 1)

k − 1

)
or



2009 Euclid Contest Solutions Page 13(
n− k − 1

k − 1

)
such strings.

Thus, f(n, k) =

(
n− k

k

)
+

(
n− k − 1

k − 1

)
such strings.

To prove the desired fact, we will use the fact that

(
m

r

)
=

(
m− 1

r

)
+

(
m− 1

r − 1

)
, which

we prove at the end.
Now

f(n− 1, k) + f(n− 2, k − 1)

=

(
(n− 1)− k

k

)
+

(
(n− 1)− k − 1

k − 1

)
+

(
(n− 2)− (k − 1)

k − 1

)
+

(
(n− 2)− (k − 1)− 1

(k − 1)− 1

)
=

(
n− k − 1

k

)
+

(
n− k − 2

k − 1

)
+

(
n− k − 1

k − 1

)
+

(
n− k − 2

k − 2

)
=

(
n− k − 1

k

)
+

(
n− k − 1

k − 1

)
+

(
n− k − 2

k − 1

)
+

(
n− k − 2

k − 2

)
=

(
n− k

k

)
+

(
n− k − 1

k − 1

)
(using the identity above)

= f(n, k)

as required.

To prove the identity, we expand the terms on the right side:(
m− 1

r

)
+

(
m− 1

r − 1

)
=

(m− 1)!

r!(m− r − 1)!
+

(m− 1)!

(r − 1)!(m− r)!

=
(m− 1)!(m− r)

r!(m− r − 1)!(m− r)
+

r(m− 1)!

r(r − 1)!(m− r)!

=
(m− 1)!(m− r)

r!(m− r)!
+

r(m− 1)!

r!(m− r)!

=
(m− 1)!(m− r + r)

r!(m− r)!

=
(m− 1)!m

r!(m− r)!

=
m!

r!(m− r)!

=

(
m

r

)
as required.
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(c) We use the formula for f(n, k) developed in Solution 2 to (b). In order to look at divisi-
bility, we need to first simplify the formula:

f(n, k) =

(
n− k

k

)
+

(
n− k − 1

k − 1

)
=

(n− k)!

k!(n− k − k)!
+

(n− k − 1)!

(k − 1)!((n− k − 1)− (k − 1))!

=
(n− k)!

k!(n− 2k)!
+

(n− k − 1)!

(k − 1)!(n− 2k)!

=
(n− k − 1)!(n− k)

k!(n− 2k)!
+

(n− k − 1)!k

k!(n− 2k)!

=
(n− k − 1)!(n− k + k)

k!(n− 2k)!

=
n(n− k − 1)!

k!(n− 2k)!

=
n(n− k − 1)(n− k − 2) · · · (n− 2k + 2)(n− 2k + 1)

k!

Now that we have written f(n, k) as a product, it is significantly easier to look at divisi-
bility.
Note that 2009 = 41 × 49 = 72 × 41, so we need f(n, k) to be divisible by 41 and by 7
twice. For this to be the case, the numerator of f(n, k) must have at least one more factor
of 41 and at least two more factors of 7 than the denominator.
Also, we want to minimize n + k, so we work to keep n and k as small as possible.
If n = 49 and k = 5, then

f(49, 5) =
49(43)(42)(41)(40)

5!
=

49(43)(42)(41)(40)

5(4)(3)(2)(1)
= 49(43)(14)(41)

which is divisible by 2009.
We show that this pair minimizes the value of n + k with a value of 54.

We consider the possible cases by looking separately at the factors of 41 and 7 that must
occur. We focus on the factor of 41 first.
For the numerator to contain a factor of 41, either n is divisible by 41 or one of the terms
in the product (n− k − 1)(n− k − 2) · · · (n− 2k + 1) is divisible by 41.

Case 1: n is divisible by 41
We already know that n = 82 is too large, so we consider n = 41. From the original
interpretation of f(n, k), we see that k ≤ 20, as there can be no more than 20 gifts placed
on 41 plates.
Here, the numerator becomes 41 times the product of k−1 consecutive integers, the largest
of which is 40− k.
Now the numerator must also contain at least two factors of 7 more than the denominator.
But the denominator is the product of k consecutive integers. Since the numerator con-
tains the product of k− 1 consecutive integers and the denominator contains the product
of k consecutive integers, then the denominator will always include at least as many mul-
tiples of 7 as the numerator (since there are more consecutive integers in the product
in the denominator). Thus, it is impossible for the numerator to contain even one more
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additional factor of 7 than the denominator.
Therefore, if n = 41, then f(n, k) cannot be divisible by 2009.

Case 2: n is not divisible by 41
This means that the factor of 41 in the numerator must occur in the product

(n− k − 1)(n− k − 2) · · · (n− 2k + 1)

In this case, the integer 41 must occur in this product, since an occurrence of 82 would
make n greater than 82, which does not minimize n + k.
So we try to find values of n and k that include the integer 41 in this list.
Note that n− k − 1 is the largest factor in the product and n− 2k + 1 is the smallest.
Since 41 is contained somewhere in the product, then n−2k+1 ≤ 41 (giving n ≤ 40+2k)
and 41 ≤ n− k − 1 (giving n ≥ 42 + k).
Combining these restrictions, we get 42 + k ≤ n ≤ 40 + 2k.

Now, we focus on the factors of 7.
Either n is not divisible by 7 or n is divisible by 7.

∗ If n is not divisible by 7, then at least two factors of 7 must be included in the product

(n− k − 1)(n− k − 2) · · · (n− 2k + 1)

which means that either k ≥ 8 (to give two multiples of 7 in this list of k−1 consecutive
integers) or one of the factors is divisible by 49.

· If k ≥ 8, then n ≥ 42 + k ≥ 50 so n + k ≥ 58, which is not minimal.

· If one of the factors is a multiple of 49, then 49 must be included in the list so
n− 2k + 1 ≤ 49 (giving n ≤ 48 + 2k) and 49 ≤ n− k − 1 (giving n ≥ 50 + k).
In this case, we already know that 42 + k ≤ n ≤ 40 + 2k and now we also have
50 + k ≤ n ≤ 48 + 2k.
For these ranges to overlap, we need 50+k ≤ 40+2k and so k ≥ 10, which means
that n ≥ 50 + k ≥ 60, and so n + k ≥ 70, which is not minimal.

∗ Next, we consider the case where n is a multiple of 7.
Here, 42 + k ≤ n ≤ 40 + 2k (to include 41 in the product) and n is a multiple of 7.
Since k is at least 2 by definition, then n ≥ 42 + k ≥ 44, so n is at least 49.
If n was 56 or more, we do not get a minimal value for n + k.
Thus, we need to have n = 49. In this case, we do not need to look for another factor
of 7 in the list.
To complete this case, we need to find the smallest value of k for which 49 is in the
range from 42 + k to 40 + 2k because we need to have 42 + k ≤ n ≤ 40 + 2k.
This value of k is k = 5, which gives n + k = 49 + 5 = 54.

Since f(49, 5) is divisible by 2009, as determined above, then this is the case that minimizes
n + k, giving a value of 54.
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1. (a) Solution 1

By the Pythagorean Theorem in 4ADB,

AB2 = BD2 + DA2 = 92 + 122 = 81 + 144 = 225

so AB =
√

225 = 15 since AB > 0.

By the Pythagorean Theorem in 4ADC,

DC2 = CA2 − AD2 = 202 − 122 = 400− 144 = 256

so DC =
√

256 = 16 since AD > 0.

The perimeter of 4ABC is

AB + BC + CA = AB + (BD + DC) + CA = 15 + (9 + 16) + 20 = 60

Solution 2

Since BD : DA = 9 : 12 = 3 : 4 and 4BDA is right-angled at B, then 4ADB is similar

to a 3-4-5 triangle. Thus, AB = 5
3
BD = 15.

Since CA : DA = 20 : 12 = 5 : 3 and 4ADC is right-angled at D, then 4ADC is similar

to a 3-4-5 triangle. Thus, DC = 4
5
CA = 16.

Therefore, the perimeter of 4ABC is

AB + BC + CA = AB + (BD + DC) + CA = 15 + (9 + 16) + 20 = 60

(b) Solution 1

Since P (5, 4) is the midpoint of A(a, 0) and B(8, b), then 5 is the average of the

x-coordinates of A and B and 4 is the average of the y-coordinates of A and B.

Therefore, 5 = 1
2
(a + 8) so 10 = a + 8 or a = 2.

Also, 4 = 1
2
(0 + b) so 8 = 0 + b or b = 8.

Thus, a = 2 and b = 8.

Solution 2

P (5, 4) is the midpoint of A(a, 0) and B(8, b).

To get from A to P , we move 4 units up, so to get from P to B we move 4 units up.

Therefore, the y-coordinate of B is 4 + 4 = 8, so b = 8.

To get from P to B, we move 3 units to the right, so to get from P to A, we move 3 units

to the left. Therefore, the x-coordinate of A is 5− 3 = 2, so a = 2.

Thus, a = 2 and b = 8.

(c) The line ax+y = 30 passes through the point (6, 12), so 6a+12 = 30 or 6a = 18 or a = 3.

This tells us that the line x+3y = k also passes through the point (6, 12), so 6+3(12) = k

or k = 42. Therefore, k = 42.
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2. (a) Solution 1

Since (c, 7) lies on the parabola, then 7 = (c− 2)(c− 8) + 7 so (c− 2)(c− 8) = 0.

Thus, c = 2 or c = 8. Since c 6= 2, then c = 8.

Solution 2

The parabola has equation y = (x− 2)(x− 8) + 7 = x2 − 10x + 16 + 7 = x2 − 10x + 23.

Completing the square,

y = x2 − 10x + 25− 25 + 23 = (x− 5)2 − 2

so the axis of symmetry of the parabola is x = 5.

Since (2, 7) lies on the parabola and is 3 units to the left of the axis of symmetry, then

(5 + 3, 7) = (8, 7) is also on the parabola.

Thus, c = 8.

(b) Solution 1

Since (2, 7) and (8, 7) lie on the parabola, the axis of symmetry lies halfway between these

two points, so has equation x = 5.

The vertex lies on the axis of symmetry, so has x-coordinate equal to 5.

The y-coordinate of the vertex is thus y = (5− 2)(5− 8) + 7 = −9 + 7 = −2.

Therefore, the vertex has coordinates (5,−2).

Solution 2

The parabola has equation y = (x− 2)(x− 8) + 7 = x2 − 10x + 16 + 7 = x2 − 10x + 23.

Completing the square,

y = x2 − 10x + 25− 25 + 23 = (x− 5)2 − 2

so the vertex has coordinates (5,−2).

(c) Since the line passes through A(5, 0) and B(4,−1), it has slope m =
0− (−1)

5− 4
=

1

1
= 1.

Thus, the equation of the line is y = x + b for some number b.

Since A(5, 0) lies on the line, then 0 = 5 + b so b = −5, so the line has equation y = x− 5.

To find the intersection of the line with parabola, we use the two equations and equate:

(x− 2)(x− 8) + 7 = x− 5

x2 − 10x + 16 + 7 = x− 5

x2 − 11x + 28 = 0

(x− 4)(x− 7) = 0

Therefore, x = 4 or x = 7.

However, we already have the point where x = 4, so we consider x = 7.

We need to find the y-coordinate of this point. To do so, it is easier to use the equation
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of the line than the equation of the parabola. Thus, y = 7− 5 = 2.

Therefore, the other point is (7, 2).

3. (a) Solution 1

Suppose that the middle number inside the square frame is x.

Then the other numbers in the middle row inside the frame are x− 1 and x + 1.

Also, the other numbers in the left column are (x− 1)− 7 = x− 8 and (x− 1)+7 = x+6,

since there are 7 numbers in each row of the large grid. This tells us that the other num-

bers in the first and third rows are x− 7, x− 6, x + 7, and x + 8.

Therefore, the sum of the numbers in the frame is

x + x− 1 + x + 1 + x− 8 + x− 7 + x− 6 + x + 6 + x + 7 + x + 8 = 9x

Thus, the sum of numbers in the frame is 9 times the middle number.

(We can check this using the given example. We might also have been able to see initially

that the average of the numbers inside the square frame is always the middle number.)

For the sum of the numbers inside the frame to be 279, the middle number in the frame

must be 1
9
(279) = 31.

(We can check that this is correct by placing the frame in this position and adding.)

Solution 2

If we start the frame in a given position and slide it one column to the left, the sum of

the numbers inside the frame decreases by 9 because the original first and second columns

stay inside the frame and the original third column is replaced by a column 3 to the left.

In this case, the three numbers entering the frame are each 3 less than the three numbers

leaving the frame, so the overall sum decreases by 3× 3 = 9.

Similarly, if the frame slides one column to the right, the sum inside the frame increases

by 9.

Also, if the frame slides one row down, the sum inside the frame increases by 63, as the

three numbers entering the frame are each 21 larger than the three numbers leaving the

frame.

Similarly, if the frame slides one row up, the sum inside the frame decreases by 63.

The original sum inside the frame is 108. We want the new sum to be 279, so we want

the sum to increase by 279− 108 = 171.

Now 171 = 3(63)− 2(9), so if we slide the frame 3 rows down and then 2 columns to the

left, the sum will increase by 171 and become 279.

In this case, the new middle number is 12 + 3(7)− 2 = 31.

(b) In Figure A, the circle has diameter of length 2, so has radius 1, and thus area πr2 which

is π12 = π ≈ 3.14.

In Figure B, the figure has area equal to twice the area of an equilateral triangle of side

length 2.
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Consider a single equilateral triangle, 4PQR, with side length 2.

Drop a perpendicular from P to X on QR.

Since 4PQR is equilateral, then QX = XR = 1
2
QR = 1.

P

Q R
X1 1

2

Since ∠PQR = 60◦, then4PQX is 30◦-60◦-90◦ triangle, so PX =
√

3QX =
√

3(1) =
√

3.

Therefore, the area of 4PQR is 1
2
(2)(

√
3) =

√
3.

Thus, the area of Figure B is 2
√

3 ≈ 3.46.

In Figure C, the figure has area equal to twice the area of an isosceles right-angled triangle

with hypotenuse of length 2.

2D

E

F

x x

Suppose that DE = EF = x.

Since the triangle is isosceles right-angled, then x = 1√
2
(2) =

√
2.

Thus, the area of this triangle is 1
2
(
√

2)(
√

2) = 1
2
(2) = 1.

Thus, the area of Figure C is 2.

Since 2 < π < 2
√

3 (because 2 < 3.14 < 3.46), then the figure with the smallest area is

Figure C and the figure with the largest area is Figure B.

4. (a) Since PF = 20 m and ∠PAF = 40◦, then
PF

AF
= tan(40◦) so AF =

20 m

tan(40◦)
.

Since B is halfway from A to F , then

BF = 1
2
AF =

10 m

tan(40◦)

and so

tan(∠FBP ) =
PF

BF
=

20 m(
10 m

tan(40◦)

) = 2 tan(40◦) ≈ 1.678

Thus, ∠FBP ≈ 59.21◦, and so ∠FBP is 59◦, to the nearest degree.



2008 Euclid Contest Solutions Page 6

(b) By the cosine law in 4CBA,

CA2 = CB2 + BA2 − 2(CB)(BA) cos(∠CBA)

CA2 = 162 + 212 − 2(16)(21) cos(60◦)

CA2 = 256 + 441− 2(16)(21)(1
2
)

CA2 = 256 + 441− (16)(21)

CA2 = 361

CA =
√

361 = 19 (since CA > 0)

In 4CAD, ∠CDA = 180◦ − ∠DCA− ∠DAC = 180◦ − 45◦ − 30◦ = 105◦.

By the sine law in 4CDA,

CD

sin(∠DAC)
=

CA

sin(∠CDA)

CD =
19 sin(30◦)

sin(105◦)

CD =
19(1

2
)

sin(105◦)

CD =
19

2 sin(105◦)

CD ≈ 9.835

so, to the nearest tenth, CD equals 9.8.

(Note that we could have used

sin(105◦) = sin(60◦ + 45◦) = sin(60◦) cos(45◦) + cos(60◦) sin(45◦)

=

√
3

2
· 1√

2
+

1

2
· 1√

2
=

√
3 + 1

2
√

2

to say that CD =
19

2
(√

3+1
2
√

2

) =
19
√

2√
3 + 1

exactly, and then evaluated this expression.)

5. (a) Consider P on AB with CP perpendicular to AB. Note that CP = 12.

Since the small circle with centre A is tangent to the large circle with centre C, then AC

equals the sum of the radii of these circles, or AC = 4 + 9 = 13. Similarly, BC = 13.

This tells us that 4APC is congruent to 4BPC (they have equal hypotenuses and each

is right-angled and has a common side), so BP = AP .

By the Pythagorean Theorem in 4APC,

AP 2 = AC2 − PC2 = 132 − 122 = 169− 144 = 25

so AP = 5 (since AP > 0).

Therefore, BP = AP = 5 and so AB = 10.

Since it takes the bug 5 seconds to walk this distance, then in 1 second, the bug walks a

distance of 10
5

= 2.
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(b) For the parabola to have its vertex on the x-axis, the equation

y = kx2 + (5k + 3)x + (6k + 5) = 0

must have two equal real roots.

That is, its discriminant must equal 0, and so

(5k + 3)2 − 4k(6k + 5) = 0

25k2 + 30k + 9− 24k2 − 20k = 0

k2 + 10k + 9 = 0

(k + 1)(k + 9) = 0

Therefore, k = −1 or k = −9.

6. (a) Since f(x) = f(x− 1) + f(x + 1), then f(x + 1) = f(x)− f(x− 1), and so

f(1) = 1

f(2) = 3

f(3) = f(2)− f(1) = 3− 1 = 2

f(4) = f(3)− f(2) = 2− 3 = −1

f(5) = f(4)− f(3) = −1− 2 = −3

f(6) = f(5)− f(4) = −3− (−1) = −2

f(7) = f(6)− f(5) = −2− (−3) = 1 = f(1)

f(8) = f(7)− f(6) = 1− (−2) = 3 = f(2)

Since the value of f at an integer depends only on the values of f at the two previous

integers, then the fact that the first several values form a cycle with f(7) = f(1) and

f(8) = f(2) tells us that the values of f will always repeat in sets of 6.

Since 2008 is 4 more than a multiple of 6 (as 2008 = 4 + 2004 = 4 + 6(334)), then

f(2008) = f(2008− 6(334)) = f(4) = −1.

(b) Solution 1

Since a, b, c form an arithmetic sequence, then we can write a = b − d and c = b + d for

some real number d.

Since a + b + c = 60, then (b− d) + b + (b + d) = 60 or 3b = 60 or b = 20.

Therefore, we can write a, b, c as 20− d, 20, 20 + d.

(We could have written a, b, c instead as a, a + d, a + 2d and arrived at the same result.)

Thus, a − 2 = 20 − d − 2 = 18 − d and c + 3 = 20 + d + 3 = 23 + d, so we can write

a− 2, b, c + 3 as 18− d, 20, 23 + d.
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Since these three numbers form a geometric sequence, then

20

18− d
=

23 + d

20

202 = (23 + d)(18− d)

400 = −d2 − 5d + 414

d2 + 5d− 14 = 0

(d + 7)(d− 2) = 0

Therefore, d = −7 or d = 2.

If d = −7, then a = 27, b = 20 and c = 13.

If d = 2, then a = 18, b = 20 and c = 22.

(We can check that, in each case, a− 2, b, c + 3 is a geometric sequence.)

Solution 2

Since a, b, c form an arithmetic sequence, then c− b = b− a or a + c = 2b.

Since a + b + c = 60, then 2b + b = 60 or 3b = 60 or b = 20.

Thus, a + c = 40, so a = 40− c.

Therefore, we can write a, b, c as 40− c, 20, c.

Also, a− 2 = 40− c− 2 = 38− c, so we can write a− 2, b, c + 3 as 38− c, 20, c + 3.

Since these three numbers form a geometric sequence, then

20

38− c
=

c + 3

20

202 = (38− c)(c + 3)

400 = −c2 + 35c + 114

c2 − 35d + 286 = 0

(c− 13)(c− 22) = 0

Therefore, c = 13 or c = 22.

If c = 13, then a = 27, so a = 27, b = 20 and c = 13.

If c = 22, then a = 18, so a = 18, b = 20 and c = 22.

(We can check that, in each case, a− 2, b, c + 3 is a geometric sequence.)

7. (a) Since the average of three consecutive multiples of 3 is a, then a is the middle of these

three integers, so the integers are a− 3, a, a + 3.

Since the average of four consecutive multiples of 4 is a + 27, then a + 27 is halfway in

between the second and third of these multiples (which differ by 4), so the second and

third of the multiples are (a + 27) − 2 = a + 25 and (a + 27) + 2 = a + 29, so the four

integers are a + 21, a + 25, a + 29, a + 33.

(We have used in these two statements the fact that if a list contains an odd number of

integers, then there is a middle integer in the list, and if the list contains an even number
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of integers, then the “middle” integer is between two integers from the list.)

The smallest of these seven integers is a− 3 and the largest is a + 33.

The average of these two integers is 1
2
(a− 3 + a + 33) = 1

2
(2a + 30) = a + 15.

Since a + 15 = 42, then a = 27.

(b) Suppose that Billy removes the ball numbered x from his bag and that Crystal removes

the ball numbered y from her bag.

Then b = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9− x = 45− x.

Also, c = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9− y = 45− y.

Hence, b− c = (45− x)− (45− y) = y − x.

Since 1 ≤ x ≤ 9 and 1 ≤ y ≤ 9, then −8 ≤ y − x ≤ 8.

(This is because y − x is maximized when y is largest (that is, y = 9) and x is smallest

(that is, x = 1), so y − x ≤ 9− 1 = 8. Similarly, y − x ≥ −8.)

Since b − c = y − x is between −8 and 8, then for it to be a multiple of 4, b − c = y − x

can be −8, −4, 0, 4, or 8.

Since each of Billy and Crystal chooses 1 ball from 9 balls and each ball is equally likely

to be chosen, then the probability of any specific ball being chosen from one of their bags

is 1
9
. Thus, the probability of any specific pair of balls being chosen (one from each bag)

is 1
9
× 1

9
= 1

81
.

Therefore, to compute the desired probability, we must count the number of pairs (x, y)

where y − x is −8, −4, 0, 4, 8, and multiply this result by 1
81

.

Method 1

If y − x = −8, then (x, y) must be (9, 1).

If y − x = 8, then (x, y) must be (1, 9).

If y − x = −4, then (x, y) can be (5, 1), (6, 2), (7, 3), (8, 4), (9, 5).

If y − x = 4, then (x, y) can be (1, 5), (2, 6), (3, 7), (4, 8), (5, 9).

If y − x = 0, then (x, y) can be (1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6), (7, 7), (8, 8), (9, 9).

There are thus 21 pairs (x, y) that work, so the desired probability is 21
81

= 7
27

.

Method 2

If x = 9, then for y − x to be a multiple of 4, y could be 9, 5 or 1.

If x = 8, then for y − x to be a multiple of 4, y could be 8 or 4.

If x = 7, then for y − x to be a multiple of 4, y could be 7 or 3.

If x = 6, then for y − x to be a multiple of 4, y could be 6 or 2.

If x = 5, then for y − x to be a multiple of 4, y could be 9, 5 or 1.

If x = 4, then for y − x to be a multiple of 4, y could be 8 or 4.

If x = 3, then for y − x to be a multiple of 4, y could be 7 or 3.

If x = 2, then for y − x to be a multiple of 4, y could be 6 or 2.

If x = 1, then for y − x to be a multiple of 4, y could be 9, 5 or 1.
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There are thus 21 pairs (x, y) that work, so the desired probability is 21
81

= 7
27

.

8. (a) Since AC = CB, then 4ACB is isosceles and right-angled, so ∠CAB = ∠CBA = 45◦.

Drop perpendiculars from C and D to X and Y on AB.

D

A B

C

P

Y X

Since 4ACB is isosceles, then AX = XB = 1
2
AB = 1.

Since ∠CAX = 45◦, then 4AXC is isosceles and right-angled, so CX = AX = 1.

Since AB is parallel to DC, then DY = CX = 1.

Consider 4BDY . We know that ∠DY B = 90◦, DB = 2 and DY = 1.

This tells us that 4BDY is a 30◦-60◦-90◦ triangle, as one of its legs and its hypotenuse

are in the ratio 1 : 2.

Therefore, ∠DBY = 30◦, and so ∠DBC = ∠CBA− ∠DBY = 45◦ − 30◦ = 15◦.

(b) Solution 1

Let AP = x and QP = h.

Since QP is parallel to CB, then QP is perpendicular to BA.

Consider trapezoid CBPQ. We can think of this as having parallel bases of lengths 4 and

h and height 5. Thus, its area is 1
2
(4 + h)(5).

However, we can also compute its area by adding the areas of 4CBR (which is 1
2
(4)(3)),

4CRQ (which is given as 5), and 4RPQ (which is 1
2
(2)(h)).

Thus,

1
2
(4 + h)(5) = 1

2
(4)(3) + 5 + 1

2
(2)(h)

20 + 5h = 12 + 10 + 2h

3h = 2

h = 2
3

Now, 4APQ is similar to 4ABC, as each has a right angle and they share a common

angle at A. Thus,

AP

PQ
=

AB

BC

(AP )(BC) = (PQ)(AB)

4x = 2
3
(x + 5)

4x = 2
3
x + 10

3

10
3
x = 10

3

x = 1
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Therefore, AP = x = 1.

Solution 2

Let AP = x and QP = h.

Since QP is parallel to CB, then QP is perpendicular to BA.

Since 4ABC is right-angled at B, its area is 1
2
(4)(5 + x) = 10 + 2x.

However, we can look at the area of the 4ABC in terms of its four triangular pieces:

4CBR (which has area 1
2
(4)(3)), 4CRQ (which has area 5), 4QPR (which has area

1
2
h(2)), and 4QPA (which has area 1

2
xh).

Therefore, 10 + 2x = 6 + 5 + h + 1
2
xh so xh− 4x + 2h + 2 = 0.

Now, 4APQ is similar to 4ABC, as each has a right angle and they share a common

angle at A. Thus,

AP

PQ
=

AB

BC

(AP )(BC) = (PQ)(AB)

x(4) = h(x + 5)

4x = hx + 5h

−5h = hx− 4x

Substituting this into the equation above, xh+2h−4x+2 = 0 becomes −5h+2h+2 = 0

or 3h = 2 or h = 2
3
.

Lastly, we solve for x by subsituting our value for h: −5(2
3
) = 2

3
x−4x or −10

3
= −10

3
x and

so x = 1.

Therefore, AP = x = 1.

9. (a) Solution 1

Rewriting the equation, we obtain

2x+256−x = 2x2

5x2

1 = 2x2

2−2−x5x2

5x−6

1 = 2x2−x−25x2+x−6

0 = (x2 − x− 2) log10 2 + (x2 + x− 6) log10 5

0 = (x− 2)(x + 1) log10 2 + (x− 2)(x + 3) log10 5

0 = (x− 2)[(x + 1) log10 2 + (x + 3) log10 5]

0 = (x− 2)[(log10 2 + log10 5)x + (log10 2 + 3 log 105)]

0 = (x− 2)[(log10 10)x + log10(2 · 53)]

0 = (x− 2)(x + log10 250)

Therefore, x = 2 or x = − log10 250.
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Solution 2

We take base 10 logarithms of both sides:

log10(2
x+256−x) = log10(10

x2

)

log10(2
x+2) + log10(5

6−x) = x2

(x + 2) log10 2 + (6− x) log10 5 = x2

x(log10 2− log10 5) + (2 log10 2 + 6 log10 5) = x2

x2 − x(log10 2− log10 5)− (2 log10 2 + 6 log10 5) = 0

Now, log10 2+log10 5 = log10 10 = 1 so log10 5 = 1−log10 2, so we can simplify the equation

to

x2 − x(2 log10 2− 1)− (6− 4 log10 2) = 0

This is a quadratic equation in x, so should have at most 2 real solutions.

By the quadratic formula,

x =
(2 log10 2− 1)±

√
(2 log10 2− 1)2 − 4(1)(−(6− 4 log10 2))

2(1)

=
(2 log10 2− 1)±

√
4(log10 2)2 − 4(log10 2) + 1 + 24− 16 log10 2

2

=
(2 log10 2− 1)±

√
4(log10 2)2 − 20(log10 2) + 25

2

=
(2 log10 2− 1)±

√
(2 log10 2− 5)2

2

=
(2 log10 2− 1)± (5− 2 log10 2)

2

since 5− 2 log10 2 > 0.

Therefore,

x =
(2 log10 2− 1) + (5− 2 log10 2)

2
=

4

2
= 2

or

x =
(2 log10 2− 1)− (5− 2 log10 2)

2
=

4 log10 2− 6

2
= 2 log10 2− 3

(Note that at any point, we could have used a calculator to convert to decimal approxi-

mations and solve.)

(b) First, we rewrite the system as

x + log10 x = y − 1

(y − 1) + log10(y − 1) = z − 2

(z − 2) + log10(z − 2) = x

Second, we make the substitution a = x, b = y − 1 and c = z − 2, allowing us to rewrite
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the system as

a + log10 a = b (1)

b + log10 b = c (2)

c + log10 c = a (3)

Third, we observe that (a, b, c) = (1, 1, 1) is a solution, since 1 + log10 1 = 1 + 0 = 1.

Next, if a > 1, then log10 a > 0, so from (1),

b = a + log10 a > a + 0 = a > 1

so log10 b > 0, so from (2),

c = b + log10 b > b + 0 = b > a > 1

so log10 c > 0, so from (3),

a = c + log10 c > c + 0 = c > b > a > 1

But this says that a > c > b > a, which is a contradiction.

Therefore, a cannot be larger than 1.

Lastly, if 0 < a < 1 (a cannot be negative), then log10 a < 0, so from (1),

b = a + log10 a < a + 0 = a < 1

so log10 b < 0, so from (2),

c = b + log10 b < b + 0 = b < a < 1

so log10 c < 0, so from (3),

a = c + log10 c > c + 0 = c < b < a < 1

But this says that a < c < b < a, which is a contradiction.

Therefore, a cannot be smaller than 1 either.

Thus, a must equal 1.

If a = 1, then b = a + log10 a = 1 + log10 1 = 1 + 0 = 1 from (1), which will similarly give

c = 1 from (2).

Thus, the only solution to the system is (a, b, c) = (1, 1, 1) = (x, y−1, z−2) since a cannot

be either larger than or smaller than 1, so (x, y, z) = (1, 2, 3).

10. (a) If n = 5, there are 10 downward-pointing triangles with side length 1 and 3 downward-

pointing triangles with side length 2, so f(5) = 10 + 3 = 13.
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If n = 6, there are 15 downward-pointing triangles with side length 1, 6 downward-pointing

triangles with side length 2, and 1 downward-pointing triangle with side length 3, so

f(6) = 15 + 6 + 1 = 22.

(b) Solution 1

We determine explicit formulas for f(2k) and f(2k−1) in terms of k and use these formulas

to show that f(2k)− f(2k − 1) = k2.

Start with a large triangle of side length n. (We will split into cases with n even and odd

later.)

We call the ith horizontal line from the top “row i”. Note that row i has length i. We

label the unit points along the row, starting with 0 at the left-hand end and ending with i

at the right-hand end. (These are the points where the diagonal lines intersect row i. We

will refer to a generic such point with the variable j.)

Consider first downward-pointing triangles with side length m = 1. We count these by

counting the possible locations for their bottom vertex.

There are no such bottom vertices in row 1.

There is one such bottom vertex in row 2, at j = 1.

There are two such bottom vertices in row 3, at j = 1 and j = 2.

This continues, with n− 1 such bottom vertices in row n, at j = 1 to j = n− 1.

In general, there are i− 1 such bottom vertices in row i:

To see this, we show that the leftmost such vertex is at j = 1 and the rightmost is

at j = i− 1. We obtain the other bottom vertices by translating the downward-

pointing triangle.

The leftmost such vertex is at j = 1 because the downward-pointing triangle can

be completed to form a parallelogram starting at this leftmost vertex and drawing

a 1 unit horizontal line segment to the left.

Since the downward-pointing triangle is inside the large triangle, this parallelo-

gram must also be, so j = 1. (This tells us that we cannot go any further to the

left.)
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Similarly, the rightmost such vertex is at j = i− 1, which we can see by drawing

a parallelogram to the right.

Therefore, there are 1 + 2 + · · ·+ (n− 2) + (n− 1) = 1
2
(n− 1)(n) downward-pointing tri-

angles of side length m = 1, as there are i−1 such triangles for each row from i = 2 to i = n.

For a general side length m of a downward-pointing triangle, we can argue as above that

in row i, the leftmost bottom vertex will occur at j = m and the rightmost at j = i−m.

For there to be any such triangles, we need m ≤ i−m (or 2m ≤ i) so the leftmost vertex

is not to the right of the rightmost vertex.

At row i, there are thus (i−m)−m + 1 = i + 1− 2m possible locations for the bottom

vertex.

(When i = 2m (the smallest possible value of i), there is 2m + 1 − 2m = 1 location for

the vertex.

When i = n (the largest possible value of i), there are n+1−2m locations for the vertex.)

For a fixed positive integer n, what are the permissible values of m? Certainly, m ≥ 1.

If n = 2k for some positive integer k, then 2m ≤ n = 2k since the largest possible

downward-triangle that can be fit has its bottom vertex on the bottom row, so m ≤ k.

If n = 2k − 1 for some positive integer k, then 2m ≤ n = 2k − 1 so m ≤ k − 1.

Thus, for a fixed permissible value of m, the total number of downward-pointing triangles

of side length m is

1 + 2 + · · ·+ (n + 1− 2m) = 1
2
(n + 1− 2m)(n + 2− 2m) (∗)

which is the sum of i + 1 − 2m from i = 2m to i = n, because we look at all possible

locations for the bottom vertex.

For n = 2k, the permissible values of m are m = 1 to m = k, so we add up the for-
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mula in (∗) for m = 1 to m = k:

f(2k) =
k∑

m=1

1
2
(2k + 1− 2m)(2k + 2− 2m)

=
k∑

l=1

1
2
(2l − 1)(2l) (letting l = k + 1−m)

=
k∑

l=1

(2l − 1)(l)

=
k∑

l=1

(2l2 − l)

= 2
k∑

l=1

l2 −
k∑

l=1

l

= 2
(

1
6
k(k + 1)(2k + 1)

)
− 1

2
k(k + 1)

= k(k + 1)
(

1
3
(2k + 1)− 1

2

)
= k(k + 1)

(
2
3
k − 1

6

)
=

k(k + 1)(4k − 1)

6

For n = 2k − 1, the permissible values of m are m = 1 to m = k − 1, so we add up the

formula in (∗) for m = 1 to m = k − 1:

f(2k − 1) =
k−1∑
m=1

1
2
(2k − 2m)(2k + 1− 2m)

=
k−1∑
l=1

1
2
(2l)(2l + 1) (letting l = k −m)

=
k−1∑
l=1

l(2l + 1)

=
k−1∑
l=1

(2l2 + l)

= 2
k−1∑
l=1

l2 +
k−1∑
l=1

l

= 2
(

1
6
(k − 1)(k)(2k − 1)

)
+ 1

2
(k − 1)(k)

= k(k − 1)
(

1
3
(2k − 1) + 1

2

)
= k(k − 1)

(
2
3
k + 1

6

)
=

k(k − 1)(4k + 1)

6
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Therefore,

f(2k)− f(2k − 1) =
k(k + 1)(4k − 1)

6
− k(k − 1)(4k + 1)

6
= 1

6
k((k + 1)(4k − 1)− (k − 1)(4k + 1))

= 1
6
k((4k2 + 3k − 1)− (4k2 − 3k − 1))

= 1
6
k(6k)

= k2

as required.

Solution 2

As in Solution 1, we can show that if n = 2k, we can fit in downward-pointing triangles

of sizes m = 1 to m = k and if n = 2k − 1, we can fit in downward-pointing triangles of

sizes m = 1 to m = k − 1.

Consider f(2k) − f(2k − 1). To calculate this quantity, we must determine how many

additional downward-pointing triangles can be put into the large triangle of size n = 2k

instead of that of size n = 2k − 1.

Since the triangle of size 2k − 1 can be put inside the triangle of size 2k with their top

vertices coinciding, then any new downward-pointing triangles inside the triangle of size

n = 2k all have their bottom vertices in row n = 2k.

We count the number of such triangles by considering the possible values of m.

If m = 1, Solution 1 tells us that there are 2k + 1− 2(1) = 2k − 1 such triangles.

If m = 2, there are 2k + 1− 2(2) = 2k − 3 such triangles.

For a general m, there are 2k + 1− 2m such triangles.

The value of f(2k)− f(2k− 1) is equal to the sum of 2k + 1− 2m over all possible values

of m.

Therefore,

f(2k)− f(2k − 1) =
k∑

m=1

(2k + 1− 2m)

=
k∑

m=1

(2k + 1)− 2
k∑

m=1

m

= k(2k + 1)− 2
(

1
2
k(k + 1)

)
= 2k2 + k − (k2 + k)

= k2

as required.

(c) From Solution 1 to (b), we know that

f(2k) =
k(k + 1)(4k − 1)

6
and f(2k − 1) =

k(k − 1)(4k + 1)

6
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We rewrite each of these in terms of n.

In the case of n even, since n = 2k, then k = 1
2
n, so

f(n) = f(2k) =
1
2
n(1

2
n + 1)(4(1

2
n)− 1)

6
=

1
2
n(1

2
n + 1)(2n− 1)

6
=

n(n + 2)(2n− 1)

24

In the case of n odd, since n = 2k − 1, then k = 1
2
(n + 1), so

f(n) = f(2k − 1) =
1
2
(n + 1)(1

2
(n + 1)− 1)(4(1

2
(n + 1)) + 1)

6

=
1
2
(n + 1)(1

2
(n + 1)− 1)(2n + 3)

6
=

(n + 1)(n− 1)(2n + 3)

24

Case 1: n is even

If f(n) is divisible by n, then f(n) = nq for some integer q.

Thus,

nq =
n(n + 2)(2n− 1)

24
24nq = n(n + 2)(2n− 1)

24q = (n + 2)(2n− 1) (since n 6= 0)

Thus, we need (n + 2)(2n− 1) to be a multiple of 24.

Since 2n− 1 is odd, then n + 2 must be a multiple of 8, so n + 2 = 8a for some integer a,

so n = 8a− 2.

Therefore, 24q = 8a(2(8a− 2)− 1) or 3q = a(16a− 5).

Therefore, we still need a(16a− 5) to be a multiple of 3.

Since 3 is a prime number, then either a is divisible by 3 or 16a− 5 = 3(5a− 2) + (a + 1)

is divisible by 3.

If a is divisible by 3, then a = 3b for some integer b.

If 16a − 5 is divisible by 3, then since 16a − 5 = 3(5a − 2) + (a + 1), we have that

a + 1 = (16a − 5) − 3(5a − 2) is divisible by 3, as it is the difference of two multiples

of 3. Therefore, a + 1 = 3b for some integer b. Therefore, n = 8(3b) − 2 = 24b − 2 or

n = 8(3b− 1)− 2 = 24b− 10 for some integer b.

We have proven that if f(n) is divisible by n, then n = 24b− 2 or n = 24b− 10. We need

to verify that each of these forms for n works for all b.

If n = 24b− 2, then

f(n) = f(24b− 2) =
(24b− 2)(24b)(48b− 5)

24
= b(24b− 2)(48b− 5)

which is divisible by 24b− 2, and so f(n) is always divisible by n in this case.

If n = 24b− 10, then

f(n) = f(24b− 10) =
(24b− 10)(24b− 8)(48b− 21)

24
= (24b− 10)(3b− 1)(16b− 7)
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which is divisible by 24b− 10, and so f(n) is always divisible by n in this case.

Thus, each of these forms for n works for all positive integers b.

Case 2: n is odd

If f(n) is divisible by n, then f(n) = nq for some integer q.

Thus,

nq =
(n + 1)(n− 1)(2n + 3)

24
24nq = (n + 1)(n− 1)(2n + 3)

24nq = (n2 − 1)(2n + 3)

24nq = 2n3 + 3n2 − 2n− 3

3 = 2n3 + 3n2 − 2n− 24nq

3 = n(2n2 + 3n− 2− 24q)

Since the right side is divisible by n, then the left side must be as well, so n divides into

3 which gives us that n = 1 or n = 3.

(Note that f(1) = 0 which is divisible by 1 and f(3) = 3 which is divisible by 3, so both

of these cases do work.)

Therefore, f(n) is divisible by n when n = 1, n = 3, n = 24b − 10 for all positive

integers b or n = 24b− 2 for all positive integers b.
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1. (a) Since (a− 1, a+ 1) lies on the line y = 2x− 3, then a+ 1 = 2(a− 1)− 3 or a+ 1 = 2a− 5

or a = 6.

(b) Solution 1

To get from P to Q, we move 3 units right and 4 units up.

Since PQ = QR and R lies on the line through Q, then we must use the same motion to

get from Q to R.

Therefore, to get from Q(0, 4) to R, we move 3 units right and 4 units up, so the coordi-

nates of R are (3, 8).

Solution 2

The line through P (−3, 0) and Q(0, 4) has slope
4− 0

0− (−3)
=

4

3
and y-intercept 4, so has

equation y = 4
3
x+ 4.

Thus, R has coordinates (a, 4
3
a+ 4) for some a > 0.

Since PQ = QR, then PQ2 = QR2, so

(−3)2 + 42 = a2 +
(
4
3
a+ 4− 4

)2
25 = a2 + 16

9
a2

25
9
a2 = 25

a2 = 9

so a = 3 since a > 0.

Thus, R has coordinates (3, 4
3
(3) + 4) = (3, 8).

(c) Since OP = 9, then the coordinates of P are (9, 0).

Since OP = 9 and OA = 15, then by the Pythagorean Theorem,

AP 2 = OA2 −OP 2 = 152 − 92 = 144

so AP = 12.

Since P has coordinates (9, 0) and A is 12 units directly above P , then A has coordinates

(9, 12).

Since PB = 4, then B has coordinates (13, 0).

The line through A(9, 12) and B(13, 0) has slope
12− 0

9− 13
= −3 so, using the point-slope

form, has equation y − 0 = −3(x− 13) or y = −3x+ 39.

2. (a) Since cos(∠BAC) =
AB

AC
and cos(∠BAC) = 5

13
and AB = 10, then AC = 13

5
AB = 26.

Since 4ABC is right-angled at B, then by the Pythagorean Theorem,

BC2 = AC2 − AB2 = 262 − 102 = 576 so BC = 24 since BC > 0.

Therefore, tan(∠ACB) =
AB

BC
=

10

24
=

5

12
.
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(b) Since 2 sin2 x+ cos2 x = 25
16

and sin2 x+ cos2 x = 1 (so cos2 x = 1− sin2 x), then we get

2 sin2 x+ (1− sin2 x) = 25
16

sin2 x = 25
16
− 1

sin2 x = 9
16

sinx = ±3
4

so sin x = 3
4

since sin x > 0 because 0◦ < x < 90◦.

(c) Since 4ABC is isosceles and right-angled, then ∠BAC = 45◦.

Also, AC =
√

2AB =
√

2(2
√

2) = 4.

Since ∠EAB = 75◦ and ∠BAC = 45◦, then ∠CAE = ∠EAB − ∠BAC = 30◦.

Since 4AEC is right-angled and has a 30◦ angle, then 4AEC is a 30◦-60◦-90◦ triangle.

Thus, EC = 1
2
AC = 2 (since EC is opposite the 30◦ angle) and AE =

√
3
2
AC = 2

√
3

(since AE is opposite the 60◦ angle).

In 4CDE, ED = DC and ∠EDC = 60◦, so 4CDE is equilateral.

Therefore, ED = CD = EC = 2.

Overall, the perimeter of ABCDE is

AB +BC + CD +DE + EA = 2
√

2 + 2
√

2 + 2 + 2 + 2
√

3 = 4 + 4
√

2 + 2
√

3

3. (a) From the given information, the first term in the sequence is 2007 and each term starting

with the second can be determined from the previous term.

The second term is 23 + 03 + 03 + 73 = 8 + 0 + 0 + 343 = 351.

The third term is 33 + 53 + 13 = 27 + 125 + 1 = 153.

The fourth term is 13 + 53 + 33 = 27 + 125 + 1 = 153.

Since two consecutive terms are equal, then every term thereafter will be equal, because

each term depends only on the previous term and a term of 153 always makes the next

term 153.

Thus, the 2007th term will be 153.

(b) The nth term of sequence A is n2 − 10n+ 70.

Since sequence B is arithmetic with first term 5 and common difference 10, then the nth

term of sequence B is equal to 5 + 10(n − 1) = 10n − 5. (Note that this formula agrees

with the first few terms.)

For the nth term of sequence A to be equal to the nth term of sequence B, we must have

n2 − 10n+ 70 = 10n− 5

n2 − 20n+ 75 = 0

(n− 5)(n− 15) = 0

Therefore, n = 5 or n = 15. That is, 5th and 15th terms of sequence A and sequence B

are equal to each other.
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4. (a) Solution 1

Rearranging and then squaring both sides,

2 +
√
x− 2 = x− 2
√
x− 2 = x− 4

x− 2 = (x− 4)2

x− 2 = x2 − 8x+ 16

0 = x2 − 9x+ 18

0 = (x− 3)(x− 6)

so x = 3 or x = 6.

We should check both solutions, because we may have introduced extraneous solutions by

squaring.

If x = 3, the left side equals 2 +
√

1 = 3 and the right side equals 1, so x = 3 must be

rejected.

If x = 6, the left side equals 2 +
√

4 = 4 and the right side equals 4, so x = 6 is the only

solution.

Solution 2

Suppose u =
√
x− 2.

The equation becomes 2 + u = u2 or u2 − u− 2 = 0 or (u− 2)(u+ 1) = 0.

Therefore, u = 2 or u = −1.

But we cannot have
√
x− 2 = −1 (as square roots are always non-negative).

Therefore,
√
x− 2 = 2 or x− 2 = 4 or x = 6.

We can check as in Solution 1 that x = 6 is indeed a solution.

(b) Solution 1

From the diagram, the parabola has x-intercepts x = 3 and x = −3.

Therefore, the equation of the parabola is of the form y = a(x − 3)(x + 3) for some real

number a.

Triangle ABC can be considered as having base AB (of length 3− (−3) = 6) and height

OC (where O is the origin).

Suppose C has coordinates (0,−c). Then OC = c.

Thus, the area of 4ABC is 1
2
(AB)(OC) = 3c. But we know that the area of 4ABC is 54,

so 3c = 54 or c = 18.

Since the parabola passes through C(0,−18), then this point must satisfy the equation of

the parabola.

Therefore, −18 = a(0− 3)(0 + 3) or −18 = −9a or a = 2.

Thus, the equation of the parabola is y = 2(x− 3)(x+ 3) = 2x2 − 18.
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Solution 2

Triangle ABC can be considered as having base AB (of length 3− (−3) = 6) and height

OC (where O is the origin).

Suppose C has coordinates (0,−c). Then OC = c.

Thus, the area of 4ABC is 1
2
(AB)(OC) = 3c. But we know that the area of 4ABC is 54,

so 3c = 54 or c = 18.

Therefore, the parabola has vertex C(0,−18), so has equation y = a(x− 0)2 − 18.

(The vertex of the parabola must lie on the y-axis since its roots are equally distant from

the y-axis, so C must be the vertex.)

Since the parabola passes through B(3, 0), then these coordinates satisfy the equation, so

0 = 32a− 18 or 9a = 18 or a = 2.

Therefore, the equation of the parabola is y = 2x2 − 18.

5. (a) The perimeter of the sector is made up of two line segments (of total length 5 + 5 = 10)

and one arc of a circle.

Since
72◦

360◦
=

1

5
, then the length of the arc is

1

5
of the total circumference of a circle of

radius 5.

Thus, the length of the arc is 1
5
(2π(5)) = 2π.

Therefore, the perimeter of the sector is 10 + 2π.

(b) 4AOB is right-angled at O, so has area 1
2
(AO)(OB) = 1

2
a(1) = 1

2
a.

We next need to calculate the area of 4BCD.

Method 1: Completing the trapezoid

Drop a perpendicular from C to P (3, 0) on the x-axis.

y

x
O

C (3, 2)

D (0, 1)

A (0, a)

B (1, 0) P

Then DOPC is a trapezoid with parallel sides DO of length 1 and PC of length 2 and

height OP (which is indeed perpendicular to the parallel sides) of length 3.

The area of the trapezoid is thus 1
2
(DO + PC)(OP ) = 1

2
(1 + 2)(3) = 9

2
.

But the area of 4BCD equals the area of trapezoid DOPC minus the areas of 4DOB
and 4BPC.

4DOB is right-angled at O, so has area 1
2
(DO)(OB) = 1

2
(1)(1) = 1

2
.

4BPC is right-angled at P , so has area 1
2
(BP )(PC) = 1

2
(2)(2) = 2.

Thus, the area of 4DBC is 9
2
− 1

2
− 2 = 2.
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(A similar method for calculating the area of 4DBC would be to drop a perpendicular

to Q on the y-axis, creating a rectangle QOPC.)

Method 2: 4DBC is right-angled

The slope of line segment DB is
1− 0

0− 1
= −1.

The slope of line segment BC is
2− 0

3− 1
= 1.

Since the product of these slopes is −1 (that is, their slopes are negative reciprocals), then

DB and BC are perpendicular.

Therefore, the area of 4DBC is 1
2
(DB)(BC).

Now DB =
√

(1− 0)2 + (0− 1)2 =
√

2 and BC =
√

(3− 1)2 + (2− 0)2 =
√

8.

Thus, the area of 4DBC is 1
2

√
2
√

8 = 2.

Since the area of 4AOB equals the area of 4DBC, then 1
2
a = 2 or a = 4.

6. (a) Suppose that O is the centre of the planet, H is the place where His Highness hovers in

the helicopter, and P is the furthest point on the surface of the planet that he can see.

O

H

P

Then HP must be a tangent to the surface of the planet (otherwise he could see further),

so OP (a radius) is perpendicular to HP (a tangent).

We are told that OP = 24 km.

Since the helicopter hovers at a height of 2 km, then OH = 24 + 2 = 26 km.

Therefore, HP 2 = OH2 −OP 2 = 262 − 242 = 100, so HP = 10 km.

Therefore, the distance to the furthest point that he can see is 10 km.

(b) Since we know the measure of ∠ADB, then to find the distance AB, it is enough to find

the distances AD and BD and then apply the cosine law.

In 4DBE, we have ∠DBE = 180◦ − 20◦ − 70◦ = 90◦, so 4DBE is right-angled, giving

BD = 100 cos(20◦) ≈ 93.969.

In 4DAC, we have ∠DAC = 180◦ − 50◦ − 45◦ = 85◦.

Using the sine law,
AD

sin(50◦)
=

CD

sin(85◦)
, so AD =

150 sin(50◦)

sin(85◦)
≈ 115.346.
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Finally, using the cosine law in 4ABD, we get

AB2 = AD2 +BD2 − 2(AD)(BD) cos(∠ADB)

AB2 ≈ (115.346)2 + (93.969)2 − 2(115.346)(93.969) cos(35◦)

AB2 ≈ 4377.379

AB ≈ 66.16

Therefore, the distance from A to B is approximately 66 m.

7. (a) Using rules for manipulating logarithms,

(
√
x)log10 x = 100

log10

(
(
√
x)log10 x

)
= log10 100

(log10 x)(log10

√
x) = 2

(log10 x)(log10 x
1
2 ) = 2

(log10 x)(1
2

log10 x) = 2

(log10 x)2 = 4

log10 x = ±2

x = 10±2

Therefore, x = 100 or x = 1
100

.

(We can check by substitution that each is indeed a solution.)

(b) Solution 1

Without loss of generality, suppose that square ABCD has side length 1.

Suppose next that BF = a and ∠CFB = θ.

Since 4CBF is right-angled at B, then ∠BCF = 90◦ − θ.
Since GCF is a straight line, then ∠GCD = 180◦ − 90◦ − (90◦ − θ) = θ.

Therefore, 4GDC is similar to 4CBF , since 4GDC is right-angled at D.

Thus,
GD

DC
=
BC

BF
or

GD

1
=

1

a
or GD =

1

a
.

So AF = AB +BF = 1 + a and AG = AD +DG = 1 +
1

a
=
a+ 1

a
.

Thus,
1

AF
+

1

AG
=

1

1 + a
+

a

a+ 1
=
a+ 1

a+ 1
= 1 =

1

AB
, as required.

Solution 2

We attach a set of coordinate axes to the diagram, with A at the origin, AG lying along

the positive y-axis and AF lying along the positive x-axis.

Without loss of generality, suppose that square ABCD has side length 1, so that C has

coordinates (1, 1). (We can make this assumption without loss of generality, because if

the square had a different side length, then each of the lengths in the problem would be

scaled by the same factor.)
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Suppose that the line through G and F has slope m.

Since this line passes through (1, 1), its equation is y− 1 = m(x− 1) or y = mx+ (1−m).

The y-intercept of this line is 1−m, so G has coordinates (0, 1−m).

The x-intercept of this line is
m− 1

m
, so F has coordinates

(
m− 1

m
, 0

)
. (Note that m 6= 0

as the line cannot be horizontal.)

Therefore,

1

AF
+

1

AG
=

m

m− 1
+

1

1−m
=

m

m− 1
+
−1

m− 1
=
m− 1

m− 1
= 1 =

1

AB

as required.

Solution 3

Join A to C.

We know that the sum of the areas of 4GCA and 4FCA equals the area of 4GAF .

The area of 4GCA (thinking of AG as the base) is 1
2
(AG)(DC), since DC is perpendic-

ular to AG.

Similarly, the area of 4FCA is 1
2
(AF )(CB).

Also, the area of 4GAF is 1
2
(AG)(AF ).

Therefore,

1
2
(AG)(DC) + 1

2
(AF )(CB) = 1

2
(AG)(AF )

(AG)(DC)

(AG)(AF )(AB)
+

(AF )(CB)

(AG)(AF )(AB)
=

(AG)(AF )

(AG)(AF )(AB)
1

AF
+

1

AG
=

1

AB

as required, since AB = DC = CB.

8. (a) We consider placing the three coins individually.

Place one coin randomly on the grid.

When the second coin is placed (in any one of 15 squares), 6 of the 15 squares will leave

two coins in the same row or column and 9 of the 15 squares will leave the two coins in

different rows and different columns.

Therefore, the probability that the two coins are in different rows and different columns

is 9
15

= 3
5
.

There are 14 possible squares in which the third coin can be placed.
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Of these 14 squares, 6 lie in the same row or column as the first coin and an additional 4

lie the same row or column as the second coin. Therefore, the probability that the third

coin is placed in a different row and a different column than each of the first two coins

is 4
14

= 2
7
.

Therefore, the probability that all three coins are placed in different rows and different

columns is 3
5
× 2

7
= 6

35
.

(b) Suppose that AB = c, AC = b and BC = a.

Since DG is parallel to AC, ∠BDG = ∠BAC and ∠DGB = ∠ACB, so 4DGB is similar

to 4ACB.

(Similarly, 4AED and 4ECF are also both similar to 4ABC.)

Suppose next that DB = kc, with 0 < k < 1.

Then the ratio of the side lengths of 4DGB to those of 4ACB will be k : 1, so BG = ka

and DG = kb.

Since the ratio of the side lengths of 4DGB to 4ACB is k : 1, then the ratio of their

areas will be k2 : 1, so the area of 4DGB is k2 (since the area of 4ACB is 1).

Since AB = c and DB = kc, then AD = (1 − k)c, so using similar triangles as before,

DE = (1− k)a and AE = (1− k)b. Also, the area of 4ADE is (1− k)2.

Since AC = b and AE = (1−k)b, then EC = kb, so again using similar triangles, EF = kc,

FC = ka and the area of 4ECF is k2.

Now the area of trapezoid DEFG is the area of the large triangle minus the combined

areas of the small triangles, or 1− k2 − k2 − (1− k)2 = 2k − 3k2.

We know that k ≥ 0 by its definition. Also, since G is to the left of F , then BG+FC ≤ BC

or ka+ ka ≤ a or 2ka ≤ a or k ≤ 1
2
.

Let f(k) = 2k − 3k2.

Since f(k) = −3k2 + 2k + 0 is a parabola opening downwards, its maximum occurs at its

vertex, whose k-coordinate is k = − 2
2(−3) = 1

3
(which lies in the admissible range for k).

Note that f(1
3
) = 2

3
− 3(1

9
) = 1

3
.

Therefore, the maximum area of the trapezoid is 1
3
.

9. (a) The vertex of the first parabola has x-coordinate x = −1
2
b.

Since each parabola passes through P , then

f
(
−1

2
b
)

= g
(
−1

2
b
)

1
4
b2 + b(−1

2
b) + c = −1

4
b2 + d(−1

2
b) + e

1
4
b2 − 1

2
b2 + c = −1

4
b2 − 1

2
bd+ e

1
2
bd = e− c

bd = 2(e− c)

as required. (The same result can be obtained by using the vertex of the second parabola.)
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(b) Solution 1

The vertex, P , of the first parabola has x-coordinate x = −1
2
b so has y-coordinate

f(−1
2
b) = 1

4
b2 − 1

2
b2 + c = −1

4
b2 + c.

The vertex, Q, of the second parabola has x-coordinate x = 1
2
d so has y-coordinate

g(1
2
d) = −1

4
d2 + 1

2
d2 + c = 1

4
d2 + e.

Therefore, the slope of the line through P and Q is

(−1
4
b2 + c)− (1

4
d2 + e)

−1
2
b− 1

2
d

=
−1

4
(b2 + d2)− (e− c)
−1

2
b− 1

2
d

=
−1

4
(b2 + d2)− 1

2
bd

−1
2
b− 1

2
d

=
−1

4
(b2 + 2bd+ d2)

−1
2
(b+ d)

= 1
2
(b+ d)

Using the point-slope form of the line, the line thus has equation

y = 1
2
(b+ d)(x− (−1

2
b)) + (−1

4
b2 + c)

= 1
2
(b+ d)x+ 1

4
b2 + 1

4
bd− 1

4
b2 + c

= 1
2
(b+ d)x+ 1

4
bd+ c

= 1
2
(b+ d)x+ 1

2
(e− c) + c

= 1
2
(b+ d)x+ 1

2
(e+ c)

so the y-intercept of the line is 1
2
(e+ c).

Solution 2

The equations of the two parabolas are y = x2 + bx+ c and y = −x2 + dx+ e.

Adding the two equations, we obtain 2y = (b+ d)x+ (c+ e) or y = 1
2
(b+ d)x+ 1

2
(c+ e).

This last equation is the equation of a line.

Points P and Q, whose coordinates satisfy the equation of each parabola, must satisfy the

equation of the line, and so lie on the line.

But the line through P and Q is unique, so this is the equation of the line through P

and Q.

Therefore, the line through P and Q has slope 1
2
(b+ d) and y-intercept 1

2
(c+ e).

10. (a) First, we note that since the circle and lines XY and XZ are fixed, then the quantity

XY +XZ is fixed.

Since V T and V Y are tangents from the same point V to the circle, then V T = V Y .

Since WT and WZ are tangents from the same point W to the circle, then WT = WZ.
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Therefore, the perimeter of 4V XW is

XV +XW + VW = XV +XW + V T +WT

= XV +XW + V Y +WZ

= XV + V Y +XW +WZ

= XY +XZ

which is constant, by our earlier comment.

Therefore, the perimeter of 4V XW always equals XY +XZ, which does not depend on

the position of T .

(b) Solution 1

A circle can be drawn that is tangent to the lines AB extended and AC extended, that

passes through M , and that has M on the left side of the circle. (The fact that such a

circle can be drawn and that this circle is unique can be seen by starting with a small

circle tangent to the two lines and expanding the circle, keeping it tangent to the two lines,

until it has M on the left side of its circumference.) Suppose that this circle is tangent to

AB and AC extended at Y and Z, respectively.

Draw a line tangent to the circle at M that cuts AB (extended) at V and AC (extended)

at W .

A

M

Y

Z

V

W

B

C

We prove that4AVW has the minimum perimeter of all triangles that can be drawn with

their third side passing through M .

From (a), we know that the perimeter of 4AVW equals AY + AZ.

Consider a different triangle APQ formed by drawing another line through M . Note that

this line PMQ cannot be tangent to the circle, so must cut the circle in two places (at M

and at another point).

A

M

Y

Z

P

Q
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This line, however, will be tangent to a new circle that is tangent to AB and AC at Y ′

and Z ′. But PMQ cuts the original circle at two points, then this new circle must be

formed by shifting the original circle to the right. In other words, Y ′ and Z ′ will be further

along AB and AC than Y and Z.

But the perimeter of 4APQ will equal AY ′+AZ ′ by (a) and AY ′+AZ ′ > AY +AZ, so

the perimeter of 4APQ is greater than that of 4AVW .

Therefore, the perimeter is minimized when the line through M is tangent to the circle.

We now must determine the perimeter of 4AVW . Note that it is sufficient to deter-

mine the length of AZ, since the perimeter of 4AVW equals AY + AZ and AY = AZ,

so the perimeter of 4AVW is twice the length of AZ.

First, we calculate ∠V AW = ∠BAC using the cosine law:

BC2 = AB2 + AC2 − 2(AB)(AC) cos(∠BAC)

142 = 102 + 162 − 2(10)(16) cos(∠BAC)

196 = 356− 320 cos(∠BAC)

320 cos(∠BAC) = 160

cos(∠BAC) = 1
2

∠BAC = 60◦

Next, we add coordinates to the diagram by placing A at the origin (0, 0) and AC along

the positive x-axis. Thus, C has coordinates (16, 0).

Since ∠BAC = 60◦ and AB = 10, then B has coordinates (10 cos(60◦), 10 sin(60◦)) or

(5, 5
√

3).

Since M is the midpoint of BC, then M has coordinates
(
1
2
(5 + 16), 1

2
(5
√

3 + 0)
)

or(
21
2
, 5
2

√
3
)
.

Suppose the centre of the circle is O and the circle has radius r.

Since the circle is tangent to the two lines AY and AZ, then the centre of the circle lies

on the angle bisector of ∠BAC, so lies on the line through the origin that makes an angle

of 30◦ with the positive x-axis. The slope of this line is thus tan(30◦) = 1√
3
.

The centre O will have y-coordinate r, since a radius from the centre to AZ is perpendic-

ular to the x-axis. Thus, O has coordinates (
√

3r, r) and Z has coordinates (
√

3r, 0).

Thus, the perimeter of the desired triangle is 2AZ = 2
√

3r.

Since the circle has centre (
√

3r, r) and radius r, then its equation is

(x−
√

3r)2 + (y − r)2 = r2.

Since M lies on the circle, then when we substitute the coordinates of M , we obtain an
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equation for r: (
21
2
−
√

3r
)2

+
(
5
2

√
3− r

)2
= r2

441
4
− 21
√

3r + 3r2 + 75
4
− 5
√

3r + r2 = r2

3r2 − 26
√

3r + 129 = 0

(
√

3r)2 − 2(13)(
√

3r) + 169− 40 = 0

(
√

3r − 13)2 = 40
√

3r − 13 = ±2
√

10

r =
13± 2

√
10√

3

r =
13
√

3± 2
√

30

3

(Alternatively, we could have used the quadratic formula instead of completing the square.)

Therefore, r =
13
√

3 + 2
√

30

3
since we want the circle with the larger radius that passes

through M and is tangent to the two lines. (Note that there is a smaller circle “inside”

M and a larger circle “outside” M .)

Therefore, the minimum perimeter is 2
√

3r =
26(3) + 4

√
90

3
= 26 + 4

√
10.

Solution 2

As in Solution 1, we prove that the triangle with minimum perimeter has perimeter equal

to AY + AZ.

Next, we must determine the length of AY .

As in Solution 1, we can show that ∠Y AZ = 60◦.

Suppose the centre of the circle is O and the circle has radius r.

Since the circle is tangent to AY and to AZ at Y and Z, respectively, then OY and OZ

are perpendicular to AY and AZ.

Also, joining O to A bisects ∠Y AZ (since the circle is tangent to AY and AZ), so

∠Y AO = 30◦.

Thus, AY =
√

3Y O =
√

3r. Also, AZ = AY =
√

3r.

Next, join O to B and to C.

A

M

Y

Z

B

C

O

Since AB = 10, then BY = AY − AB =
√

3r − 10.

Since AC = 10, then CZ = AZ − AC =
√

3r − 16.



2007 Euclid Contest Solutions Page 14

Since 4OBY is right-angled at Y , then

OB2 = BY 2 +OY 2 = (
√

3r − 10)2 + r2

Since 4OCZ is right-angled at Z, then

OC2 = CZ2 +OZ2 = (
√

3r − 16)2 + r2

In 4OBC, since BM = MC, then OB2 + OC2 = 2BM2 + 2OM2. (See the end for a

proof of this.)

Therefore,

(
√

3r − 10)2 + r2 + (
√

3r − 16)2 + r2 = 2(72) + 2r2

3r2 − 20
√

3r + 100 + r2 + 3r2 − 32
√

3r + 256 + r2 = 98 + 2r2

6r2 − 52
√

3r + 258 = 0

3r2 − 26
√

3r + 129 = 0

As in Solution 1, r =
13
√

3 + 2
√

30

3
, and so the minimum perimeter is

2
√

3r =
26(3) + 4

√
90

3
= 26 + 4

√
10

We could have noted, though, that since we want to find 2
√

3r, then setting z =
√

3r, the

equation 3r2 − 26
√

3r + 129 = 0 becomes z2 − 26z + 129 = 0. Completing the square,

we get (z−13)2 = 40, so z = 13±2
√

10, whence the perimeter is 26+4
√

10 in similar way.

We must still justify that, in 4OBC, we have OB2 +OC2 = 2BM2 + 2OM2.

O

B CM

By the cosine law in 4OBM ,

OB2 = OM2 +BM2 − 2(OM)(BM) cos(∠OMB)

By the cosine law in 4OCM ,

OC2 = OM2 + CM2 − 2(OM)(CM) cos(∠OMC)

But BM = CM and ∠OMC = 180◦ − ∠OMB, so cos(∠OMC) = − cos(∠OMB).

Therefore, our two equations become

OB2 = OM2 +BM2 − 2(OM)(BM) cos(∠OMB)

OC2 = OM2 +BM2 + 2(OM)(BM) cos(∠OMB)

Adding, we obtain OB2 +OC2 = 2OM2 + 2BM2, as required.

(Notice that this result holds in any triangle with a median drawn in.)
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1. (a) Answer: 0
Solution 1
Since 3x− 3y = 24, then x− y = 8.
To determine the x-intercept we set y = 0 and obtain x = 8.
To determine the y-intercept we set x = 0 and obtain y = −8.
Thus, the sum of the intercepts is 8 + (−8) = 0.

Solution 2
To determine the x-intercept we set y = 0 and obtain 3x = 24 or x = 8.
To determine the y-intercept we set x = 0 and obtain −3y = 24 or y = −8.
Thus, the sum of the intercepts is 8 + (−8) = 0.

Solution 3
Since 3x− 3y = 24, then x− y = 8 or y = x− 8.
This tells us immediately that the y-intercept of the line is y = −8 and that the x-intercept
(obtained by setting y = 0) is x = 8.
Thus, the sum of the intercepts is 8 + (−8) = 0.

(b) Answer: 20
Since (1, 1) is the point of intersection of the two lines, then it must satisfy the equation
of each line.
From the first line, p(1) = 12 or p = 12.
From the second line, 2(1) + q(1) = 10 or q = 8.
Therefore, p + q = 20.

(c) Solution 1
To determine B, the point of intersection of the lines y = x and x+ 2y = 12, we set y = x
in the second equation to obtain x + 2x = 12 or 3x = 12 or x = 4.

y

x

A

B

y�=� x

x�+�2y�=�12

y�=�x

Since y = x, B has coordinates (4, 4).
To determine A, the point of intersection of the lines y = −x and x + 2y = 12, we set
y = −x in the second equation to obtain x− 2x = 12 or −x = 12 or x = −12.
Since y = −x, A has coordinates (−12, 12).
The length of AB equals the distance between A and B, or√

(4− (−12))2 + (4− 12)2 =
√

162 + (−8)2 =
√

320 = 8
√

5

Solution 2
We determine the coordinates of A and B as in Solution 1.
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Since the slopes of y = x (slope of 1) and y = −x (slope of −1) are negative reciprocals,
then these lines are perpendicular, so ∠AOB = 90◦.
Since B has coordinates (4, 4), then OB has length

√
42 + 42 =

√
32 = 4

√
2.

Since A has coordinates (−12, 12), then OA has length
√

(−12)2 + 122 =
√

288 = 12
√

2.
Using the Pythagorean Theorem on triangle AOB,

AB =
√

OB2 + OA2 =
√

32 + 288 =
√

320 = 8
√

5

2. (a) Answer: 9
For the average of two digits to be 5, their sum must be 10.
The two-digit positive integers whose digits sum to 10 are 19, 28, 37, 46, 55, 64, 73, 82,
91, of which there are 9.

(b) Answer: n = 45
Solution 1
Suppose that n has digits AB. Then n = 10A + B.

The average of the digits of n is
A + B

2
.

Putting a decimal point between the digits of n is equivalent to dividing n by 10, so the

resulting number is
10A + B

10
.

So we want to determine A and B so that

10A + B

10
=

A + B

2
10A + B = 5(A + B)

5A = 4B

Since A and B are digits such that 5A = 4B, then A = 4 and B = 5 is the only possibility.
Therefore, n = 45.
(We can quickly check that the average of the digits of n is 4.5, the number obtained by
putting a decimal point between the digits of n.)

Solution 2
When we compute the average of two digits, the result is either an integer or a half-integer
(ie. a decimal number of the form a.5).
Therefore, the possible averages are 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0,
6.5, 7.0, 7.5, 8.0, 8.5, 9.0. (0.0 is not possible as an two-digit integer cannot start with 0.)
From this list, the only one equal to the average of the two digits forming it is 4.5.
Therefore, n = 45 (formed by removing the decimal point from 4.5).

(c) Solution 1
When the average of three integers is 28, their sum is 3(28) = 84.
When the average of five integers is 34, their sum is 5(34) = 170.
In this case, the difference between the sum of the five integers and the sum of the three
integers is s + t which must equal 170− 84 = 86.

Therefore, s + t = 86 and so the average of s and t is
s + t

2
= 43.

Solution 2
Suppose the first three integers are a, b and c.
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Then
a + b + c

3
= 28 or a + b + c = 84.

Also,
a + b + c + s + t

5
= 34 or a + b + c + s + t = 170.

Thus, s + t = (a + b + c + s + t)− (a + b + c) = 170− 84 = 86 and so the average of s and

t is
s + t

2
= 43.

Solution 3
Suppose that the average of s and t is A.
Since the average of the initial three numbers is 28, the average of s and t is A, and the
average of all five numbers is 34, then 34 must be 2

5
of the way from 28 to A. The difference

between 34 and 28 is 6, so the total difference between A and 28 must be 5
2
(6) = 15.

Thus, A, the average of s and t, is 28 + 15 = 43.

3. (a) Answer: (21,−1)
Solution 1
The x-intercepts of the given parabola are x = 20 and x = 22.
The x-coordinate of the vertex of the parabola is the average of the x-intercepts, or
1
2
(20 + 22) = 21.

When x = 21, y = (21− 20)(21− 22) = −1.
Thus, the coordinates of the vertex are (21,−1).

Solution 2
We expand the right side of the equation of the parabola to obtain y = x2 − 42x + 440.
Next we complete the square to obtain

y = x2−2(21)x+212−212+440 = (x−21)2−212+440 = (x−21)2−441+440 = (x−21)2−1

From this form, we immediately see that the coordinates of the vertex are (21,−1).

(b) Consider the parabola y = x2 + 2 = (x− 0)2 + 2.
The coordinates of its vertex are A(0, 2).
Consider the parabola y = x2 − 6x + 7.
Completing the square, we obtain y = (x− 3)2 − 9 + 7 = (x− 3)2 − 2.
The coordinates of its vertex are B(3,−2).
Therefore, the vertices of 4OAB are O(0, 0), A(0, 2), B(3,−2).
Sketching this triangle, we obtain y

x

A(0, 2)

B(3, 2)

O

We can consider this triangle as having base OA (of length 2) and height, equal to the
distance from B to the y-axis, of 3.
Thus, 4OAB has area 1

2
(2)(3) = 3.
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4. (a) Answer: R = 12
Solution 1
We label some of the points in the diagram.

3 1

2

5 10

R

A

B

C

D

X Y Z

Looking at the middle column of rectangles, each has the same width, so the ratio of their
areas equals the ratio of their heights. Thus, AB : BC = 1 : 2.
Looking at the rectangles in the first column, the area of the middle rectangle must be
twice the area of the top rectangle, or 6.
Thus, BC : CD = 6 : 5 by the reasoning above.
So, looking at the third column, R : 10 = 6 : 5 or R = 12.

Solution 2
Let the width of the first column be x.

Since the area of the top left rectangle is 3, the height of the first row is
3

x
.

Since the area of the bottom left rectangle is 5, the height of the third row is
5

x
.

Since the height of the first row is
3

x
and the area of the top middle rectangle is 1, the

width of the middle column is
x

3
.

Thus, the height of the middle row is
6

x
, since the area of the middle rectangle is 2.

Since the height of the third row is
5

x
and the area of the bottom right rectangle is 10,

then the width of the third column is 2x.

Since the rectangle labelled R has height
6

x
and width 2x, then it has area 12.

Solution 3
We label some of the lengths in the diagram.

3 1

2

5 10

R

a

b

c

x y z

From the given information, ax = 3, ay = 1, by = 2, bz = R, cx = 5 and cz = 10.
We want to determine bz.

But bz =
(ax)(by)(cz)

(ay)(cx)
=

(3)(2)(10)

(1)(5)
= 12, so R = 12.
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(b) Solution 1
Since ∠AOB = 90◦, AB is a diameter of the circle.
Join AB.

y

x

A

B (2, 0)O

C (1,1)

Since C is the centre of the circle and AB is a diameter, then C is the midpoint of AB,
so A has coordinates (0, 2).
Therefore, the area of the part of the circle inside the first quadrant is equal to the area
of 4AOB plus the area of the semi-circle above AB.
The radius of the circle is equal to the distance from C to B, or

√
(1− 2)2 + (1− 0)2 =

√
2,

so the area of the semi-circle is 1
2
π(
√

2)2 = π.
The area of 4AOB is 1

2
(OB)(AO) = 1

2
(2)(2) = 2.

Thus, the area of the part of the circle inside the first quadrant is π + 2.

Solution 2
Since ∠AOB = 90◦, AB is a diameter of the circle.
Join AB.

y

x

A

B (2, 0)O

C (1,1)

Since C is the centre of the circle and AB is a diameter, then C is the midpoint of AB,
so A has coordinates (0, 2).
Thus, AO = BO.
We “complete the square” by adding point D(2, 2), which is on the circle, by symmetry.
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y

x

A

B (2, 0)O

C (1,1)

D (2,2)

The area of the square is 4.
The radius of the circle is equal to the distance from C to B, or

√
(1− 2)2 + (1− 0)2 =

√
2,

so the area of the circle is π(
√

2)2 = 2π.
The area of the portion of the circle outside the square is thus 2π−4. This area is divided
into four equal sections (each of area 1

4
(2π − 4) = 1

2
π − 1), two of which are the only

portions of the circle outside the first quadrant.
Therefore, the area of the part of the circle inside the the first quadrant is 2π−2(1

2
π−1) =

π + 2.

Two additional ways to find the coordinates of A:

∗ The length of OC is
√

12 + 12 =
√

2.
Since C is the centre of the circle and O lies on the circle, then the circle has radius√

2.
Since the circle has centre (1, 1) and radius

√
2, its equation is (x− 1)2 +(y− 1)2 = 2.

To find the coordinates of A, we substitute x = 0 to obtain (0− 1)2 + (y− 1)2 = 2 or
(y − 1)2 = 1, and so y = 0 or y = 2.
Since y = 0 gives us the point O, then y = 2 gives us A, ie. A has coordinates (0, 2).

∗ Since O and A are both on the circle and each has a horizontal distance of 1 from C,
then their vertical distances from C must be same, ie. must each be 1.
Thus, A has coordinates (0, 2).

5. (a) Answer: 2
5

Since there are 5 choices for a and 3 choices for b, there are fifteen possible ways of choosing
a and b.
If a is even, ab is even; if a is odd, ab is odd.
So the choices of a and b which give an even value for ab are those where a is even, or 6 of
the choices (since there are two even choices for a and three ways of choosing b for each
of these). (Notice that in fact the value of b does not affect whether ab is even or odd, so
the probability depends only on the choice of a.)
Thus, the probability is 6

15
= 2

5
.

(b) Starting with 4 blue hats and 2 green hats, the probability that Julia removes a blue hat
is 4

6
= 2

3
. The result would be 3 blue hats and 3 green hats, since a blue hat is replaced

with a green hat.
In order to return to 4 blue hats and 2 green hats from 3 blue and 3 green, Julia would
need remove a green hat (which would be replaced by a blue hat). The probability of her



2006 Euclid Contest Solutions Page 8

removing a green hat from 3 blue and 3 green is 3
6

= 1
2
.

Summarizing, the probability of choosing a blue hat and then a green hat is 2
3
× 1

2
= 1

3
.

Starting with 4 blue hats and 2 green hats, the probability that Julia removes a green
hat is 2

6
= 1

3
. The result would be 5 blue hats and 1 green hat, since a green hat is

replaced with a blue hat.
In order to return to 4 blue hats and 2 green hats from 5 blue and 1 green, Julia would
need remove a blue hat (which would be replaced by a green hat). The probability of her
removing a green hat from 5 blue and 1 green is 5

6
.

Summarizing, the probability of choosing a green hat and then a blue hat is 1
3
× 5

6
= 5

18
.

These are the only two ways to return to 4 blue hats and 2 green hats after two turns –
removing a blue hat then a green, or removing a green then a blue.
Therefore, the total probability of returning to 4 blue hats and 2 green hats after two
turns is 1

3
+ 5

18
= 11

18
.

6. (a) Answer: a = 1
Adding the two equations, we obtain

sin2 x + cos2 x + sin2 y + cos2 y =
3

2
a +

1

2
a2

2 =
3

2
a +

1

2
a2

4 = 3a + a2

0 = a2 + 3a− 4

0 = (a + 4)(a− 1)

and so a = −4 or a = 1.
However, a = −4 is impossible, since this would give sin2 x + cos2 y = −6, whose left side
is non-negative and whose right side is negative.
Therefore, the only possible value for a is a = 1.

(We can check that angles x = 90◦ and y = 45◦ give sin2 x+cos2 y = 3
2

and cos2 x+sin2 y =
1
2
, so a = 1 is indeed possible.)

(b) From the given information, PC = PB.
If we can calculate the length of PC, we can calculate the value of h, since we already
know the length of AC.

Now 4CPB is isosceles with PC = PB, BC = 2 and ∠BPC = 120◦.
Since 4CPB is isosceles, ∠PCB = ∠PBC = 30◦.

P

M
BC

Join P to the midpoint, M , of BC.
Then PM is perpendicular to BC, since 4PCB is isosceles.
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Therefore, 4PMC is right-angled, has ∠PCM = 30◦ and has CM = 1.
Thus, PC = 2√

3
.

(There are many other techniques that we can use to calculate the length of PC.)

Returning to 4APC, we see AP 2 = AC2 − PC2 or h2 = 22 −
(

2√
3

)2

= 4 − 4
3

= 8
3
,

and so h =
√

8
3

= 2
√

2
3

= 2
√

6
3
≈ 1.630.

Therefore, the height is approximately 1.63 m or 163 cm.

7. (a) Answer: k = 233
Solution 1
We calculate the first 15 terms, writing each as an integer times a power of 10:

2, 5, 10, 5× 10, 5× 102, 52 × 103, 53 × 105, 55 × 108, 58 × 1013, 513 × 1021, 521 × 1034,

534 × 1055, 555 × 1089, 589 × 10144, 5144 × 10233

Since the 15th term equals an odd integer times 10233, then the 15th term ends with 233
zeroes.

Solution 2
To obtain the 6th term, we calculate 50× 500 = 25× 1000.
Each of the 4th and 5th terms equals an odd integer followed by a number of zeroes, so
the 6th term also equals an odd integer followed by a number of zeroes, where the number
of zeroes is the sum of the numbers of zeroes at the ends of the 4th and 5th terms.
This pattern will continue. Thus, starting with the 6th term, the number of zeroes at the
end of the term will be the sum of the number of zeroes at the ends of the two previous
terms.
This tells us that, starting with the 4th term, the number of zeroes at the ends of the
terms is

1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233

Therefore, the 15th term ends with 233 zeroes.

(b) Solution 1
Since a, b and c are consecutive terms in an arithmetic sequence, then b = a + d and
c = a + 2d for some number d.
Therefore,

a2 − bc = a2 − (a + d)(a + 2d) = a2 − a2 − 3ad− 2d2 = −3ad− 2d2

b2 − ac = (a + d)2 − a(a + 2d) = a2 + 2ad + d2 − a2 − 2ad = d2

c2 − ab = (a + 2d)2 − a(a + d) = a2 + 4ad + 4d2 − a2 − ad = 3ad + 4d2

Thus,
(b2 − ac)− (a2 − bc) = d2 − (−3ad− 2d2) = 3d2 + 3ad

and
(c2 − ab)− (b2 − ac) = (3ad + 4d2)− d2 = 3d2 + 3ad

Therefore, (b2 − ac) − (a2 − bc) = (c2 − ab) − (b2 − ac), so the sequence a2 − bc, b2 − ac
and c2 − ab is arithmetic.
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Solution 2
Since a, b and c are consecutive terms in an arithmetic sequence, then a = b − d and
c = b + d for some number d.
Therefore,

a2 − bc = (b− d)2 − b(b + d) = b2 − 2bd + d2 − b2 − bd = −3bd + d2

b2 − ac = b2 − (b− d)(b + d) = b2 − b2 + d2 = d2

c2 − ab = (b + d)2 − (b− d)b = b2 + 2bd + d2 − b2 + bd = 3bd + d2

Thus,
(b2 − ac)− (a2 − bc) = d2 − (−3bd + d2) = 3bd

and
(c2 − ab)− (b2 − ac) = (3bd + d2)− d2 = 3bd

Therefore, (b2 − ac) − (a2 − bc) = (c2 − ab) − (b2 − ac), so the sequence a2 − bc, b2 − ac
and c2 − ab is arithmetic.

Solution 3
To show that a2 − bc, b2 − ac and c2 − ab form an arithmetic sequence, we can show that
(c2 − ab) + (a2 − bc) = 2(b2 − ac).
Since a, b and c form an arithmetic sequence, then a + c = 2b.
Now

(c2 − ab) + (a2 − bc) = c2 + a2 − b(a + c)

= c2 + a2 + 2ac− b(a + c)− 2ac

= (c + a)2 − b(a + c)− 2ac

= (c + a)(a + c− b)− 2ac

= 2b(2b− b)− 2ac

= 2b2 − 2ac

= 2(b2 − ac)

as required.

8. (a) We use logarithm rules to rearrange the equation to solve for y:

log2 x− 2 log2 y = 2

log2 x− log2(y
2) = 2

log2

(
x

y2

)
= 2

x

y2
= 22

1
4
x = y2

y = ±1
2

√
x

But since the domain of the log2 function is all positive real numbers, we must have x > 0
and y > 0, so we can reject the negative square root to obtain

y = 1
2

√
x, x > 0

The graph of this function is:
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y

x
O

(b) Solution 1
Join A to E and C, and B to E.

A B

C

D

E

F

Since DE is parallel to BC and AD is perpendicular to BC, then AD is perpendicular to
DE, ie. ∠ADE = 90◦.
Therefore, AE is a diameter.
Now ∠EAC = ∠EBC since both are subtended by EC.
Therefore, ∠EAC + ∠ABC = ∠EBC + ∠ABC = ∠EBA which is indeed equal to 90◦ as
required, since AE is a diameter.

Solution 2
Join A to E and C.

A B

C

D

E

F

Since DE is parallel to BC and AD is perpendicular to BC, then AD is perpendicular to
DE, ie. ∠ADE = 90◦.
Therefore, AE is a diameter.
Thus, ∠ECA = 90◦.
Now ∠ABC = ∠AEC since both are subtended by AC.
Now ∠EAC + ∠ABC = ∠EAC + ∠AEC = 180◦−∠ECA using the sum of the angles in
4AEC.
But ∠ECA = 90◦, so ∠EAC + ∠AEC = 90◦.
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Solution 3
Join A to E and C, and C to D.

A B

C

D

E

F

Since DE is parallel to BC and AD is perpendicular to BC, then AD is perpendicular to
DE, ie. ∠ADE = 90◦.
Therefore, AE is a diameter.
Now ∠ABC = ∠ADC since both are subtended by AC.
Also ∠EAC = ∠EDC since both are subtended by EC.
So ∠EAC + ∠ABC = ∠EDC + ∠ADC = ∠ADE = 90◦.

9. (a) Solution 1
Since sin2 x + cos2 x = 1, then cos2 x = 1− sin2 x, so

f(x) = sin6 x + (1− sin2 x)3 + k(sin4 x + (1− sin2 x)2)

= sin6 x + 1− 3 sin2 x + 3 sin4 x− sin6 x + k(sin4 x + 1− 2 sin2 x + sin4 x)

= (1 + k)− (3 + 2k) sin2 x + (3 + 2k) sin4 x

Therefore, if 3 + 2k = 0 or k = −3
2
, then f(x) = 1 + k = −1

2
for all x and so is constant.

(If k 6= −3
2
, then we get

f(0) = 1 + k

f
(

1
4
π
)

= (1 + k)− (3 + 2k)
(

1
2

)
+ (3 + 2k)

(
1
4

)
= 1

4
+ 1

2
k

f
(

1
6
π
)

= (1 + k)− (3 + 2k)
(

1
4

)
+ (3 + 2k)

(
1
16

)
= 7

16
+ 5

8
k

which cannot be all equal for any single value of k, so f(x) is not constant if k 6= −3
2
.)

Solution 2
Since sin2 x + cos2 x = 1, then

f(x) = (sin2 x + cos2 x)(sin4 x− sin2 x cos2 x + cos4 x) + k(sin4 x + cos4 x)

= (sin4 +2 sin2 x cos2 x + cos4 x− 3 sin2 x cos2 x)

k(sin4 x + 2 sin2 x cos2 x + cos4 x− 2 sin2 x cos2 x)

= ((sin2 x + cos2 x)2 − 3 sin2 x cos2 x) + k((sin2 x + cos2 x)2 − 2 sin2 x cos2 x)

= 1− 3 sin2 x cos2 x + k(1− 2 sin2 x cos2 x)

= (1 + k)− (3 + 2k) sin2 x cos2 x

Therefore, if 3 + 2k = 0 or k = −3
2
, then f(x) = 1 + k = −1

2
for all x and so is constant.

(We can check as in Solution 1 that if k 6= −3
2
, then f(x) is not constant.)
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Solution 3
For f(x) to be constant, we need f ′(x) = 0 for all values of x.
Calculating using the Chain Rule,

f ′(x) = 6 sin5 x cos x− 6 cos5 x sin x + k(4 sin3 x cos x− 4 cos3 x sin x)

= 2 sin x cos x(3(sin4 x− cos4 x) + 2k(sin2 x− cos2 x))

= 2 sin x cos x(sin2 x− cos2 x)(3(sin2 x + cos2 x) + 2k)

= 2 sin x cos x(sin2 x− cos2 x)(3 + 2k)

If 3 + 2k = 0 or k = −3
2
, then f ′(x) = 0 for all x, so f(x) is constant.

(If 3 + 2k 6= 0, then choosing x = 1
6
π for example gives f ′(x) 6= 0 so f(x) is not constant.)

(b) Solution 1
Using the simplified version of f(x) from Solution 1 of (a), we have

f(x) = (1 + k)− (3 + 2k) sin2 x + (3 + 2k) sin4 x

and so we want to solve

0.3− (1.6) sin2 x + (1.6) sin4 x = 0

16 sin4 x− 16 sin2 x + 3 = 0

(4 sin2 x− 3)(4 sin2 x− 1) = 0

Therefore, sin2 x = 1
4
, 3

4
, and so sin x = ±1

2
,±

√
3

2
.

Therefore,

x = 1
6
π + 2πk, 5

6
π + 2πk, 7

6
π + 2πk, 11

6
π + 2πk, 1

3
π + 2πk, 2

3
π + 2πk, 4

3
π + 2πk, 5

3
π + 2πk

for k ∈ Z.

Solution 2
Using the simplified version of f(x) from Solution 2 of (a), we have

f(x) = (1 + k)− (3 + 2k) sin2 x cos2 x

and so we want to solve

0.3− (1.6) sin2 x cos2 x = 0

0.3− (1.6) sin2 x(1− sin2 x) = 0

1.6 sin4 x− 1.6 sin2 x + 0.3 = 0

and the solution concludes as in Solution 1.

Solution 3
Using the simplified version of f(x) from Solution 2 of (a), we have

f(x) = (1 + k)− (3 + 2k) sin2 x cos2 x

Using the fact that sin 2x = 2 sin x cos x, we can further simplify f(x) to

f(x) = (1 + k)− 1
4
(3 + 2k) sin2 2x
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and so we want to solve

0.3− 1
4
(1.6) sin2 2x = 0

4 sin2 2x = 3

sin2 2x = 3
4

and so sin 2x = ±
√

3
2

.
Therefore,

2x = 1
3
π + 2πk, 2

3
π + 2πk, 4

3
π + 2πk, 5

3
π + 2πk

for k ∈ Z, and so
x = 1

6
π + πk, 1

3
π + πk, 2

3
π + πk, 5

6
π + πk

for k ∈ Z.
(Note that this solution, while appearing different, does agree with that from Solution 1,
since here each of the four families of solutions has “+πk” and in Solution 1 each of the
eight families has “+2πk”.)

(c) Solution 1
Using the simplified version of f(x) from Solution 1 of (a), we have

f(x) = (1 + k)− (3 + 2k) sin2 x + (3 + 2k) sin4 x

We want to determine the values of k for which there is an a such that f(a) = 0.
From (a), if k = −3

2
, f(x) is constant and equal to −1

2
, so has no roots.

Let u = sin2 x.
Then u takes all values between 0 and 1 as sin x takes all values between −1 and 1.
Then we want to determine for which k the equation

(3 + 2k)u2 − (3 + 2k)u + (1 + k) = 0 (∗)

has a solution for u with 0 ≤ u ≤ 1.
First, we must ensure that the equation (*) has real solutions, ie.

(3 + 2k)2 − 4(3 + 2k)(1 + k) ≥ 0

(3 + 2k)(3 + 2k − 4(1 + k)) ≥ 0

(3 + 2k)(−1− 2k) ≥ 0

(3 + 2k)(1 + 2k) ≤ 0

This is true if and only if −3
2

< k ≤ −1
2
. (We omit k = −3

2
because of the earlier

comment.)
Next, we have to check for which values of k the equation (*) has a solution u with
0 ≤ u ≤ 1. We may assume that −3

2
< k ≤ −1

2
.

To do this, we solve the equation (*) using the quadratic formula to obtain

u =
(3 + 2k)±

√
(3 + 2k)2 − 4(3 + 2k)(1 + k)

2(3 + 2k)

or

u =
(3 + 2k)±

√
−(3 + 2k)(1 + 2k)

2(3 + 2k)
=

1

2
± 1

2

√
−1 + 2k

3 + 2k
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Since k > −3
2

then 3 + 2k > 0.
For u to be between 0 and 1, we need to have

0 ≤
√
−1 + 2k

3 + 2k
≤ 1

Thus

0 ≤ −1 + 2k

3 + 2k
≤ 1

Since −3
2

< k ≤ −1
2

then 3 + 2k > 0 and 1 + 2k ≤ 0, so the left inequality is true.

Therefore, we need −1 + 2k

3 + 2k
≤ 1 or −(1 + 2k) ≤ (3 + 2k) (we can multiply by (3 + 2k)

since it is positive), and so −4 ≤ 4k or k ≥ −1.
Combining with −3

2
< k ≤ −1

2
gives −1 ≤ k ≤ −1

2
.

Solution 2
Using the simplified version of f(x) from Solution 3 of (b), we have

f(x) = (1 + k)− 1
4
(3 + 2k) sin2 2x

If we tried to solve f(x) = 0, we would obtain

(1 + k)− 1
4
(3 + 2k) sin2 2x = 0

or

sin2 2x =
4(1 + k)

3 + 2k

(From (a), if k = −3
2
, f(x) is constant and equal to −1

2
, so has no roots.)

In order to be able to solve this (first for sin 2x, then for 2x then for x), we therefore need

0 ≤ 4(1 + k)

3 + 2k
≤ 1

If 3 + 2k > 0, we can multiply the inequality by 3 + 2k to obtain

0 ≤ 4(1 + k) ≤ 3 + 2k

and so we get k ≥ −1 from the left inequality and k ≤ −1
2

from the right inequality.
Combining these with −3

2
< k, we obtain −1 ≤ k ≤ −1

2
.

If 3 + 2k < 0, we would obtain 0 ≥ 4(1 + k) ≥ 3 + 2k which would give k ≤ −1
and k ≥ −1

2
, which are inconsistent.

Therefore, −1 ≤ k ≤ −1
2
.

There were many other clever approaches to be taken in this problem:

– Deriving either of the expressions

f(x) =

(
k +

3

2

)
(sin4 x + cos4 x)− 1

2

or

f(x) = (1 + k)− 1

4
(3 + 2k) sin2 2x

led to some simpler algebra.
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– In (c), deriving the equation

(1− sin2 x)(sin2 x) =
k + 1

2k + 3

and rewriting the left side as −(sin2 x− 1
2
)2 + 1

4
allowed one student to conclude that the

right side lies between 0 and 1
4
, thus quickly obtaining the range of values for k.

10. Through this solution, we will use the following facts:

When an acute triangle is inscribed in a circle:

– each of the three angles of the triangle is the angle inscribed in the major arc
defined by the side of the triangle by which it is subtended,

– each of the three arcs into which the circle is divided by the vertices of the
triangles is less than half of the circumference of the circle, and

– it contains the centre of the circle.

Why are these facts true?

– Consider a chord of a circle which is not a diameter.
Then the angle subtended in the major arc of this circle is an acute angle and the angle
subtended in the minor arc is an obtuse angle.
Now consider an acute triangle inscribed in a circle.
Since each angle of the triangle is acute, then each of the three angles is inscribed in the
major arc defined by the side of the triangle by which it is subtended.

– It follows that each arc of the circle that is outside the triangle must be a minor arc, thus
less than the circumference of the circle.

– Lastly, if the centre was outside the triangle, then we would be able to draw a diameter
of the circle with the triangle entirely on one side of the diameter.

In this case, one of the arcs of the circle cut off by one of the sides of the triangle would
have to be a major arc, which cannot happen, because of the above.
Therefore, the centre is contained inside the triangle.

(a) Since there are N = 7 points from which the triangle’s vertices can be chosen, there are(
7
3

)
= 35 triangles in total.

We compute the number of acute triangles.

Fix one of the vertices of such a triangle at A1.
We construct the triangle by choosing the other two vertices in ascending subscript order.
We choose the vertices by considering the arc length from the previous vertex – each of
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these arc lengths must be smaller than half the total circumference of the circle.
Since there are 7 equally spaced points on the circle, we assume the circumference is 7, so
the arc length formed by each side must be at most 3.
Since the first arc length is at most 3, the second point can be only A2, A3 or A4.
If the second point is A2, then since the second and third arc lengths are each at most 3,
then the third point must be A5. (Since the second arc length is at most 3, then the third
point cannot be any further along than A5. However, the arc length from A5 around to
A1 is 3, so it cannot be any closer than A5.)

A1

A5

A6

A7

A4

A3

A2

If the second point is A3, the third point must be A5 or A6.
If the second point is A4, the third point must be A5 or A6 or A7.
Therefore, there are 6 acute triangles which include A1 as one of its vertices.

How many acute triangles are there in total?
We can repeat the above process for each of the 6 other points, giving 7 × 6 = 42 acute
triangles.
But each triangle is counted three times here, as it has been counted once for each of its
vertices.

Thus, there are
7× 6

3
= 14 acute triangles.

Therefore, the probability that a randomly chosen triangle is acute if 14
35

= 2
5
.

(b) Solution 1
Since there are N = 2k points from which the triangles vertices can be chosen, there are(

2k
3

)
=

2k(2k − 1)(2k − 2)

6
triangles in total.

We compute the number of acute triangles as in (a) by counting the number of acute
triangles with one vertex fixed at A1 and then multiply by 2k and divide by 3 as in (a).

Fix one vertex at A1 and suppose that the circumference of the circle is 2k.
The diametrically opposite point from A1 is Ak+1.
Since the triangle cannot be entirely on one side of a diameter, then the second vertex
must be between A2 and Ak inclusive and the other between Ak+2 and A2k inclusive. This
will ensure that the first and third arcs are shorter than half of the circumference of the
circle.
If the second vertex is at A2, then the third vertex must be no further than Ak+1 for the
second arc length to be shorter than k. Thus, there are no possibilities.
If the second vertex is at A3, then the third vertex must be no further than Ak+2. (In
this case, the arc between the second and third vertices has length k − 1, as does the arc
between the third and first vertices.) Thus, there is one possibility.
If the second vertex is at A4, then the third vertex must be no further than Ak+3. In this
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case, if the third vertex is Ak+3, the arc between the second and third vertices has length
k− 1 and the arc between the third and first vertices has length k− 2. If the third vertex
is Ak+2, these lengths are reversed. If the third vertex is neither of these points, then one
of the two arcs will have length greater than k− 1. Thus, there are two possibilities (Ak+2

and Ak+3).
In general, if the second vertex is at Aj (with 2 ≤ j ≤ k), then the third vertex must be no
further than Aj+k−1, so there are j + k− 1− (k + 1) = j− 2 possibilities. (This is because
if the third vertex is Ai, then i− j < k and (2k + 1)− i < k for the two arc lengths to be
less than k. Therefore, i < j + k and i > k + 1 so i runs from k + 2 to j + k − 1, which is
j − 2 possibilities in total.)
As j runs from 2 to k, then j−2 runs from 0 to k−2, for a total of 0+1+2+ · · ·+(k−2) =
1
2
(k − 2)(k − 1) acute triangles with one vertex fixed at A1.

So in total there are 1
3
(2k)× 1

2
(k − 2)(k − 1) = 1

6
(2k)(k − 2)(k − 1) acute triangles.

Therefore, the probability is
1
6
(2k)(k − 2)(k − 1)

1
6
(2k)(2k − 1)(2k − 2)

=
k − 2

4k − 2
.

Solution 2

Again, we note that the total number of triangles is

(
2k
3

)
if N = 2k.

We calculate the number of acute triangles with one vertex fixed at A1.
Let the circumference of the circle be 2k.
The vertices of any triangle partition this circumference into lengths a, b and c, reading
clockwise from A1.
Our strategy is to count the number of acute triangles in this configuration, and then

multiply by
2k

3
as in Solution 1 to obtain the total number of acute triangles.

We look for solutions to the equation a + b + c = 2k with a, b, c ≥ 1. (These are the
partitions of the circumference of the circle.) Since we are looking for acute triangles,
we must also have a, b, c < k as in the preamble. Each different solution to the equation
subject to these restrictions gives us different triangle and vice-versa.

So we count the number of integer solutions to a + b + c = 2k with 1 ≤ a, b, c < k.
Consider the transformation a′ = k − a, b′ = k − b and c′ = k − c.
Since a, b, c < k, then a′, b′, c′ > 0.
Also, a+b+c = 2k if and only if 3k−(a+b+c) = k if and only if (k−a)+(k−b)+(k−c) = k
if and only if a′ + b′ + c′ = k.
So this transformation gives us a one-to-one correspondence between the acute triangles
between the acute triangles on 2k vertices with one vertex fixed at A1, and all triangles on
k vertices with one vertex fixed at A1. (Since we can “undo” this tranformation (ie. find
its inverse), then it is a one-to-one correspondence (ie. a bijection).)

The total number of triangles on k points with one vertex fixed is

(
k − 1

2

)
since there are

2 vertices to choose from the remaining k − 1 points.

Therefore, the total number of acute triangles with one vertex fixed at A1 is also

(
k − 1

2

)
,

so the total number of acute triangles is

2k

3

(
k − 1

2

)
=

2k

3

(k − 1)(k − 2)

2
=

k(k − 1)(k − 2)

3



2006 Euclid Contest Solutions Page 19

To obtain the probability, we divide by

(
2k
3

)
to obtain

6

(2k)(2k − 1)(2k − 2)

k(k − 1)(k − 2)

3
=

k − 2

4k − 2

(c) From (b), the probability is
k − 2

4k − 2
.

We want to determine the values of k for which
k − 2

4k − 2
=

a

2007
for some positive integer

a.
Cross-multiplying, 2007(k − 2) = a(4k − 2).
Since the right is even, the left side must be even, so k−2 is even, so k is even, say k = 2m
for some positive integer m ≥ 1.
Then 2007(2m− 2) = a(8m− 2) or 2007(m− 1) = a(4m− 1).
Since

(4m− 1)− 4(m− 1) = 3 (∗)
then the possible positive common divisors of 4m − 1 and m − 1 are 1 and 3 (since any
common divisor of 4m− 1 and m− 1 must also divide into 3 by (*)).
In other words, gcd(4m− 1, m− 1) = 1 or gcd(4m− 1, m− 1) = 3.

If gcd(4m− 1, m− 1) = 1 then 4m− 1 and m− 1 have no common factors larger than 1.
Since 2007(m − 1) = a(4m − 1), then 4m − 1 divides into 2007(m − 1) and so 4m − 1
divides into 2007, since 4m− 1 and m− 1 have no common factors.
Now 2007 = 9× 223 = 32× 223, so the positive divisors of 2007 are 1, 3, 9, 223, 669, 2007.
The divisors having the form 4m − 1 for some positive integer m are 3, 233 and 2007,
giving:
4m− 1 3 233 2007

m 1 56 502
a 0 495 2004
k 112 1004

(m = 1 gives a = 0 which is inadmissible, so there is no value for k.)

If gcd(4m − 1, m − 1) = 3, then m − 1 is divisible by 3, so we write m − 1 = 3p for
some non-negative integer p.
Thus, 4m− 1 = 12p + 3 and so 2007(m− 1) = a(4m− 1) becomes 2007(3p) = a(12p + 3)
or 2007p = a(4p + 1).
Note that gcd(4p + 1, p) = 1, since gcd(12p + 3, 3p) = 3.
Since 4p + 1 divides into 2007p and has no common factors with p, then 4p + 1 divides
into 2007.
The divisors of 2007 having the form 4p + 1 are 1, 9 and 669, giving:
4p + 1 1 9 669

p 0 2 167
m 1 7 502
a 0 446 501
k 14 1004

(m = 1 gives a = 0 which is inadmissible, so there is no value for k.)

Thus, the possible values of k are 14, 112 and 1004.
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1. (a) Answer: a = 5
Since (a, a) lies on the line 3x− y = 10, then 3a− a = 10 or 2a = 10 or a = 5.

(b) Answer: (6, 2)
Solution 1
To get from A to B, we move 2 units to the right and 1 unit up.

y

x
B(2, 0)

A(0, 1)

C

Since C lies on the same straight line as A and B, then to get from B to C we move 2
units to the right and 1 unit up twice, or 4 units to the right and 2 units up.
Thus, the coordinates of C are (6, 2).

Solution 2
Label the origin as O and drop a perpendicular from C to P on the x-axis.

y

x
B(2, 0)

A(0, 1)

C

O

P

Then 4AOB is similar to 4CPB since both are right-angled and they have equal angles
at B.
Since BC = 2AB, then CP = 2AO = 2(1) = 2 and BP = 2BO = 2(2) = 4.
Therefore, the coordinates of C are (2 + 4, 0 + 2) = (6, 2).

(c) By the Pythagorean Theorem, AO2 = AB2 −OB2 = 502 − 402 = 900, so AO = 30.
Therefore, the coordinates of A are (0, 30).
By the Pythagorean Theorem, CD2 = CB2 −BD2 = 502 − 482 = 196, so CD = 14.
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y

x

A M
C

DBO

50
50

4840

30
14

Therefore, the coordinates of C are (40 + 48, 14) = (88, 14).
Since M is the midpoint of AC, then the coordinates of M are(

1

2
(0 + 88),

1

2
(30 + 14)

)
= (44, 22)

2. (a) Answer: x = −2
Solution 1
Since y = 2x + 3, then 4y = 4(2x + 3) = 8x + 12.
Since 4y = 8x + 12 and 4y = 5x + 6, then 8x + 12 = 5x + 6 or 3x = −6 or x = −2.

Solution 2
Since 4y = 5x + 6, then y = 5

4
x + 6

4
= 5

4
x + 3

2
.

Since y = 2x + 3 and y = 5
4
x + 3

2
, then 2x + 3 = 5

4
x + 3

2
or 3

4
x = −3

2
or x = −2.

Solution 3
Since the second equation contains a “5x”, we multiply the first equation by 5

2
to obtain

a 5x term, and obtain 5
2
y = 5x + 15

2
.

Subtracting this from 4y = 5x + 6, we obtain 3
2
y = −3

2
or y = −1.

Since y = −1, then −1 = 2x + 3 or 2x = −4 or x = −2.

(b) Answer: a = 6
Solution 1
Adding the three equations together, we obtain a−3b+b+2b+7c−2c−5c = −10+3+13
or a = 6.

Solution 2
Multiplying the second equation by 3, we obtain 3b− 6c = 9.
Adding this new equation to the first equation, we obtain c = −1.
Substituting this back into the original second equation, we obtain b = 3 + 2c = 1.
Substituting into the third equation, a = −2b + 5c + 13 = −2− 5 + 13 = 6.

(c) Solution 1
Let J be John’s score and M be Mary’s score.
Since two times John’s score was 60 more than Mary’s score, then 2J = M + 60.
Since two times Mary’s score was 90 more than John’s score, then 2M = J + 90.
Adding these two equations, we obtain 2J + 2M = M + J + 150 or J + M = 150 or
J + M

2
= 75.

Therefore, the average of their two scores was 75.
(Note that we didn’t have to solve for their individual scores.)
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Solution 2
Let J be John’s score and M be Mary’s score.
Since two times John’s score was 60 more than Mary’s score, then 2J = M + 60, so
M = 2J − 60.
Since two times Mary’s score was 90 more than John’s score, then 2M = J + 90.
Substituting the first equation into the second, we obtain

2(2J − 60) = J + 90

4J − 120 = J + 90

3J = 210

J = 70

Substituting into M = 2J − 60 gives M = 80.
Therefore, the average of their scores (ie. the average of 70 and 80) is 75.

3. (a) Answer: x = 50
Simplifying using exponent rules,

2(1612) + 2(816) = 2((24)12) + 2((23)16) = 2(248) + 2(248) = 4(248) = 22(248) = 250

Therefore, since 2x = 2(1612) + 2(816) = 250, then x = 50.

(b) Solution 1
We factor the given equation (f(x))

2 − 3f(x) + 2 = 0 as (f(x)− 1)(f(x)− 2) = 0.
Therefore, f(x) = 1 or f(x) = 2.
If f(x) = 1, then 2x− 1 = 1 or 2x = 2 or x = 1.
If f(x) = 2, then 2x− 1 = 2 or 2x = 3 or x = 3

2
.

Therefore, the values of x are x = 1 or x = 3
2
.

Solution 2
Since f(x) = 2x− 1 and (f(x))

2 − 3f(x) + 2 = 0, then

(2x− 1)2 − 3(2x− 1) + 2 = 0

4x2 − 4x + 1− 6x + 3 + 2 = 0

4x2 − 10x + 6 = 0

2x2 − 5x + 3 = 0

(x− 1)(2x− 3) = 0

Therfore, x = 1 or x = 3
2
.

4. (a) Answer: 14
15

Solution 1
The possible pairs of numbers on the tickets are (listed as ordered pairs): (1, 2), (1, 3),
(1, 4), (1, 5), (1, 6), (2, 3), (2, 4), (2, 5), (2, 6), (3, 4), (3, 5), (3, 6), (4, 5), (4, 6), and (5, 6).
There are fifteen such pairs. (We treat the pair of tickets numbered 2 and 4 as being the
same as the pair numbered 4 and 2.)
The pairs for which the smaller of the two numbers is less than or equal to 4 are (1, 2),
(1, 3), (1, 4), (1, 5), (1, 6), (2, 3), (2, 4), (2, 5), (2, 6), (3, 4), (3, 5), (3, 6), (4, 5), and (4, 6).
There are fourteen such pairs.
Therefore, the probability of selecting such a pair of tickets is 14

15
.
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Solution 2
We find the probability that the smaller number on the two tickets is NOT less than or
equal to 4.
Therefore, the smaller number on the two tickets is at least 5.
Thus, the pair of numbers must be 5 and 6, since two distinct numbers less than or equal
to 6 are being chosen.
As in Solution 1, we can determine that there are fifteen possible pairs that we can se-
lected.
Therefore, the probability that the smaller number on the two tickets is NOT less than or
equal to 4 is 1

15
, so the probability that the smaller number on the two tickets IS less than

or equal to 4 is 1− 1
15

= 14
15

.

(b) Solution 1
Since ∠HLP = 60◦ and ∠BLP = 30◦, then ∠HLB = ∠HLP − ∠BLP = 30◦.
Also, since ∠HLP = 60◦ and ∠HPL = 90◦, then ∠LHP = 180◦ − 90◦ − 60◦ = 30◦.

P L

B

H

400

30

30

30

Therefore, 4HBL is isosceles and BL = HB = 400 m.

In 4BLP , BL = 400 m and ∠BLP = 30◦, so LP = BL cos(30◦) = 400
(√

3
2

)
= 200

√
3

m.
Therefore, the distance between L and P is 200

√
3 m.

Solution 2
Since ∠HLP = 60◦ and ∠BLP = 30◦, then ∠HLB = ∠HLP − ∠BLP = 30◦.
Also, since ∠HLP = 60◦ and ∠HPL = 90◦, then ∠LHP = 180◦ − 90◦ − 60◦ = 30◦.
Also, ∠LBP = 60◦.
Let LP = x.

P L

B

H

400

30

30

30

60

x

Since 4BLP is 30◦-60◦-90◦, then BP : LP = 1 :
√

3, so BP = 1√
3
LP = 1√

3
x.
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Since 4HLP is 30◦-60◦-90◦, then HP : LP =
√

3 : 1, so HP =
√

3LP =
√

3x.
But HP = HB + BP so

√
3x = 400 +

1√
3
x

3x = 400
√

3 + x

2x = 400
√

3

x = 200
√

3

Therefore, the distance from L to P is 200
√

3 m.

5. (a) Answer: (6,5)
After 2 moves, the goat has travelled 1 + 2 = 3 units.
After 3 moves, the goat has travelled 1 + 2 + 3 = 6 units.
Similarly, after n moves, the goat has travelled a total of 1 + 2 + 3 + · · ·+ n units.
For what value of n is 1 + 2 + 3 + · · ·+ n equal to 55?
The fastest way to determine the value of n is by adding the first few integers until we
obtain a sum of 55. This will be n = 10.
(We could also do this by remembering that 1 + 2 + 3 + · · ·+ n = 1

2
n(n + 1) and solving

for n this way.)
So we must determine the coordinates of the goat after 10 moves.
We consider first the x-coordinate.
Since starting at (0, 0) the goat has moved 2 units in the positive x direction, 4 units in the
negative x direction, 6 units in the positive x direction, 8 units in the negative x direction
and 10 units in the positive x direction, so its x coordinate should be 2−4+6−8+10 = 6.
Similarly, its y-coordinate should be 1− 3 + 5− 7 + 9 = 5.
Therefore, after having travelled a distance of 55 units, the goat is at the point (6, 5).

(b) Solution 1
Since the sequence 4, 4r, 4r2 is also arithmetic, then the difference between 4r2 and 4r
equals the difference between 4r and 4, or

4r2 − 4r = 4r − 4

4r2 − 8r + 4 = 0

r2 − 2r + 1 = 0

(r − 1)2 = 0

Therefore, the only value of r is r = 1.

Solution 2
Since the sequence 4, 4r, 4r2 is also arithmetic, then we can write 4r = 4 + d and
4r2 = 4 + 2d for some real number d. (Here, d is the common difference in this arithmetic
sequence.)
Then d = 4r − 4 and 2d = 4r2 − 4 or d = 2r2 − 2.
Therefore, equating the two expressions for d, we obtain 2r2−2 = 4r−4 or 2r2−4r+2 = 0
or r2 − 2r + 1 = 0 or (r − 1)2 = 0.
Therefore, the only value of r is r = 1.

6. (a) Answer: 4π
First, we notice that whenever an equilateral triangle of side length 3 is placed inside a
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circle of radius 3 with two of its vertices on the circle, then the third vertex will be at the
centre of the circle.
This is because if we place 4XY Z with Y and Z on the circle and connect Y and Z to
the centre O, then OY = OZ = 3, so 4OY Z is equilateral (since all three sides have
length 3). Thus 4XY Z and 4OY Z must be the same, so X is at the same point as O.

3
3

3

O

Y

Z

Thus, in the starting position, A is at the centre of the circle.
As the triangle is rotated about C, the point B traces out an arc of a circle of radius 3.
What fraction of the circle is traced out?
When point A reaches point A1 on the circle, we have AC = 3 and CA1 = 3. Since A is at
the centre of the circle, then AA1 = 3 as well, so4AA1C is equilateral, and ∠A1CA = 60◦,
so the triangle has rotated through 60◦.

A

B

C

A
1

Therefore, B has traced out 60◦

360◦
= 1

6
of a circle of radius 3.

Notice that A has also traced out an arc of the same length. When A reaches the circle,
we have A and C on the circle, so B must be at the centre of the circle.
Thus, on the next rotation, B again rotates through 1

6
of a circle of radius 3 as it moves

to the circle.
On the third rotation, the triangle rotates about B, so B does not move. After three
rotations, the triangle will have A at the centre and B and C on the circle, with the net
result that the triangle has rotated 180◦ about the centre of the circle.
Thus, to return to its original position, the triangle must undergo three more of these
rotations, and B will behave in the same way as it did for the first three rotations.
Thus, in total, B moves four times along an arc equal to 1

6
of a circle of radius 3.

Therefore, the distance travelled by B is 4(1
6
)(2π(3)) = 4π.

(b) In order to determine CD, we must determine one of the angles (or at least some infor-
mation about one of the angles) in 4BCD.
To do this, we look at ∠A use the fact that ∠A + ∠C = 180◦.
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A

D

C

B

5 6

7

4

Using the cosine law in 4ABD, we obtain

72 = 52 + 62 − 2(5)(6) cos(∠A)

49 = 61− 60 cos(∠A)

cos(∠A) =
1

5

Since cos(∠A) = 1
5

and ∠A + ∠C = 180◦, then cos(∠C) = − cos(180◦ − ∠A) = −1
5
.

(We could have calculated the actual size of ∠A using cos(∠A) = 1
5

and then used this
to calculate the size of ∠C, but we would introduce the possibility of rounding error by
doing this.)
Then, using the cosine law in 4BCD, we obtain

72 = 42 + CD2 − 2(4)(CD) cos(∠C)

49 = 16 + CD2 − 8(CD)

(
−1

5

)
0 = 5CD2 + 8CD − 165

0 = (5CD + 33)(CD − 5)

So CD = −33
5

or CD = 5. (We could have also determined these roots using the quadratic
formula.)
Since CD is a length, it must be positive, so CD = 5.

(We could have also proceeded by using the sine law in 4BCD to determine ∠BDC
and then found the size of ∠DBC, which would have allowed us to calculate CD using
the sine law. However, this would again introduce the potential of rounding error.)

7. (a) Answer: Maximum = 5, Minimum = 1
We rewrite by completing the square as f(x) = sin2 x− 2 sin x + 2 = (sin x− 1)2 + 1.
Therefore, since (sin x − 1)2 ≥ 0, then f(x) ≥ 1, and in fact f(x) = 1 when sin x = 1
(which occurs for instance when x = 90◦).
Thus, the minimum value of f(x) is 1.
To maximize f(x), we must maximize (sin x− 1)2.
Since −1 ≤ sin x ≤ 1, then (sin x− 1)2 is maximized when sin x = −1 (for instance, when
x = 270◦). In this case, (sin x− 1)2 = 4, so f(x) = 5.
Thus, the maximum value of f(x) is 5.

(b) From the diagram, the x-intercepts of the parabola are x = −k and x = 3k.
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x

V

(3k, 0)

(0, 3k)

(  k, 0)

y

Since we are given that y = −1
4
(x− r)(x− s), then the x-intercepts are r and s, so r and

s equal −k and 3k in some order.
Therefore, we can rewrite the parabola as y = −1

4
(x− (−k))(x− 3k).

Since the point (0, 3k) lies on the parabola, then 3k = −1
4
(0 + k)(0− 3k) or 12k = 3k2 or

k2 − 4k = 0 or k(k − 4) = 0.
Thus, k = 0 or k = 4.
Since the two roots are distinct, then we cannot have k = 0 (otherwise both x-intercepts
would be 0).
Thus, k = 4.
This tells us that the equation of the parabola is y = −1

4
(x + 4)(x − 12) or y = −1

4
x2 +

2x + 12.
We still have to determine the coordinates of the vertex, V .
Since the x-intercepts of the parabola are −4 and 12, then the x-coordinate of the vertex
is the average of these intercepts, or 4.

(We could have also used the fact that the x-coordinate is − b

2a
= − 2

2(−1
4
)
.)

Therefore, the y-coordinate of the vertex is y = −1
4
(42) + 2(4) + 12 = 16.

Thus, the coordinates of the vertex are (4, 16).

8. (a) We look at the three pieces separately.
If x < −4, f(x) = 4 so g(x) =

√
25− [f(x)]2 =

√
25− 42 =

√
9 = 3.

So g(x) is the horizontal line y = 3 when x < −4.
If x > 5, f(x) = −5 so g(x) =

√
25− [f(x)]2 =

√
25− (−5)2 =

√
0 = 0.

So g(x) is the horizontal line y = 0 when x > 5.
So far, our graph looks like this:
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y

x

3

3

 3

 3

6

6

 6

 6

If −4 ≤ x ≤ 5, f(x) = −x so g(x) =
√

25− [f(x)]2 =
√

25− (−x)2 =
√

25− x2.
What is this shape?
If y = g(x), then we have y =

√
25− x2 or y2 = 25− x2 or x2 + y2 = 25.

Therefore, this shape is a section of the upper half (since y is a positive square-root) of
the circle x2 + y2 = 25, ie. the circle with centre (0, 0) and radius 5.
We must check the endpoints.
When x = −4, we have g(−4) =

√
25− (−4))2 = 3.

When x = 5, we have g(5) =
√

25− 52 = 0.
Therefore, the section of the circle connects up with the other two sections of our graph
already in place.
Thus, our final graph is:
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y

x

3

3

 3

 3

6

6

 6

 6

(b) Solution 1
Let the centres of the two circles be O1 and O2.
Join A and B to O1 and B and C to O2.
Designate two points W and X on either side of A on one tangent line, and two points Y
and Z on either side of C on the other tangent line.

A

B

C

O
1

O
2

W X

Y
Z

Let ∠XAB = θ.
Since WX is tangent to the circle with centre O1 at A, then O1A is perpendicular to WX,
so ∠O1AB = 90◦ − θ.
Since O1A = O1B because both are radii, then 4AO1B is isosceles, so ∠O1BA =
∠O1AB = 90◦ − θ.
Since the two circles are tangent at B, then the line segment joining O1 and O2 passes
through B, ie. O1BO2 is a straight line segment.
Thus, ∠O2BC = ∠O1BA = 90◦ − θ, by opposite angles.
Since O2B = O2C, then similarly to above, ∠O2CB = ∠O2BC = 90◦ − θ.
Since Y Z is tangent to the circle with centre O2 at C, then O2C is perpendicular to Y Z.
Thus, ∠Y CB = 90◦ − ∠O2CB = θ.
Since ∠XAB = ∠Y CB, then WX is parallel to Y Z, by alternate angles, as required.
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Solution 2
Let the centres of the two circles be O1 and O2.
Join A and B to O1 and B and C to O2.
Since AO1 and BO1 are radii of the same circle, AO1 = BO1 so 4AO1B is isosceles, so
∠O1AB = ∠O1BA.

A

B

C

O
1

O
2

Since BO2 and CO2 are radii of the same circle, BO2 = CO2 so 4BO2C is isosceles, so
∠O2BC = ∠O2CB.
Since the two circles are tangent at B, then O1BO2 is a line segment (ie. the line segment
joining O1 and O2 passes through the point of tangency of the two circles).
Since O1BO2 is straight, then ∠O1BA = ∠O2BC, by opposite angles.
Thus, ∠O1AB = ∠O1BA = ∠O2BC = ∠O2CB.
This tells us that 4AO1B is similar to 4BO2C, so ∠AO1B = ∠BO2C or ∠AO1O2 =
∠CO2O1.
Therefore, AO1 is parallel to CO2, by alternate angles.
But A and C are points of tangency, AO1 is perpendicular to the tangent line at A and
CO2 is perpendicular to the tangent line at C.
Since AO1 and CO2 are parallel, then the two tangent lines must be parallel.

9. (a) Solution 1
We have (x− p)2 + y2 = r2 and x2 + (y − p)2 = r2, so at the points of intersection,

(x− p)2 + y2 = x2 + (y − p)2

x2 − 2px + p2 + y2 = x2 + y2 − 2py + p2

−2px = −2py

and so x = y (since we may assume that p 6= 0 otherwise the two circles would coincide).
Therefore, a and b are the two solutions of the equation (x− p)2 + x2 = r2 or 2x2− 2px +
(p2 − r2) = 0 or x2 − px + 1

2
(p2 − r2)=0.

Using the relationship between the sum and product of roots of a quadratic equation and
its coefficients, we obtain that a + b = p and ab = 1

2
(p2 − r2).

(We could have solved for a and b using the quadratic formula and calculated these di-
rectly.)
So we know that a + b = p.
Lastly, a2 + b2 = (a + b)2 − 2ab = p2 − 2

(
1
2
(p2 − r2)

)
= r2, as required.

Solution 2
Since the circles are reflections of one another in the line y = x, then the two points
of intersection must both lie on the line y = x, ie. A has coordinates (a, a) and B has
coordinates (b, b).
Therefore, (a− p)2 + a2 = r2 and (b− p)2 + b2 = r2, since these points lie on both circles.
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Subtracting the two equations, we get

(b− p)2 − (a− p)2 + b2 − a2 = 0

((b− p)− (a− p))((b− p) + (a− p)) + (b− a)(b + a) = 0

(b− a)(a + b− 2p) + (b− a)(b + a) = 0

(b− a)(a + b− 2p + b + a) = 0

2(b− a)(a + b− p) = 0

Since a 6= b, then we must have a + b = p, as required.
Since a + b = p, then a − p = −b, so substituting back into (a − p)2 + a2 = r2 gives
(−b)2 + a2 = r2, or a2 + b2 = r2, as required.

(b) We first draw a diagram.

y

x

D(0, p)

C(p, 0)

A

B

We know that C has coordinates (p, 0) and D has coordinates (0, p).
Thus, the slope of line segment CD is −1.
Since the points A and B both lie on the line y = x, then the slope of line segment AB is
1.
Therefore, AB is perpendicular to CD, so CADB is a kite, and so its area is equal to
1
2
(AB)(CD).

(We could derive this by breaking quadrilateral CADB into 4CAB and 4DAB.)
Since C has coordinates (p, 0) and D has coordinates (0, p), then CD =

√
p2 + (−p)2 =√

2p2.
(We do not know if p is positive, so this is not necessarily equal to

√
2p.)

We know that A has coordinates (a, a) and B has coordinates (b, b), so

AB =
√

(a− b)2 + (a− b)2

=
√

2a2 − 4ab + 2b2

=
√

2(a2 + b2)− 4ab

=

√
2r2 − 4

(
1

2
(p2 − r2)

)
=

√
4r2 − 2p2

Therefore, the area of quadrilateral CADB is

1

2
(AB)(CD) =

1

2

√
4r2 − 2p2

√
2p2 =

√
2r2p2 − p4
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To maximize this area, we must maximize 2r2p2 − p4 = 2r2(p2)− (p2)2.
Since r is fixed, we can consider this as a quadratic polynomial in p2. Since the coefficient
of (p2)2 is negative, then this is a parabola opening downwards, so we find its maximum
value by finding its vertex.

The vertex of 2r2(p2)− (p2)2 is at p2 = − 2r2

2(−1)
= r2.

So the maximum area of the quadrilateral occurs when p is chosen so that p2 = r2.
Since p2 = r2, then (a + b)2 = p2 = r2 so a2 + 2ab + b2 = r2.
Since a2 + b2 = r2, then 2ab = 0 so either a = 0 or b = 0, and so either A has coordinates
(0, 0) or B has coordinates (0, 0), ie. either A is the origin or B is the origin.

(c) In (b), we calculated that AB =
√

4r2 − 2p2 =
√

2
√

2r2 − p2.
Since r and p are integers (and we assume that neither r nor p is 0), then 2r2 − p2 6= 0,
so the minimum possible non-negative value for 2r2 − p2 is 1, since 2r2 − p2 must be an
integer.
Therefore, the minimum possible distance between A and B should be

√
2
√

1 =
√

2.
Can we find positive integers p and r that give us this value?
Yes – if r = 5 and p = 7, then 2r2 − p2 = 1, so AB =

√
2.

(There are in fact an infinite number of positive integer solutions to the equation 2r2−p2 =
1 or equivalently p2 − 2r2 = −1. This type of equation is called Pell’s Equation.)

10. (a) We proceed directly.
On the first pass from left to right, Josephine closes all of the even numbered lockers,
leaving the odd ones open.
The second pass proceeds from right to left. Before the pass, the lockers which are open
are 1, 3, . . ., 47, 49.
On the second pass, she shuts lockers 47, 43, 39, . . ., 3.
The third pass proceeds from left to right. Before the pass, the lockers which are open are
1, 5, . . ., 45, 49.
On the third pass, she shuts lockers 5, 13, . . ., 45.
This leaves lockers 1, 9, 17, 25, 33, 41, 49 open.
On the fourth pass, from right to left, lockers 41, 25 and 9 are shut, leaving 1, 17, 33, 49.
On the fifth pass, from left to right, lockers 17 and 49 are shut, leaving 1 and 33 open.
On the sixth pass, from right to left, locker 1 is shut, leaving 33 open.
Thus, f(50) = 33.

(b)&(c) Solution 1
First, we note that if n = 2k is even, then f(n) = f(2k) = f(2k − 1) = f(n − 1). See
Solution 2 for this justification.
Therefore, we only need to look for odd values of n in parts (b) and (c).

Suppose that there was an n so that f(n) = 2005, ie. 2005 is the last locker left open.
On the first pass, Josephine closes every other locker starting at the beginning, so she
closes all lockers numbered m with m ≡ 0 (mod 2).
This leaves only odd-numbered lockers open, ie. only lockers m with m ≡ 1 or 3 (mod 4).
On her second pass, she closes every other open locker, starting from the right-hand end.
Thus, she will close every fourth locker from the original row.
Since we want 2005 to be left open and 2005 ≡ 1 (mod 4), then she must close all lockers
numbered m with m ≡ 3 (mod 4).
This leaves open only the lockers m with m ≡ 1 (mod 4), or equivalently lockers with
m ≡ 1 or 5 (mod 8).
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On her third pass, she closes every other open locker, starting from the left-hand end.
Thus, she will close every eighth locker from the original row.
Since locker 1 is still open, then she starts by closing locker 5, and so closes all lockers m
with m ≡ 5 (mod 8).
But since 2005 ≡ 5 (mod 8), then she closes locker 2005 on this pass, a contradiction.
Therefore, there can be no integer n with f(n) = 2005.

Next, we show that there are infinitely many positive integers n such that f(n) = f(2005).
To do this, we first make a table of what happens when there are 2005 lockers in the row.
We record the pass #, the direction of the pass, the leftmost locker that is open, the
rightmost locker that is open, all open lockers before the pass, which lockers will be closed
on the pass, and which lockers will be left open after the pass:

Pass # Dir. L Open R Open Open To close Leaves Open
1 L to R 1 2005 All ≡ 0 (mod 2) ≡ 1 (mod 2)
2 R to L 1 2005 ≡ 1, 3 (mod 4) ≡ 3 (mod 4) ≡ 1 (mod 4)
3 L to R 1 2005 ≡ 1, 5 (mod 8) ≡ 5 (mod 8) ≡ 1 (mod 8)
4 R to L 1 2001 ≡ 1, 9 (mod 16) ≡ 9 (mod 16) ≡ 1 (mod 16)
5 L to R 1 2001 ≡ 1, 17 (mod 32) ≡ 17 (mod 32) ≡ 1 (mod 32)
6 R to L 1 1985 ≡ 1, 33 (mod 64) ≡ 33 (mod 64) ≡ 1 (mod 64)
7 L to R 1 1985 ≡ 1, 65 (mod 128) ≡ 65 (mod 128) ≡ 1 (mod 128)
8 R to L 1 1921 ≡ 1, 129 (mod 256) ≡ 1 (mod 256) ≡ 129 (mod 256)
9 L to R 129 1921 ≡ 129, 385 (mod 512) ≡ 385 (mod 512) ≡ 129 (mod 512)
10 R to L 129 1665 ≡ 129, 641 (mod 1024) ≡ 129 (mod 1024) ≡ 641 (mod 1024)
11 L to R 641 1665 ≡ 641, 1665 (mod 2048) ≡ 1665 (mod 2048) ≡ 641 (mod 2048)

Since there is only one integer between 1 and 2005 congruent to 641 (mod 2048), then
there is only one locker left open: locker 641.
Notice also that on any pass s, the “class” of lockers which are closed depends on what the
number of the leftmost (on an odd-numbered pass) or rightmost (on an even-numbered
pass) open locker number is congruent to mod 2s.

Consider n = 2005 + 22a, where 22a > 2005, ie. a ≥ 6.
We show that f(n) = f(2005) = 641. (See Solution 2 for a justification of why we might
try these values of n.)
Suppose we were to try to make a table as above to calculate f(n).
Then the first 11 passes in the table would be identical to the table above, except for the
rightmost open number; this number in the new table would be the number above plus
22a.
What will happen after pass 11?
After pass 11, the lockers which are open are lockers with numbers ≡ 641 (mod 2048).
Thus, the leftmost open locker is 641 and the rightmost is 22a + 641.
As the 12th pass starts, the lockers which are still open are those with numbers
≡ 641 or 2689 (mod 212).
Since the rightmost open locker number (22a+641) is congruent to 641 (mod 212), then all
lockers with numbers ≡ 2689 (mod 212) are closed, leaving open only those lockers with
numbers ≡ 641 (mod 212).
So after this 12th pass, the lockers which are open are 641, 641 + 212, 641 + 2(212),
641 + 3(212), . . . , 641 + 22a−12(212) = 641 + 22a.
The number of open lockers is 22a−12 + 1.
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If we can now show that whenever we start with a number of lockers of the form 22c+1, the
last locker remaining open is the leftmost locker, then we will be done, since of the lockers
left open above (22a−12 +1 of them, ie. 2 to an even power plus 1), then the last locker re-
maining open will be the leftmost one, that is locker 641, so f(22a+2005) = 641 = f(2005).

So consider a row of 22c + 1 lockers.
Notice that on any pass, if the number of lockers is odd, then the number of lockers which
will be closed is one-half of one less than the total number of lockers, and the first and
last lockers will be left open.
So on the first pass, there are 22c−1 lockers closed, leaving 22c +1−22c−1 = 22c−1+1 lockers
open, ie. an odd number of lockers open.
On the next pass, there are 22c−2 lockers closed (since there are an odd number of lockers
open to begin), leaving 22c−2 + 1 lockers open.
This continues, until there are 21 + 1 = 3 lockers open just before an even-numbered (ie.
right to left) pass. Thus, the middle of these three lockers will be closed, leaving only the
original leftmost and rightmost lockers open.
On the last pass (an odd-numbered pass from left to right), the rightmost locker will be
closed, leaving only the leftmost locker open.
Therefore, starting with a row of 22c + 1 open lockers, the leftmost locker will be the last
remaining open.

Translating this to the above, we see that the leftmost locker of the 22a−12 + 1 still open
is the last left open, ie. f(22a + 2005) = 641 = f(2005) if a ≥ 6.

Therefore, there are infinitely many positive integers n for which f(n) = f(2005).
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Solution 2
First, we calculate f(n) for n from 1 to 32, to get a feeling for what happens. We obtain
1, 1, 3, 3, 1, 1, 3, 3, 9, 9, 11, 11, 9, 9, 11, 11, 1, 1, 3, 3, 1, 1, 3, 3, 9, 9, 11, 11, 9, 9, 11, 11.
This will help us to establish some patterns.

Next, we establish two recursive formulas for f(n).

First, from our pattern, it looks like f(2m) = f(2m− 1).
Why is this true in general?
Consider a row of 2m lockers.
On the first pass through , Josephine shuts all of the even numbered lockers, leaving open
lockers 1, 3, . . ., 2m− 1.
These are exactly the same open lockers as if she had started with 2m− 1 lockers in total.
Thus, as she starts her second pass from right to left, the process will be the same now
whether she started with 2m lockers or 2m− 1 lockers.
Therefore, f(2m) = f(2m− 1).
This tells us that we need only focus on the values of f(n) where n is odd.

Secondly, we show that f(2m− 1) = 2m + 1− 2f(m).
(It is helpful to connect n = 2m− 1 to a smaller case.)
Why is this formula true?
Starting with 2m− 1 lockers, the lockers left open after the first pass are 1, 3, . . ., 2m− 1,
ie. m lockers in total.
Suppose f(m) = p. As Josephine begins her second pass, which is from right to left, we
can think of this as being like the first pass through a row of m lockers.
Thus, the last open locker will be the pth locker, counting from the right hand end, from
the list 1, 3, . . ., 2m− 1.
The first locker from the right is 2m−1 = 2m+1−2(1), the second is 2m−3 = 2m+1−2(2),
and so on, so the pth locker is 2m + 1− 2p.
Therefore, the final open locker is 2m+1−2p, ie. f(2m−1) = 2m+1−2p = 2m+1−2f(m).

Using these two formulae repeatedly,

f(4k + 1) = f(2(2k + 1)− 1)

= 2(2k + 1) + 1− 2f(2k + 1)

= 4k + 3− 2f(2(k + 1)− 1)

= 4k + 3− 2(2(k + 1) + 1− 2f(k + 1))

= 4k + 3− 2(2k + 3− 2f(k + 1))

= 4f(k + 1)− 3
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and

f(4k + 3) = f(2(2k + 2)− 1)

= 2(2k + 2) + 1− 2f(2k + 2)

= 4k + 5− 2f(2k + 1)

= 4k + 5− 2f(2(k + 1)− 1)

= 4k + 5− 2(2(k + 1) + 1− 2f(k + 1))

= 4k + 5− 2(2k + 3− 2f(k + 1))

= 4f(k + 1)− 1

From our initial list of values of f(n), it appears as if f(n) cannot leave a remainder of 5
or 7 when divided by 8. So we use these recursive relations once more to try to establish
this:

f(8l + 1) = 4f(2l + 1)− 3 (since 8l + 1 = 4(2l) + 1)

= 4(2l + 3− 2f(l + 1))− 3

= 8l + 9− 8f(l + 1)

= 8(l − f(l + 1)) + 9

f(8l + 3) = 4f(2l + 1)− 1 (since 8l + 3 = 4(2l) + 3)

= 4(2l + 3− 2f(l + 1))− 1

= 8l + 11− 8f(l + 1)

= 8(l − f(l + 1)) + 11

Similarly, f(8l + 5) = 8l + 9− 8f(l + 1) and f(8l + 7) = 8l + 11− 8f(l + 1).
Therefore, since any odd positive integer n can be written as 8l+1, 8l+3, 8l+5 or 8l+7,
then for any odd positive integer n, f(n) is either 9 more or 11 more than a multiple of 8.
Therefore, for any odd positive integer n, f(n) cannot be 2005, since 2005 is not 9 more
or 11 more than a multiple of 8.
Thus, for every positive integer n, f(n) 6= 2005, since we only need to consider odd values
of n.

Next, we show that there are infinitely many positive integers n such that f(n) = f(2005).
We do this by looking at the pattern we initially created and conjecturing that

f(2005) = f(2005 + 22a)

if 22a > 2005. (We might guess this by looking at the connection between f(1) and f(3)
with f(5) and f(7) and then f(1) through f(15) with f(17) through f(31). In fact, it
appears to be true that f(m + 22a) = f(m) if 22a > m.)
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Using our formulae from above,

f(2005 + 22a) = 4f(502 + 22a−2)− 3 (2005 + 22a = 4(501 + 22a−2) + 1)
= 4f(501 + 22a−2)− 3
= 4(4f(126 + 22a−4)− 3)− 3 (501 + 22a−2 = 4(125 + 22a−4) + 1)
= 16f(126 + 22a−4)− 15
= 16f(125 + 22a−4)− 15
= 16(4f(32 + 22a−6)− 3)− 15 (125 + 22a−4 = 4(31 + 22a−6) + 1)
= 64f(32 + 22a−6)− 63
= 64f(31 + 22a−6)− 63
= 64(4f(8 + 22a−8)− 1)− 63 (31 + 22a−6 = 4(7 + 22a−8) + 3)
= 256f(8 + 22a−8)− 127
= 256f(7 + 22a−8)− 127
= 256(4f(2 + 22a−10)− 1)− 127 (7 + 22a−8 = 4(1 + 22a−10) + 3)
= 1024f(2 + 22a−10)− 383
= 1024f(1 + 22a−10)− 383

(Notice that we could have removed the powers of 2 from inside the functions and used
this same approach to show that f(2005) = 1024f(1)− 383 = 641.)

But, f(22b + 1) = 1 for every positive integer b.
Why is this true? We can prove this quickly by induction.
For b = 1, we know f(5) = 1.
Assume that the result is true for b = B − 1, for some positive integer B ≥ 2.
Then f(22B + 1) = f(4(22B−2) + 1) = 4f(22B−2 + 1)− 3 = 4(1)− 3 = 1 by our induction
hypothesis.

Therefore, if a ≥ 6, then f(1 + 22a−10) = f(1 + 22(a−5)) = 1 so

f(2005 + 22a) = 1024(1)− 383 = 641 = f(2005)

so there are infinitely many integers n for which f(n) = f(2005).



2005 Euclid Contest Solutions Page 20

Solution 3
We conjecture a formula for f(n) and prove this formula by induction, using the formulae
that we proved in Solution 2.
We start by writing the positive integer n in its binary representation, ie. we write

n = b0 + b1 · 2 + b2 · 22 + · · ·+ b2p−1 · 22p−1 + b2p · 22p

where each of b0, b1, · · · , b2p is 0 or 1 with either b2p = 1, or b2p = 0 and b2p−1 = 1.
Thus, in binary, n is equal to either (b2pb2p−1 · · · b1b0)2 or (b2p−1 · · · b1b0)2.
We then conjecture that if n is odd (which tells us that b0 = 1 for sure), then

f(n) = b0 + b1 · 2 + b3 · 23 + · · ·+ b2p−1 · 22p−1

In other words, we omit the even-numbered powers of 2 from n. Looking at a few exam-
ples: 7 = 4 + 2 + 1, so f(7) = 2 + 1 = 3, 13 = 8 + 4 + 1, so f(13) = 8 + 1 = 9, and
27 = 16 + 8 + 2 + 1, so f(27) = 8 + 2 + 1 = 11.
We already know that if n is even, then f(n) = f(n− 1) (we proved this in Solution 2).

Let’s assume that we’ve proved this formula. (We’ll prove it at the end.)

We can now solve parts (b) and (c) very quickly using our formula.
Are then any values of n such that f(n) = 2005?
Writing 2005 as a sum of powers of 2 (ie. in binary), we get

2005 = 1024 + 512 + 256 + 128 + 64 + 16 + 4 + 1

Since the representation of 2005 does not use only odd-numbered powers of 2, then there
is no n for which f(n) = 2005.

Lastly, we need to prove that there are infinitely many positive integers n for which
f(n) = f(2005).
To do this, we note that if n = 2005 + 22a for some a ≥ 6, then the last 11 binary digits
of n agree with those of 2005 and the only 1s in the representation of n = 2005 + 22a in
positions corresponding to odd-numbered powers of 2 come from the 2005 portion (since
the extra “1” from 22a corresponds to an even-numbered power of 2).
Therefore, since we calculate f(2005 + 22a) by looking at only the odd-numbered powers
of 2, then f(2005 + 22a) = f(2005) for all integers a ≥ 6.
Therefore, there are infinitely many positive integers n for which f(n) = f(2005).

We now must prove that this formula is true. We use strong induction.
Looking at the list in Solution 2, we can quickly see that the result holds for all odd values
of n with n ≤ 31. (We only need to establish this for a couple of small values of n to serve
as base cases.)
Assume that the result holds for all odd positive integers n up to n = N − 2 for some odd
positive integer N .
Consider n = N .
Case 1: N = 4q + 1
Here we can write

N = 1 + b2 · 22 + · · ·+ b2p−1 · 22p−1 + b2p · 22p
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and so
q = b2 + b3 · 2 + · · ·+ b2p−1 · 22p−3 + b2p · 22p−2

Note that q < N − 2 since 4q + 1 = N , so q = 1
4
N − 1

4
.

From our formulae in Solution 2, f(N) = f(4q + 1) = 4f(q + 1)− 3.
If q is even, then b2 = 0 and so q+1 is odd and q+1 = 1+b3 ·2+· · ·+b2p−1 ·22p−3+b2p ·22p−2.
If q is odd, then b2 = 1, so q = 1 + b3 · 2 + · · ·+ b2p−1 · 22p−3 + b2p · 22p−2 and q + 1 is even,
so f(q + 1) = f(q).
In either case,

f(q +1) = f(1+ b3 · 2+ · · ·+ b2p−1 · 22p−3 + b2p · 22p−2) = 1+ b3 · 2+ b5 · 23 + · · · b2p−1 · 22p−3

by our Induction Hypothesis.
Therefore,

f(N) = 4(1 + b3 · 2 + b5 · 23 + · · · b2p−1 · 22p−3)− 3 = 1 + b3 · 23 + b5 · 25 + · · ·+ b2p−1 · 22p−1

as we would like, since b1 = 0.

Case 2: N = 4q + 3
Here we can write

N = 1 + 2 + b2 · 22 + · · ·+ b2p−1 · 22p−1 + b2p · 22p

and so
q = b2 + b3 · 2 + · · ·+ b2p−1 · 22p−3 + b2p · 22p−2

Note that q < N − 2 since 4q + 3 = N .
From our formulae in Solution 2, f(N) = f(4q + 3) = 4f(q + 1)− 1.
If q is even, then b2 = 0 and so q+1 is odd and q+1 = 1+b3 ·2+· · ·+b2p−1 ·22p−3+b2p ·22p−2.
If q is odd, then b2 = 1, so q = 1 + b3 · 2 + · · ·+ b2p−1 · 22p−3 + b2p · 22p−2 and q + 1 is even,
so f(q + 1) = f(q).
In either case,

f(q +1) = f(1+ b3 · 2+ · · ·+ b2p−1 · 22p−3 + b2p · 22p−2) = 1+ b3 · 2+ b5 · 23 + · · · b2p−1 · 22p−3

by our Induction Hypothesis.
Therefore,

f(N) = 4(1+ b3 ·2+ b5 ·23 + · · · b2p−1 ·22p−3)−1 = 1+2+ ·b3 ·23 + b5 ·25 + · · ·+ b2p−1 ·22p−1

as we would like.

Therefore, by strong induction, our formula holds. This complete our proof.
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Solution 4
First, we note that if n = 2k is even, then f(n) = f(2k) = f(2k − 1) = f(n − 1). See
Solution 2 for this justification.
Therefore, we only need to look for odd values of n in parts (b) and (c).

Write the number n in binary as n = (b2pb2p−1 · · · b2b11)2, where each digit is either 0
or 1. Here, we allow the possibility of b2p = 0 if b2p−1 = 1. Since n is odd, then the last
digit must be 1, as shown in the representation of n.
We conjecture that if n = (b2pb2p−1 · · · b2b11)2, then f(n) = (b2p−10b2p−30 · · · b30b11)2, ie.
we take the binary representation of n and make every digit corresponding to an even
power of 2 into a 0.

Assume that we have proven this formula. (We will prove it below.) We can now quickly
solve (b) and (c).
Is there an integer n such that f(n) = 2005?
Since 2005 = 1024 + 512 + 256 + 128 + 64 + 16 + 4 + 1, then 2005 = (11111010101)2.
Thus, the binary representation of 2005 does not have only 0’s in the digits corresponding
to even powers of 2, so 2005 cannot be f(n) for any n.

Why are there infinitely many positive integers n for which f(n) = 2005?
Consider n = 2005 + 22a for some positive integer n, where 22a > 2005, ie. n ≥ 6.
Then the binary representation of n is n = (10 · · · 011111010101)2, where the leading 1 is
in a digit corresponding to an even power of 2, and so is zeroed when f is applied.
Therefore, f(n) = (00 · · · 001010000001)2 = (1010000001)2 = f(2005).
Thus, there are infinitely many positive integers n for which f(n) = f(2005).

Lastly, we must prove that our formula is true.
Write the numbers from 1 to n in binary in a list from top to bottom:

... 0 0 0 0 1

... 0 0 0 1 0

... 0 0 0 1 1

... 0 0 1 0 0

... 0 0 1 0 1

... 0 0 1 1 0

... 0 0 1 1 1

... 0 1 0 0 0
...

... b4 b3 b2 b1 1

On odd-numbered passes through the lockers, Josephine moves from left to right, cor-
responding to downwards in this list. On even-numbered passes through the lockers,
Josephine moves from right to left, corresponding to upwards in this list.

On the first pass, we remove every other number from this list, moving downwards. Thus,
we remove every even number, or all of those ≡ 0 (mod 2), or all of those with 0th binary
digit of 0.
Therefore, after the first pass, only those with a 0th binary digit of 1 remain, and the 1st
binary digit (ie. corresponding to 21) alternates between 0 and 1, since the numbers in the
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list alternate between 1 (mod 4) and 3 (mod 4).

On the second pass through the list, which is upwards, we remove every other remaining
number. Since the numbers remaining the list alternate between ending in 01 and 11, and
we do not remove the last number, then we leave all those numbers ending in b11.
(Since we are removing every fourth number from the original list, the final two binary
digits of the remaining numbers should all be the same.)
What remains in our list after two passes? The numbers which remain are all congruent
to the same thing (an odd number) modulo 4.

Consider the third pass.
Since one out of every four of the original numbers remains and all of the remaining num-
bers are odd, then the first number still in the list is less than 4.
Since every number remaining in the list is congruent to the same thing modulo 4, then
the last three digits alternate 0b11 and 1b11 (ie. the last two binary digits are the same).
Since the first number is less than 4, then it ends in 0b11.
Since we now remove every other number remaining, then we remove all those numbers
with last three binary digits 1b11, leaving only those with last three digits 0b11. Thus, all
remaining numbers are congruent to the same number modulo 8.
What is the last number remaining in the list?
If the original last number in the list was ...b30b11 (ie. b2 = 0), then this number still
remains.
If the last number before the third pass was ...b31b11 (ie. b2 = 1), then the second last
remaining number would be (...b31b11)2−4 = (...b30b11)2, and it is this second last number
which remains. In either case, the last remaining number is ...b30b11.

Consider now a general even-numbered pass (say, pass number 2m moving through the
list from bottom to top).
The last number in the list (ie. the first encountered) will be ...b2m−10b2m−30 · · · b30b11
and the numbers in the list will alternate between ending ...10b2m−30 · · · b30b11 and ending
...00b2m−30 · · · b30b11 (since every 22m−1th number from the original list remains).
The last number in the list will not be removed, so we will remove all numbers not agreeing
with the last number in the (2m − 1)th digit, ie. we are left with all numbers ending in
...b2m−10b2m−30 · · · b30b11. This leaves us with every 22mth number from our original list.
Since all remaining numbers are odd, then the smallest number remaining in the list is
smaller than 22m, so ends in ...0b2m−10b2m−30 · · · b30b11.

On the next (odd-numbered pass), the list begins with all numbers ending in either
...0b2m−10b2m−30 · · · b30b11 or ...1b2m−10b2m−30 · · · b30b11.
Since the first number encountered ends in ...0b2m−10b2m−30 · · · b30b11, then we remove all
numbers ending in ...1b2m−10b2m−30 · · · b30b11, leaving only those ending in
...0b2m−10b2m−30 · · · b30b11, ie. every 22m+1th number from the original list.
Just before this pass, the largest number remaining ended in
...b2m+1b2mb2m−10b2m−30 · · · b30b11.
After this pass, the largest number remaining will end in ...b2m+10b2m−10b2m−30 · · · b30b11,
by the same argument we used in the third pass.

Thus, the process continues as expected, and the final number remaining in the list will
be b2p−10b2p−30 · · · b30b11, so f(n) = (b2p−10b2p−30 · · · b30b11)2
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1. (a) Solution
Because all of the angles in the figure are right
angles, then 

€ 

BC = DE = 4 .
Thus, we can break up the figure into a 4 by 8
rectangle and a 4 by 4 square, by extending BC
to hit FE.  Therefore, the area of the figure is

€ 

8( ) 4( ) + 4( ) 4( ) = 48 .

Answer: 48

(b) Solution
By the Pythagorean Theorem in triangle ABE,

€ 

AB2 = 152 + 202 = 625 , so 

€ 

AB = 25 .
Since ABCD is a rectangle, 

€ 

CD = AB = 25 , so by
the Pythagorean Theorem in triangle CFD, we
have 

€ 

625 = 252 = 242 + CF 2 , so

€ 

CF 2 = 625 − 576 = 49 , or 

€ 

CF = 7 .
Answer: 7

(c) Solution 1
Since ABCD is a square of side length 6 and each
of AE : EB, BF : FC, CG : GD, and DH : HA is
equal to 1 : 2, then 

€ 

AE = BF = CG = DH = 2
and 

€ 

EB = FC =GD = HA = 4 .
Thus, each of the triangles HAE, EBF, FCG, and
GDH is right-angled, with one leg of length 2
and the other of length 4.
Then the area of EFGH is equal to the area of
square ABCD minus the combined area of the
four triangles, or 

€ 

62 − 4 1
2 2( ) 4( )[ ] = 36 −16 = 20

square units.
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Solution 2
Since ABCD is a square of side length 6 and each
of AE : EB, BF : FC, CG : GD, and DH : HA is
equal to 1 : 2, then 

€ 

AE = BF = CG = DH = 2
and 

€ 

EB = FC =GD = HA = 4 .
Thus, each of the triangles HAE, EBF, FCG, and
GDH is right-angled, with one leg of length 2
and the other of length 4.
By the Pythagorean Theorem,

€ 

EF = FG = GH = HE = 22 + 42 = 20 .
Since the two triangles HAE and EBF are congruent (we know the lengths of all three
sides of each), then 

€ 

∠AHE = ∠BEF .  But   

€ 

∠AHE +∠AEH = 90o , so
  

€ 

∠BEF +∠AEH = 90o , so   

€ 

∠HEF = 90o .
In a similar way, we can show that each of the four angles of EFGH is a right-angle, and
so EFGH is a square of side length 

€ 

20 .
Therefore, the area of EFGH is 

€ 

20( )2 = 20  square units.

2. (a) Rearranging the equation of the given line 

€ 

3x – y = 6 , we get 

€ 

y = 3x − 6 , so the given
line has y-intercept –6.
Since horizontal lines have the general form 

€ 

y = a  for some constant a, then the
horizontal line with y-intercept –6 is the line 

€ 

y = −6 .
Answer: 

€ 

y = −6

(b) When line A with equation 

€ 

y = 2x  is reflected in
the y-axis, the resulting line (line B) has equation

€ 

y = −2x .  (Reflecting a line in the y-axis changes
the sign of the slope.)
Since the slope of line B is –2 and line C is
perpendicular to line B, then the slope of line C
is 

€ 

1
2  (the slopes of perpendicular lines are

negative reciprocals).

Answer: 

€ 

1
2
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(c) Solution 1
Consider the line through O and P.  To get from O to P, we go right 2
and up 1.  Since B lies on this line and to get from O to B we go over 1,
then we must go up 

€ 

1
2 , to keep the ratio constant.

Consider the line through O and Q.  To get from O to Q, we go right 3
and up 1.  Since A lies on this line and to get from O to A we go over 1,
then we must go up 

€ 

1
3 , to keep the ratio constant.

Therefore, since A and B lie on the same vertical line, then

€ 

AB = 1
2 −

1
3 = 1

6 .

Solution 2
Since the line through P passes through the origin, then its equation is of the form

€ 

y = mx .  Since it passes through the point 

€ 

2,1( ) , then 

€ 

1 = 2m , so the line has equation

€ 

y = 1
2 x .  Since B has x-coordinate 1, then 

€ 

y = 1
2 1( ) = 1

2 , so B has coordinates 

€ 

1, 12( ) .
Similarly, we can determine that the equation of the line through Q is 

€ 

y = 1
3 x , and so A

has coordinates 

€ 

1, 13( ) .
Therefore, since A and B lie on the same vertical line, then 

€ 

AB = 1
2 −

1
3 = 1

6 .

3. (a) Solution 1
If the sequence has common difference d, then we can write the sequence as 

€ 

a − 2d ,

€ 

a − d , a, 

€ 

a + d , 

€ 

a + 2d .
From the given information, 

€ 

a − 2d( ) + a − d( ) = 2 , or 

€ 

2a − 3d = 2 .
Also, 

€ 

a + d( ) + a + 2d( ) = −18 , or 

€ 

2a + 3d = −18 .
We want to determine the third term, which is a.
We can get an equation involving a only by adding the two equations to get

€ 

4a = 2a − 3d( ) + 2a + 3d( ) = 2 + −18( ) = −16 , and so a, the third term, is –4.

Solution 2
If the sequence has first term a and common difference d, then we can write the sequence
as a, 

€ 

a + d , 

€ 

a + 2d , 

€ 

a + 3d , 

€ 

a + 4d .
From the given information, 

€ 

a + a + d( ) = 2 , or 

€ 

2a + d = 2 .
Also, 

€ 

a + 3d( ) + a + 4d( ) = −18 , or 

€ 

2a + 7d = −18 .
Subtracting these two equations, we obtain 

€ 

6d = −20  or 

€ 

d = − 103 .
Substituting back into the first equation, 

€ 

2a = 2 − − 103( ) = 16
3  and so 

€ 

a = 8
3 .

Therefore, the third term is 

€ 

a + 2d = 8
3 + 2 − 103( ) = − 123 = −4 .

Answer: 

€ 

−4
(b) Solution 1
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Since 

€ 

x − y( )2 = x2 − 2xy + y2  and 

€ 

x + y( )2 = x 2 + 2xy + y2 , then 

€ 

x + y( )2 − x − y( )2 = 4xy .

Thus, we have 

€ 

x + y( )2 = 4 2( )2 + 4 56( ) = 32 + 224 = 256 , and so 

€ 

x + y = 16  or 

€ 

x + y = −16 .
Since we are told that there are two values, then these two values must be 16 and –16.

Solution 2
From the first equation, 

€ 

x = y + 4 2 , so substituting into the second equation,

€ 

y + 4 2( )y = 56

y 2 + 4 2y − 56 = 0

y =
−4 2 ± 4 2( )2 − 4 1( ) −56( )

2

y =
−4 2 ± 256

2
y = −2 2 ± 8

If 

€ 

y = −2 2 + 8 , then 

€ 

x = y + 4 2 = 2 2 + 8 , so 

€ 

x + y = 16 .
If 

€ 

y = −2 2 − 8 , then 

€ 

x = y + 4 2 = 2 2 − 8 , so 

€ 

x + y = −16 .
Therefore, the two values are 16 and –16.

4. (a) Solution 1
There are 36 possibilities for the pair of numbers on the faces when the dice are thrown.
For the product of the two numbers, each of which is between 1 and 6, to be divisible by
5, one of the two numbers must be equal to 5.
Therefore, the possible pairs for the faces are

€ 

1,5( ),  2,5( ),  3,5( ),  4,5( ),  5,5( ),  6,5( ),  5,1( ),  5,2( ),  5,3( ),  5,4( ),  5,6( )
ie. there are 11 possibilities.
Thus, the probability is 

€ 

11
36 .

Solution 2
For the product of the two numbers, each of which is between 1 and 6, to be divisible by
5, one of the two numbers must be equal to 5.
When the two dice are thrown, the probability that the first die has a 5 on the top face and
any number appears on the second die has any number on the top face is 

€ 

1
6 ×1 = 1

6 .
Also, the probability that any number appears on the first die and a 5 appears on the
second die is 

€ 

1× 1
6 = 1

6 .
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If we consider the sum of these probabilities, we have double-counted the possibility that
a 5 occurs on both dice, which happens with probability 

€ 

1
6 ×

1
6 = 1

36 .
Therefore, the required probability is 

€ 

1
6 + 1

6 −
1
36 = 11

36 .
Answer: 

€ 

11
36

(b) First, we compute an expression for the composition of the two given functions:

€ 

f g x( )( ) = f ax + b( )

= ax + b( )2 − ax + b( ) + 2

= a2x 2 + 2abx + b2 − ax − b + 2

= a2x 2 + 2ab − a( )x + b2 − b + 2( )
But we already know that 

€ 

f g x( )( ) = 9x2 – 3x+ 2 , so comparing coefficients, we see that

€ 

a2 = 9            (1)
2ab − a = −3          (2)

b2 − b + 2 = 2            (3)
From the first equation, 

€ 

a = 3  or 

€ 

a = −3 .
From the third equation, 

€ 

b2 − b = b b −1( ) = 0  so 

€ 

b = 0  or 

€ 

b =1.
There are thus 4 possible pairs 

€ 

a, b( )  which could solve the problem.  We will check
which pairs work by looking at the second equation.
From the second equation, 

€ 

a 2b −1( ) = −3 , so if 

€ 

a = 3  then 

€ 

b = 0 , and if 

€ 

a = −3  then 

€ 

b =1.
Therefore, the possible ordered pairs 

€ 

a, b( )  are 

€ 

3,0( )  and 

€ 

−3,1( ) .

5. (a)

€ 

16x = 2x+5 – 2x+4

24( )x = 2x+4 21 −1( )
24 x = 2x+4 1( )

24 x = 2x+4

4 x = x + 4        (equating exponents)
3x = 4
x = 4

3
Answer: 

€ 

x = 4
3



2004 Euclid Solutions 7

(b) Point P is the point where the line

€ 

y = 3x+ 3  crosses the xaxis, and so has
coordinates 

€ 

−1,0( ) .
Therefore, one of the roots of the parabola

€ 

y = x2 + tx – 2  is 

€ 

x = −1, so

€ 

0 = −1( )2 + t −1( ) – 2
0 =1− t− 2
t = −1

The parabola now has equation

€ 

y = x 2 − x – 2 = x +1( ) x − 2( )  (we already
knew one of the roots so this helped with
the factoring) and so its two x-intercepts
are –1 and 2, ie. P has coordinates 

€ 

−1,0( )
and Q has coordinates 

€ 

2,0( ) .
We now have to find the coordinates of the point R.  We know that R is one of the two
points of intersection of the line and the parabola, so we equate their equations:

€ 

3x + 3 = x 2 − x – 2

0 = x 2 − 4x – 5
0 = x +1( ) x − 5( )

(Again, we already knew one of the solutions to this equation (

€ 

x = −1) so this made
factoring easier.)  Since R does not have x-coordinate –1, then R has x-coordinate 

€ 

x = 5 .
Since R lies on the line, then 

€ 

y = 3 5( ) + 3 =18 , so R has coordinates 

€ 

5,18( ) .
We can now calculate the area of triangle PQR.  This triangle has base of length 3 (from
P to Q) and height of length 18 (from the x-axis to R), and so has area 

€ 

1
2 3( ) 18( ) = 27 .

Thus, 

€ 

t = −1 and the area of triangle PQR is 27.

6. (a) In order to use as many coins as possible, Lori should use coins with smaller values
wherever possible.
Can Lori make $1.34 without using the loonie?  The total value of all of the other coins is

€ 

3 $0.25( ) + 3 $0.10( ) + 3 $0.05( ) + 5 $0.01( ) = $1.25 , so Lori needs to use the loonie to pay
for the toy helicopter.  Thus, she needs to try to make $0.34 with as many coins as
possible.
Next, Lori must use 4 pennies in order to make $0.34 (since each other coin’s value is a
multiple of 5 cents).  So she has used 5 coins thus far, and still needs to try to make $0.30
with as many coins as possible.
In order to make $0.30 using as many of the quarters, dimes and nickels as possible, she
should use 2 nickels and 2 dimes, or 4 coins.  (If a quarter is used, a single nickel
completes the $0.30 with 2 coins only.  At least 2 dimes must be used.)
Therefore, the maximum number of coins she can use is 9.
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Answer: 9
(b) When the dimensions were increased by n % from 10 by 15, the new dimensions were

€ 

10 1 +
n
100

 
 

 
  by 

€ 

15 1 +
n
100

 
 

 
 .

When the resolution was decreased by n percent, the new resolution was 

€ 

75 1− n
100

 
 

 
 .

(Note that n cannot be larger than 100, since the resolution cannot be decreased by more
than 100%.)
Therefore, the number of pixels in the new image is

€ 

10 1 +
n
100

 
 

 
 × 75 1−

n
100

 
 

 
 

 

 
 

 

 
 × 15 1+

n
100

 
 

 
 × 75 1−

n
100

 
 

 
 

 

 
 

 

 
 

Since we know that the number of pixels in the new image is 345 600, then

€ 

10 1 +
n

100
 
 

 
 
× 75 1− n

100
 
 

 
 

 

 
 

 

 
 × 15 1+

n
100

 
 

 
 
× 75 1− n

100
 
 

 
 

 

 
 

 

 
 = 345600

10 × 75[ ]× 15 × 75[ ] × 1 +
n

100
 
 

 
 

2
× 1− n

100
 
 

 
 

2
= 345600

843750 1 +
n

100
 
 

 
 

2
1− n

100
 
 

 
 

2
= 345600

1− n2

1002
 

  
 

  

2

= 0.4096

1− n2

1002 = ±0.64

1− n2

1002 = 0.64           (n cannot be larger than 100)

n2

1002 = 0.36

n
100

= 0.6              (since n must be positive)

n = 60
Thus, 

€ 

n = 60 .

7. (a) We first calculate the length of AC using the cosine law:

  

€ 

AC2 = 72 + 82 − 2 7( ) 8( )cos 120o( )
AC2 = 49 + 64 −112 − 1

2( )
AC2 = 169
AC = 13

Since triangle ABC is right-angled and isosceles, then 

€ 

x = AB = 2 AC( ) = 13 2 .
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Answer: 

€ 

x =13 2
(b) First, we draw a line through T which is perpendicular to

AB.  This line cuts AB at X and CD at Y.
Since 

€ 

∠TPR  is a right angle, then   

€ 

∠XPT = 80o .  Thus,

  

€ 

XT =11sin 80o( ) .

Since 

€ 

XY =15 , then 
  

€ 

TY = 15 −11sin 80o( ) .

But triangle XPT is right-angled at X, so since   

€ 

∠XPT = 80o , then   

€ 

∠XTP =10o , and so 
  

€ 

∠YTC = 80o , since   

€ 

∠TYC = 90o .

Thus, 
  

€ 

TC =
TY

cos 80o( ) =
15 −11sin 80o( )
cos 80o( ) , and so the length of the drawer is

  

€ 

TS = 2TC =
30 − 22sin 80o( )
cos 80o( ) ≈ 47.9949 .

Thus, to the nearest tenth of a centimetre, the length of the drawer is 48.0 cm.
[Note that there are many different ways to do this problem.]

8. (a) Consider the right side of the given equation:

€ 

T 3 + bT + c = x 2 +
1
x2

 
 

 
 

3
+ b x 2 +

1
x2

 
 

 
 

+ c

= x 4 + 2 +
1
x4

 
 

 
 x

2 +
1
x2

 
 

 
 + b x 2 +

1
x2

 
 

 
 + c

= x 6 + 3x 2 +
3
x2

+
1
x 6

+ b x 2 +
1
x2

 
 

 
 

+ c

= x 6 +
1
x6

+ b + 3( ) x2 +
1
x 2

 
 

 
 

+ c

For this expression to be equal to 

€ 

x 6 +
1
x6

 for all values of x, we want 

€ 

b + 3 = 0  or

€ 

b = −3  and 

€ 

c = 0 .
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(b) Solution 1

We start with 

€ 

x3 +
1
x3

= 2 5  and square both sides:

€ 

x 3 +
1
x3

 
 

 
 

2
= 2 5( )2

x 6 + 2 +
1
x 6

= 20

x6 +
1
x 6

=18

Using the result from part (a) and letting 

€ 

T = x 2 +
1
x2

, we see that 

€ 

T 3 − 3T = 18 .

So we would like to factor the equation 

€ 

T 3 − 3T −18 = 0 .
After some trial and error, we can see that 

€ 

T = 3 is a solution, so by the Factor Theorem,

€ 

T − 3( ) T2 + 3T + 6( ) = 0 , and 

€ 

T 2 + 3T + 6  has no real roots.

Therefore, 

€ 

T = 3, ie. 

€ 

x 2 +
1
x2

= 3 .

Solution 2

Let 

€ 

t = x +
1
x .  Since we saw in (a) that 

€ 

x 6 +
1
x6

= x2 +
1
x 2

 
 

 
 

3
− 3 x 2 +

1
x2

 
 

 
 , then it

makes sense that 

€ 

x 3 +
1
x3

= x +
1
x

 
 

 
 

3
− 3 x +

1
x

 
 

 
 = t3 − 3t .

Therefore, we have 

€ 

t3 − 3t = 2 5  or 

€ 

t3 − 3t − 2 5 = 0 .
Since 

€ 

5( )3 = 5 5 , then 

€ 

t = 5  is a solution to this equation, so factoring we obtain

€ 

t − 5( ) t2 + 5t + 2( ) = 0 .  The quadratic factor has discriminant 

€ 

5( )2 − 4 1( ) 2( ) = −3 < 0
and so has no real roots.

Therefore, 

€ 

t = x +
1
x = 5 .

Squaring, we obtain

€ 

x +
1
x

 
 

 
 

2
= 5( )2

x 2 + 2 +
1
x 2

= 5

x2 +
1
x 2

= 3
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Solution 3

We start with 

€ 

x3 +
1
x3

= 2 5  and square both sides:

€ 

x 3 +
1
x3

 
 

 
 

2
= 2 5( )2

x 6 + 2 +
1
x 6

= 20

x6 +
1
x 6

=18

From part (a), if 

€ 

T = x 2 +
1
x2

, then 

€ 

T 3 = x 2 +
1
x2

 
 

 
 

3
= x 6 + 3 x 2 +

1
x2

 
 

 
 +

1
x6

= 18 + 3T .

So we would like to factor the equation 

€ 

T 3 − 3T −18 = 0 .
After some trial and error, we can see that 

€ 

T = 3 is a solution, so by the Factor Theorem,

€ 

T − 3( ) T2 + 3T + 6( ) = 0 , and 

€ 

T 2 + 3T + 6  has no real roots.

Therefore, 

€ 

T = 3, ie. 

€ 

x 2 +
1
x2

= 3 .

9. (a) Solution 1
From A, drop a perpendicular to BC.
From triangle ABE, 

€ 

AE2 = x2 − 1
4 y

2 .

From triangle ADE, 

€ 

AE = 3
2 z  or

€ 

AE2 = 3
4 z

2 .
Equating these two expressions, we get

€ 

x 2 − 1
4 y

2 = 3
4 z

2  or 

€ 

4x2 − y2 = 3z2 .
If 

€ 

x = 7  and 

€ 

z = 5 , then

  

€ 

196 − y 2 = 75

y 2 =121
y = ±11

Therefore, the Kirk triplet with 

€ 

x = 7  and 

€ 

z = 5  is 

€ 

7,11,5( ) .
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Solution 2
By the cosine law in triangle ADB,

  

€ 

72 = 52 + BD2 − 2 5( ) BD( )cos 60o( )
0 = BD2 − 5BD − 24
0 = BD − 8( ) BD + 3( )

Since BD is a length, 

€ 

BD = 8 .

Since   

€ 

∠ADC = 120o , then by the cosine law in triangle ADC,

  

72 = 52 + DC2 – 2 5( ) DC( )cos 120o( )
0 = DC2 + 5DC – 24
0 = DC +8( ) DC – 3( )

Since DC is a length, then 

€ 

DC = 3 .  Thus, 

€ 

y = BD +DC =11 .
Therefore, the Kirk triplet with 

€ 

x = 7  and 

€ 

z = 5  is 

€ 

7,11,5( ) .

(b) Solution 1
If 

€ 

4x2 − y2 = 3z2  (from (a) Solution 1) and 

€ 

z = 5 , then

€ 

4x 2 − y 2 = 75
2x + y( ) 2x − y( ) = 75

Each of 

€ 

2x + y  and 

€ 

2x − y  is a positive integer and their product is 75.  Note that 

€ 

2x + y
is bigger than 

€ 

2x − y .  The factors of 75 are 1, 3, 5, 15, 25, 75.
Looking at each of the possibilities,

€ 

2x + y

€ 

2x − y x y
75 1 19 37
25 3 7 11
15 5 5 5

so the two possible Kirk triplets with 

€ 

z = 5  are 

€ 

19,37,5( )  and 

€ 

7,11,5( ) .

Solution 2
Let 

€ 

BD = a  and 

€ 

DC = b .
By the cosine law in triangles ABD and

ADC,

  

€ 

x 2 = 52 + a2 − 2 5( ) a( )cos 60o( )
x 2 = a2 − 5a + 25

  and

  

€ 

x 2 = 52 + b2 − 2 5( ) b( )cos 120o( )
x 2 = b2 + 5b + 25
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€ 

x 2 = 52 + b2 − 2 5( ) b( )cos 120o( )
x 2 = b2 + 5b + 25
Subtracting the second equation from the first, we obtain

  

€ 

0 = a2 − b2 − 5a − 5b
0 = a + b( ) a − b − 5( )
0 = y a − b − 5( )

Since y is not 0, then 

€ 

a = b + 5 .
We know 

€ 

y = a + b = 2b + 5 , so 

€ 

2b = y − 5 .
But 

€ 

x 2 = b2 + 5b + 25 , so

€ 

4x2 = 4b2 + 20b +100

4x2 = y − 5( )2 +10 y − 5( ) +100

4x2 = y2 + 75

4x2 − y2 = 75
and thus we continue as in Solution 1 to determine that the only Kirk triplets with 

€ 

z = 5
are 

€ 

19,37,5( )  and 

€ 

7,11,5( ) .

(c) In order determine the appropriate Kirk triplet, we need to find a way to determine Kirk
triplets.  We model our approach after that in part (b), Solution 1.
Drop a perpendicular from A to F on BC.
Since triangle ABC is isosceles, then F is the midpoint of BC.
Also, triangle ADF is a 30-60-90 triangle, with 

€ 

AD = z .
Thus, 

€ 

FD = 1
2 z  and 

€ 

AF = 3
2 z .

Then triangle ABF is right-angled at F with 

€ 

AF = 3
2 z , 

€ 

AB = x  and 

€ 

BF = 1
2 y .

Thus, by the Pythagorean Theorem,

€ 

x 2 = 1
2 y( )2 + 3

2 z( )2

4x 2 − y 2 = 3z2

2x + y( ) 2x − y( ) = 3z2

Each of 

€ 

2x + y  and 

€ 

2x − y  is a positive integer and their product is 

€ 

3z2 .  Note that

€ 

2x + y  is bigger than 

€ 

2x − y .  Since z is a prime number, the factors of 

€ 

3z2are 1, 3, z, 3z,

€ 

z2 , 

€ 

3z2 .  (Notice that if z is equal to 2, these are not in ascending order, and if z equals 3,
then there is duplication in this list.)
Looking at each of the possibilities,

€ 

2x + y

€ 

2x − y x y
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€ 

3z2 1

€ 

3z2 +1
4

€ 

3z2 −1
2

€ 

z2 3

€ 

z2 + 3
4

€ 

z2 − 3
2

3z z z z

so the only two possible Kirk triplets with a fixed value for z are 

€ 

3z2 +1
4 , 3z

2 −1
2 ,z

 

 
 

 

 
  and

€ 

z2 + 3
4 , z

2 − 3
2 ,z

 

 
 

 

 
 .

We would like to determine the Kirk triplets with 

€ 

cos ∠ABC( )  is as close to 0.99 as
possible.

Looking back at triangle ABF, we see that 

€ 

cos ∠ABC( ) =
1
2 y
x , so in our two cases

€ 

cos ∠ABC( ) =
3z2 −1
3z2 +1

= 1− 2
3z2 +1

 or 

€ 

cos ∠ABC( ) =
z2 − 3
z2 + 3

= 1− 6
z2 + 3

.

In order to make 

€ 

cos ∠ABC( )  close to 0.99, we thus make either 

€ 

2
3z2 +1

 or 

€ 

6
z2 + 3

 close

to 0.01.
In other words we make 

€ 

3z2 +1 close to 200, or 

€ 

z2 + 3 close to 600.
In the first case, since 

€ 

3 8( )2 +1 =193  and 

€ 

3 9( )2 +1 = 244 , and since z must be a prime

number, then we try 

€ 

z = 7  and 

€ 

z = 11, and obtain 

€ 

cos ∠ABC( ) =
3z2 −1
3z2 +1

 to be 0.986487

and 0.994506.
In the second case, since 

€ 

242 + 3 = 579  and 

€ 

252 + 3 = 628 , and since z must be a prime

number, then we try 

€ 

z = 23 and 

€ 

z = 29 , and obtain 

€ 

cos ∠ABC( ) =
z2 − 3
z2 + 3

 to be 0.988722

and 0.993644.
So 

€ 

cos ∠ABC( )  appears to be as close to 0.99 as possible when 

€ 

z = 23.
We should double-check to confirm that we actually get a triplet of integers in this case!
In the second case, when 

€ 

z = 23, we get the triplet 

€ 

133,263,23( ) .
Thus, the Kirk triplet 

€ 

133,263,23( )  gives 

€ 

cos ∠ABC( )  is as close to 0.99 as possible.

(Note: We could have proceeded analogously to the second approach to 9(b) to obtain

€ 

4x2 − y2 = 3z2  in this way, and then proceeded as above in this solution.)

10. (a) We start by placing the two 4’s.  We systematically try each pair of possible positions –
from positions 1 and 5 to positions 4 and 8.  For each of these positions, we try placing



2004 Euclid Solutions 15

the two 3’s in each pair of possible positions, and then see if the two 2’s and two 1’s will
fit.
(We can reduce our work by noticing that if a Skolem sequence has the two 4’s in
positions 1 and 5, then reversing the sequence will give a Skolem sequence with the two
4’s in positions 4 and 8.  So we only need to consider putting the two 4’s in positions 1
and 5, and in positions 2 and 6.  The remaining possibilities can be dealt with by
reversing.)
Thus, the six possible Skolem sequences of order 4 are:

(4, 2, 3, 2, 4, 3, 1, 1) and its reverse, (1, 1, 3, 4, 2, 3, 2, 4)
(4, 1, 1, 3, 4, 2, 3, 2) and its reverse, (2, 3, 2, 4, 3, 1, 1, 4)
(3, 4, 2, 3, 2, 4, 1, 1) and its reverse, (1, 1, 4, 2, 3, 2, 4, 3)

(b) Since we are trying to create a Skolem sequence of order 9, then there are 18 positions to
fill with 10 odd numbers and 8 even numbers.
We are told that 

€ 

s18 = 8 , so we must have 

€ 

s10 = 8 , since the 8’s must be 8 positions apart.
By condition III, between the two 8’s, there can be only one odd integer.  But there are 7
positions between the two 8’s and only 6 remaining even numbers to place.  Thus, all 6
remaining even numbers are placed between the two 8’s.  The only way in which this is
possible is with the two 6’s next to the two 8’s, then the two 4’s, then the two 2’s.  (The
two 8’s are 8 positions apart, and the two 6’s must be 6 positions apart.)
Thus, the sequence so far is:

(__, __, 1, __, __, __, __, __, __, 8, 6, 4, 2, __, 2, 4, 6, 8)
The numbers that we have left to place are 1, 3, 3, 5, 5, 7, 7, 9, 9, and empty positions are
1, 2, 4, 5, 6, 7, 8, 9, 14.
Since the 9’s must be 9 positions apart, they must be placed in positions 5 and 14.
Thus, we have

(__, __, 1, __, 9, __, __, __, __, 8, 6, 4, 2, 9, 2, 4, 6, 8)

The remaining 1 must be placed in position 2 or 4.  If it is placed in position 2, then the
7’s can only go in positions 1 and 8, giving

(7, 1, 1, __, 9, __, __, 7, __, 8, 6, 4, 2, 9, 2, 4, 6, 8)
But we now cannot place both the two 3’s and the two 5’s.  (The placing of one of these
pairs means that the other pair cannot be placed.)
We conclude that the only possibility is that the remaining 1 must be placed in position 4.
This gives

(__, __, 1, 1, 9, __, __, __, __, 8, 6, 4, 2, 9, 2, 4, 6, 8)
with 3, 3, 5, 5, 7, 7 left to be placed in positions 1, 2, 6, 7, 8, 9.
Now the two 3’s must be placed in positions 6 and 9, so the 7’s must be placed in
positions 1 and 8, and finally the 5’s must be placed in positions 2 and 7.
Therefore, the only Skolem sequence satisfying the given conditions is
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(7, 5, 1, 1, 9, 3, 5, 7, 3, 8, 6, 4, 2, 9, 2, 4, 6, 8)

(c) Solution 1
Assume that there is a Skolem sequence of order n, where n is of the form 

€ 

4k + 2  or

€ 

4k + 3 .  (We will deal with both cases together.)
Let 

€ 

P1 be the position number of the left-most 1 in the Skolem sequence.  Then 

€ 

P1 +1 is
the position number of the other 1.
Similarly, let 

€ 

P2, 

€ 

P3, …, 

€ 

Pn  be the position numbers of the left-most 2, 3, …, n,
respectively, in the Skolem sequence.  Then 

€ 

P2 + 2 , 

€ 

P3 + 3 , …, 

€ 

Pn + n  are the position
numbers of the other occurrences of 2, 3, …, n, respectively.
Since the Skolem sequence exists, then the numbers 

€ 

P1, 

€ 

P2, 

€ 

P3, …, 

€ 

Pn , 

€ 

P1 +1, 

€ 

P2 + 2 ,

€ 

P3 + 3 , …, 

€ 

Pn + n  are a rearrangement of all of the position numbers, ie. the numbers 1,
2, …, 2n.
Thus,

  

€ 

P1 + P2 +L + Pn + P1 +1( ) + P2 + 2( ) +L + Pn + n( ) = 1+ 2 +L + 2n
2 P1 + P2 +L + Pn( ) + 1+ 2 +L + n( ) = 1+ 2 +L + 2n

2 P1 + P2 +L + Pn( ) +
n n +1( )

2
=

2n 2n +1( )
2

2 P1 + P2 +L + Pn( ) +
n n +1( )

2
= n 2n +1( )          (**)

using the fact that 
  

€ 

1 + 2 +L + k =
k k +1( )
2 .

We now look at the parities of the terms in equation (**) in each of our two cases.

If 

€ 

n = 4k + 2 , then 

€ 

n n +1( )
2 =

4k + 2( ) 4k + 3( )
2 = 2k +1( ) 4k + 3( )  which is the product of

two odd numbers, so is odd, and 

€ 

n 2n +1( ) = 4k + 2( ) 8k + 5( ) , which is the product of an
even number and an odd number, so is even.
Thus, (**) is Even + Odd = Even, a contradiction.

If 

€ 

n = 4k + 3 , then 

€ 

n n +1( )
2 =

4k + 3( ) 4k + 4( )
2 = 4k + 3( ) 2k + 2( )  which is the product of

an odd number and an even number, so is even, and 

€ 

n 2n +1( ) = 4k + 3( ) 8k + 7( ) , which
is the product of two odd numbers, so is odd.
Thus, (**) is Even + Even = Odd, a contradiction.

Therefore, in either case, a contradiction is reached, so there cannot exist a Skolem
sequence of order n, if n is of the form 

€ 

4k + 2  or 

€ 

4k + 3 , where k is a non-negative
integer.

Solution 2
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Assume that there is a Skolem sequence of order n, where n is of the form 

€ 

4k + 2  or

€ 

4k + 3 .
Let l be an integer between 1 and n.
If l is even, then the two position numbers in which l is placed differ by an even number
(namely l), and so are either both odd or both even.
If l is odd, then the two position numbers in which l is placed differ by an odd number
(namely l), and so one is odd and the other is even.
Case 1: 

€ 

n = 4k + 2
Between 1 and n, there are 

€ 

2k +1 even numbers (2, 4, …, 

€ 

4k + 2) and 

€ 

2k +1 odd
numbers (1, 3, …, 

€ 

4k +1).
The position numbers in a Skolem sequence of order 

€ 

n = 4k + 2  are the integers 1, 2,
…, 

€ 

8k + 4 , so there are 

€ 

4k + 2  even position numbers and 

€ 

4k + 2  odd position
numbers.
Considering the 

€ 

2k +1 odd numbers in the sequence gives us 

€ 

2k +1 odd position
numbers and 

€ 

2k +1 even position numbers, ie. an odd number of odd position
numbers and an odd number of even position numbers.
Each even number in the sequence will contribute either two odd position numbers or
two even position numbers.  In other words, all of the even numbers in the sequence
contribute an even number of odd position numbers.
Thus, the total number of odd position numbers is odd plus even, which is odd.  This
is a contradiction, because we know there must be 

€ 

4k + 2  odd position numbers.

Case 2: 

€ 

n = 4k + 3
Between 1 and n, there are 

€ 

2k +1 even numbers (2, 4, …, 

€ 

4k + 2) and 

€ 

2k + 2  odd
numbers (1, 3, …, 

€ 

4k + 3).
The position numbers in a Skolem sequence of order 

€ 

n = 4k + 3  are the integers
1, 2, …, 

€ 

8k + 6 , so there are 

€ 

4k + 3  even position numbers and 

€ 

4k + 3  odd position
numbers.
Considering the 

€ 

2k + 2  odd numbers in the sequence gives us 

€ 

2k + 2  odd position
numbers and 

€ 

2k + 2  even position numbers, ie. an even number of odd position
numbers and an even number of even position numbers.
Each even number in the sequence will contribute either two odd position numbers or
two even position numbers.  In other words, all of the even numbers in the sequence
contribute an even number of odd position numbers.
Thus, the total number of odd position numbers is even plus even, which is even.
This is a contradiction, because we know there must be 

€ 

4k + 3  odd position numbers.

Therefore, in either case, a contradiction is reached, so there cannot exist a Skolem
sequence of order n, if n is of the form 

€ 

4k + 2  or 

€ 

4k + 3 , where k is a non-negative
integer.
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1. (a) Solution 1
Since the x-intercepts of the parabola are 2 and 4, then the axis of symmetry of the
parabola is x = 3.
Since the point 0 8,( ) is on the parabola, its image after a reflection across the vertical line
x = 3 is the point 6 8,( ) .  Thus, a = 6 .

Solution 2
Since the x-intercepts of the parabola are 2 and 4, then the equation of the parabola is of
the form y A x x= −( ) −( )2 4 .
Since 0 8,( ) lies on the parabola, then 8 2 4= −( ) −( )A  or A = 1.

Therefore, the parabola has equation y x x x x= −( ) −( ) = − +2 4 6 82 .
But the point a,8( ) lies on the parabola, so

8 6 8

0 6

0 6

2

2

= − +

= −
= −( )

a a

a a

a a

Since a ≠ 0 , then a = 6 . Answer: a = 6

(b) Solution 1
Since the quadratic equation has two equal roots, then the expression on the left must be a
perfect square.  Since the leading coefficient is 1 and the coefficient of the x-term is 6,
then the expression must be x x x+( ) = + +3 6 92 2 .  By comparing expressions, k = 9.

Solution 2
Since the quadratic equation has two equal roots, the discriminant is 0, ie.
6 4 1 02 − ( )( ) =k  or 4 36k =  or k = 9. Answer: k = 9

(c) From the given information, the point 1 4,( )  lies on the parabola, so 4 1 3 12= − ( ) + c  or

c = 6 .
We now find the points of intersection of the parabola and the line by equating:

2 2 3 6

0 5 4

0 1 4

2

2

x x x

x x

x x

+ = − +

= − +
= −( ) −( )

Thus the points of intersection have x-coordinates x = 1 and x = 4.
Substituting x = 4 into the line y x= +2 2, we get the point 4 10,( ) .
Therefore, the second point of intersection is 4 10,( ) .



2003 Euclid Solutions 3

2. (a) Rearranging the equation,

3 15

15

0 3220

1
3

sin cos

sin cos

sin .

x

x

x

( ) = ( )
( ) = ( )
( ) ≈

o

o

Using a calculator, x ≈18 78. o .  To the nearest tenth of a degree, x = 18 8. o .

Answer: x = 18 8. o

(b) Solution 1

Since sinC
AB

AC
= , then AB AC C= = ( ) =sin 20 123

5 .

By Pythagoras, BC AC AB2 2 2 2 220 12 256= − = − =  or BC = 16 .
A

B

C

12

20

Solution 2
Using the standard trigonometric ratios, BC AC C= cos .
Since sinC = 3

5 , then cos sin2 2 9
25

16
251 1C C= − = − =  or cosC = 4

5 .  (Notice that cosC  is

positive since angle C is acute in triangle ABC.)
Therefore, BC = ( ) =20 164

5 . Answer: BC = 16

(c) Let G be the point where the goat is
standing, H the position of the helicopter
when the goat first measures the angle, P
the point directly below the helicopter at
this time, J the position of the helicopter
one minute later, and Q the point directly
below the helicopter at this time.

222 m

75°

J

6°

H

222 m

PQG

Using the initial position of the helicopter, tan 6o( ) = HP

PG
 or PG = ( ) ≈222

6
2112 19

tan
.

o
 m.

Using the second position of the helicopter, tan 75o( ) = JQ

QG
 or QG = ( ) ≈222

75
59 48

tan
.

o
 m.

So in the one minute that has elapsed, the helicopter has travelled
2112 19 59 48. . m  m = 2052.71 m−  or 2.0527 km.

Therefore, in one hour, the helicopter will travel 6 123 1620 2.0527  km( ) = . .

Thus, the helicopter is travelling 123 km/h.
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3. (a) Since we are looking for the value of f 9( ) , then it makes sense to use the given equation
and to set x = 3in order to obtain f f9 2 3 3( ) = ( ) + .
So we need to determine the value of f 3( ) .  We use the equation again and set x = 0
since we will then get f 3( )  on the left side and f 0( )  (whose value we already know) on

the right side, ie.
f f3 2 0 3 2 6 3 15( ) = ( ) + = ( ) + =

Thus, f 9 2 15 3 33( ) = ( ) + = . Answer: f 9 33( ) =

(b) Solution 1
We solve the system of equations for f x( )  and g x( ).
Dividing out the common factor of 2 from the second equation, we get
f x g x x( ) + ( ) = +2 22 .

Subtracting from the first equation, we get g x x( ) = + 4.

Thus, f x x g x x x x x( ) = + − ( ) = + − +( ) = − −2 2 22 2 2 2 4 2 6.
Equating f x( )  and g x( ), we obtain

x x x

x x

x x

2

2

2 6 4

3 10 0

5 2 0

− − = +

− − =
−( ) +( ) =

Therefore, x = 5 or x = −2 .

Solution 2
Instead of considering the equation f x g x( ) = ( ), we consider the equation
f x g x( ) − ( ) = 0 , and we try to obtain an expression for f x g x( ) − ( ) by manipulating the

two given equations.
In fact, after some experimentation, we can see that

f x g x f x g x f x g x

x x x

x x

( ) − ( ) = ( ) + ( )( ) − ( ) + ( )( )
= +( ) − + +( )
= − −

2 2 4 3 3

2 2 4 3 6

3 10

2 2

2

So to solve f x g x( ) − ( ) = 0 , we solve x x2 3 10 0− − =  or x x−( ) +( ) =5 2 0. Therefore,

x = 5 or x = −2 .

4. (a) Solution 1
We label the 5 skaters A, B, C, D, and E, where D and E are the two Canadians.
There are then 5 5 4 3 2 1 120!= × × × × =  ways of arranging these skaters in their order of
finish (for example, ADBCE indicates that A finished first, D second, etc.), because there
are 5 choices for the winner, 4 choices for the second place finisher, 3 choices for the
third place finisher, etc.
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If the two Canadians finish without winning medals, then they must finish fourth and
fifth.  So the D and E are in the final two positions, and A, B and C in the first three.
There are 3 6!=  ways of arranging the A, B and C, and 2 2!=  ways to arrange the D and
E.  Thus, there are 6 2 12× =  ways or arranging the skaters so that neither Canadian wins
a medal.
Therefore, the probability that neither Canadian wins a medal is

#  of ways where Canadians don' t win medals
Total #  of arrangements

= =12
120

1
10

Solution 2
We label the 5 skaters as A, B, C, D, and E, where D and E are the two Canadians.  In
any race, two of the skaters finish fourth and fifth.  Also, any pair of skaters are equally
as likely to finish fourth and fifth, since the probability of every skater is equally likely to
finish in a given position.
How many pairs of 2 skaters can we form from the 5 skaters?  There are ten such pairs:
   {A,B}, {A,C}, {A,D}, {A,E}, {B,C}, {B,D}, {B,E}, {C,D}, {C,E}, {D,E}
Only one of these ten pairs is made up of the two Canadians.  Therefore, the probability
is 1

10 , since one out of ten choices gives the desired result.

Answer: 1
10

(b) Solution 1
Since the least common multiple of 3, 5, 10 and 15 is 30, then we can count the number
of positive integers less than or equal to 30 satisfying these conditions, and multiply the
total by 10 to obtain the number less than 300.  (This is because each group of 30
consecutive integers starting with 1 more than a multiple of 30 will have the same
number of integers having these properties, because we can subtract 30 from each one
and not change these properties.)
So from 1 to 30, we have:

3, 5, 6, 9, 12, 18, 21, 24, 25, 27
Thus there are 10 less than or equal to 30, and so 100 such positive integers less than or
equal to 300.

Solution 2
We proceed by doing a (careful!) count.
The number of positive multiples of 3 less than or equal to 300 is 100.
The number of positive multiples of 5 less than or equal to 300 is 60.
Thus, we have 160 candidates, but have included multiples of 15 twice (since 15 is a
multiple of each of 3 and 5), and have also included multiples of 10.
The number of multiples of 15 less than or equal to 300 is 20, so to remove the multiples
of 15, we must remove 40 from 160 to get 120 positive integers less than or equal to 300
which are multiples of 3 or 5 but not of 15.
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This total still included some multiples of 10 that are less or equal to 300 (but not all,
since we have already removed 30, for instance).
In fact, there are 30 multiples of 10 less than or equal 300, 10 of which are multiples of
15 as well (that is, the multiples of 30).  So we must remove 20 from the total of 120.
We then obtain that there are 100 positive integers less than or equal to 300 which are
multiples of 3 or 5, but not of 10 or 15.

5. (a) Since the signs alternate every three terms, it makes sense to look at the terms in groups
of 6.
The sum of the first 6 terms is 1 3 5 7 9 11 18+ + − − − = − .
The sum of the next 6 terms is 13 15 17 19 21 23 18+ + − − − = − .
In fact, the sum of each group of 6 terms will be the same, since in each group, 12 has
been added to the numerical value of each term when compared to the previous group of
6, so overall 12 has been added three times and subtracted three times.
Since we are looking for the sum of the first 300 terms, then we are looking at 50 groups
of 6 terms, so the sum must be 50 18 900−( ) = − .

Answer: −900

(b) Let the two digit integer have tens digit a and units digit b.  Then the given information
tells us

a b b a

a b a b

a b a b a b

a b a b

2 2

2 2

10 10

10 10 0

10 0

10 0

+ = +

− − + =
+( ) −( ) − −( ) =

−( ) + −( ) =
and so a b=  or a b+ = 10.
So the possibilities for the integer are 11, 22, 33, 44, 55, 66, 77, 88, 99, 19, 28, 37, 46, 55,
64, 73, 82, 91.  We now must determine which integers in this list are prime.
We can quickly reject all multiples of 11 bigger than 11 and all of the even integers, to
reduce the list to 11, 19, 37, 73, 91.
All of these are prime, except for 91 13 7= × .
Therefore, the required integers are 11, 19, 37, and 73.

6. (a) Solution 1
In 24 minutes, the number of atoms of isotope A has halved 4 times, so the initial number
of atoms is 2 164 =  times the number of atoms of isotope A at time 24 minutes.
But there were initially half as many atoms of isotope B as of isotope B, so there was 8
times the final number of atoms.  Therefore, the number of atoms of isotope B halves 3
times in the 24 minutes, so it takes 8 minutes for the number of atoms of isotope B to
halve.
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Solution 2
Initially, there is twice as many atoms of isotope A as of isotope B, so let the original
numbers of atoms of each be 2x and x, respectively.
Considering isotope A, after 24 minutes, if it loses half of its atoms every 6 minutes,

there will be 2 1
2

24
6

x( )  atoms remaining.

Similarly for isotope B, after 24 minutes, there will be x
T1

2

24

( )  atoms remaining, where T

is the length of time (in minutes) that it takes for the number of atoms to halve.
From the given information,

2

2

24
3

8

1
2

1
2

1
2

4 1
2

1
2

3 1
2

24
6

24

24

24

x x

T
T

T

T

T

( ) = ( )
( ) = ( )
( ) = ( )

=

=
Therefore, it takes 8 minutes for the number of atoms of isotope B to halve.

Answer: 8 minutes

(b) Solution 1

Using the facts that log log log10 10 10A B AB+ =  and that log log log10 10 10A B
A

B
− = ,

then we can convert the two equations to
log

log

10
3 2

10

2

3

11

3

x y

x

y

( ) =







=

Raising both sides to the power of 10, we obtain
x y

x

y

3 2 11

2

3
3

10

10

=

=

To eliminate the y’s, we raise the first equation to the power 3 and the second to the
power 2 to obtain

x y

x

y

9 6 33

4

6
6

10

10

=

=

and multiply to obtain x x x9 4 13 39 33 610 10 10= = = .
Therefore, since x13 3910= , then x = 103.
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Substituting back into x y3 2 1110= , we get y2 210= , and so y = ±10.  However,

substituting into 
x

y

2

3
310=  we see that y must be positive, so y = 10 .

Therefore, the solution to the system of equation is x = 103 and y = 10 .

Solution 2
Since the domain of the logarithm is the positive real numbers, then the quantities

log10
3x( ) and log10

3y( )  tell us that x and y are positive.

Using the fact that log log10 10a b ab( ) = ( ) , we rewrite the equations as

3 2 11

2 3 3
10 10

10 10

log log

log log

x y

x y

+ =
− =

We solve the system of equations for log10 x  and log10 y by multiplying the first
equation by 3 and adding two times the second equation in order to eliminate log10 y.
Thus we obtain 13 3910log x =  or log10 3x = .
Substituting back into the first equation, we obtain log10 1y = .

Therefore, x = 103 and y = 10 .

7. (a) Solution 1
We label the vertices of the shaded hexagon U, V, W, X,
Y, and Z.
By symmetry, all of the six triangles with two vertices on
the inner hexagon and one on the outer hexagon (eg.
triangle UVA) are congruent equilateral triangles.
In order to determine the area of the inner hexagon, we
determine the ratio of the side lengths of the two
hexagons.

A B

C

DE

F

x
x
x

U

V
x

x

Xx

Y
xZ

x

x
x

W

Let the side length of the inner hexagon be x.  Then AU UF x= = .

Then triangle AUF has a 120o  between the two sides of length x.
If we draw a perpendicular from U to
point P on side AF, then UP divides

∆AUF  into two 30 60 90o o o− −
triangles.  Thus, FP PA x= = 3

2  and

so AF x= 3 .
So the ratio of the side lengths of the
hexagons is 3 1 : , and so the ratio of

their areas is 3 1 3 1( ) =
2
 :  : .

U

x

A P F

x
60° 60°

3
2

x
3

2
x

Since the area of the larger hexagon is 36, then the area of the inner hexagon is 12.
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Solution 2
We label the vertices of the hexagon U, V, W, X, Y, and Z.
By symmetry, all of the six triangles with two vertices on
the inner hexagon and one on the outer hexagon (eg.
triangle UVA) are congruent equilateral triangles.
We also join the opposite vertices of the inner hexagon, ie.
we join U to X, V to Y, and W to Z.  (These 3 line segments
all meet at a single point, say O.)  This divides the inner
hexagon into 6 small equilateral triangles identical to the
six earlier mentioned equilateral triangles.

A B

C

DE

F

a

U

V
a

a

X
a

Y

Z

a a

a a

O
a a

a

W

a

Let the area of one of these triangles be a.  Then we can label the 12 small equilateral
triangles as all having area a.
But triangle AUF also has area a, because if we consider
triangle AFV, then AU is a median (since
FU AU UV= =  by symmetry) and so divides triangle
AFV into two triangles of equal area.  Since the area of
triangle AUV is a, then the area of triangle AUF is also a.

A

F V

a

Y

Therefore, hexagon ABCDEF is divided into 18 equal areas.  Thus, a = 2 since the area
of the large hexagon is 36.
Since the area of UVWXYZ is 6a, then its area is 12.

Answer: 12

(b) We assign coordinates to the diagram, with the
mouth of the cannon at the point 0 0,( ) , with the

positive x-axis in the horizontal direction towards
the safety net from the cannon, and the positive y-
axis upwards from 0 0,( ) .

Since Herc reaches his maximum height when his
horizontal distance is 30 m, then the axis of
symmetry of the parabola is the line x = 30 .
Since the parabola has a root at x = 0, then the
other root must be at x = 60 .
Therefore, the parabola has the form
y ax x= −( )60 .

In order to determine the value of a, we note that
Herc passes through the point 30 100,( ), and so

B

x = 30

(30, 100)

(0, 0) (60, 0)
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100 30 30
1
9

= −( )
= −

a

a

Thus, the equation of the parabola is y x x= − −( )1
9 60 .

(Alternatively, we could say that since the parabola has its maximum point at 30 100,( ) ,

then it must be of the form y a x= −( ) +30 1002 .
Since the parabola passes through 0 0,( ) , then we have

0 0 30 100

0 900 100

2

1
9

= −( ) +
= +

= −

a

a

a

Thus, the parabola has the equation y x= − −( ) +1
9

230 100.)

We would like to find the points on the parabola which have y-coordinate 64, so we solve
64 60

0 60 576

0 12 48

1
9

2

= − −( )
= − +
= −( ) −( )

x x

x x

x x

Since we want a point after Herc has passed his highest point, then x = 48, ie. the
horizontal distance from the cannon to the safety net is 48 m.

8. (a) Since both the circle with its centre on the y-axis and the graph of y x=  are symmetric

about the y-axis, then for each point of intersection between these two graphs, there
should be a corresponding point of intersection symmetrically located across the y-axis.
Thus, since there are exactly three points of intersection, then one of these points must be
on the y-axis, ie. has x-coordinate 0.  Since this point is on the graph of y x= , then this
point must be 0 0,( ) .
Since the circle has centre on the y-axis (say, has coordinates 0,b( )), then its radius is

equal to b (and b must be positive for there to be three points of intersection).

So the circle has equation x y b b2 2 2+ −( ) = .  Where are the other two points of

intersection?  We consider the points with x positive and use symmetry to get the other
point of intersection.



2003 Euclid Solutions 11

When x ≥ 0 , then y x=  has equation y x= .  Substituting into the equation of the circle,

x x b b

x bx

x x b

2 2 2

22 2 0

2 0

+ −( ) =

− =
−( ) =

Therefore, the points of intersection are 0 0,( )  and
b b,( )  on the positive side of the y-axis, and so at

the point −( )b b,  on the negative side of the y-

axis.
Thus the points O, A and B are the points 0 0,( ) ,
b b,( )  and −( )b b, .

 y

 x
O

(0, b)
A(b, b)B(–b, b)

Since the radius of the circle is b, then the area of the circle is πb2 .
Triangle OAB has a base from −( )b b,  to b b,( )  of length 2b, and a height from the line

y b=  to the point 0 0,( )  of length b, and so an area of 1
2

22b b b( ) = .

Therefore, the ratio of the area of the triangle to the area of the circle is b b2 2 1 :  :  π π= .

(b) Solution 1
Since M is the midpoint of a diameter of the circle, M is
the centre of the circle.
Join P to M.  Since QP is tangent to the circle, PM is
perpendicular to QP.
Since PM and BM are both radii of the circle, then
PM MB= . A

C

BQ

P
M

θ
θ

90° –
 θ

90° – θ

90° –
 θ

Therefore, ∆QPM  and ∆QBM  are congruent (Hypotenuse - Side).

Thus, let ∠ = ∠ =MQB MQP θ .  So ∠ = ∠ = −QMB QMP 90o θ
Then ∠ = − ∠ − ∠ = − −( ) − −( ) =PMC PMQ BMQ180 180 90 90 2o o o oθ θ θ .

But ∆PMC  is isosceles with PM MC=  since PM and MC are both radii.

Therefore, ∠ = − ∠( ) = −CPM PMC1
2 180 90o o θ .

But then ∠ = ∠CPM PMQ, and since PM is a transversal between AC and QM, then QM
is parallel to AC because of equal alternating angles.
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Solution 2
Join M to P and B to P.
Since QP and QB are tangents to the circle coming
from the same point, they have the same length.
Since QM joins the point of intersection of the
tangents to the centre of the circle, then by symmetry,
∠ = ∠PQM BQM  and ∠ = ∠PMQ BMQ.  So let
∠ = ∠ =PQM BQM x  and ∠ = ∠ =PMQ BMQ y .

A

C

BQ

P
M

x
x

y
y

y

Looking at ∆QMB, we see that x y+ = 90o, since ∆QMB is right-angled.

Now if we consider the chord PB, we see that its central angle is 2y, so any angle that it
subtends on the circle (eg. ∠PCB) is equal to y.
Thus, ∠ = ∠ACB QMB , so QM is parallel to AC.

Solution 3
Join PB.
Since QP is tangent to the circle, then by the
Tangent-Chord Theorem, ∠ = ∠ =QPB PCB x  (ie.

the inscribed angle of a chord is equal to the angle
between the tangent and chord.
Since BC is a diameter of the circle, then

∠ =CPB 90o and so ∠ =APB 90o, whence

∠ = − ∠ = −APQ QPB x90 90o o .

A

C

BQ

P
Mx

90° – x

x

90° – x

Looking at ∆ABC , we see that ∠ = −PAQ x90o , so ∠ = ∠PAQ APQ, and so AQ QP= .

But QP and QB are both tangents to the circle (QB is tangent since it is perpendicular to a
radius), so QP QB= .
But then AQ QB=  and BM MC= , so Q is the midpoint of AB and M is the midpoint of
BC.  Thus we can conclude that QM is parallel to AC.
(To justify this last statement, we can show very easily that ∆QBM  is similar to ∆ABC ,
and so show that ∠ = ∠CAB MQB .)

9. Solution 1
Consider ∆BAD.  Since we know the lengths of sides BA
and AD and the cosine of the angle between them, we
can calculate the length of BD using the cosine law:

BD BA AD BA AD BAD= + − ( )( ) ∠

= − −( )
=

2 2

1
3

8
3

2

2 2

cos

A
D

B C

x

1

1

3x

8
3

Next, let x ABC= ∠cos .  Note that DC x= .



2003 Euclid Solutions 13

Since ABCD is a cyclic quadrilateral, then ∠ = − ∠ADC ABC180o , and so
cos cos∠ = − ∠ = −ADC ABC x .
Similarly, cos cos∠ = − ∠ =BCD BAD 1

3  (since ABCD is a cyclic quadrilateral).

So we can now use the cosine law simultaneously in ∆ADC  and ∆ABC  (since side AC is
common) in order to try to solve for BC:

1 2 1 1 2 1

1 2 1 1 2 1

0 2 3

0 3

2 2 2 2

2 2 2 2

2 2

+ − ( )( ) ∠ = + − ( )( ) ∠

+ − ( )( ) −( ) = + − ( )( )( )
= − ( ) −
= −( ) +( )

x x ADC BC BC ABC

x x x BC BC x

BC BC x x

BC x BC x

cos cos

Since x is already a side length, then x must be positive (ie. ∠ABC  is acute), so BC x= 3 .

Since cos∠ =BCD 1
3  and sides DC and BC are in the ratio 1 : 3, then ∆BCD must indeed be

right-angled at D.  (We could prove this by using the cosine law to calculate BD x2 28=  and

then noticing that DC BD BC2 2 2+ = .)
Since ∆BCD is right-angled at D, then BC is a diameter of the circle.

Solution 2
Let x ABC CD= ∠ =cos , and let BC y= .

Since the opposite angles in a cyclic quadrilateral are
supplementary, their cosines are negatives of each other.
Thus, cos∠ = −ADC x  and cos∠ =BCD 1

3 .

Next, we use the cosine law four times: twice to calculate

AC2 in the two triangles ABC and ADC, and then twice

to calculate BD2  in the triangles ADB and CDB to
obtain:

A
D

B C

x

1

1

y

1 2 1 1 2 1

1 2 1 2

0 2 3

0 3

2 2 2 2

2 2

2 2

+ − ( )( ) ∠ = + − ( )( ) ∠

+ − −( ) = + − ( )
= − −
= −( ) +( )

x x ADC y y ABC

x x x y y x

y xy x

y x y x

cos cos

and
1 1 2 1 1 2

2 2 2

2 2 2 2

1
3

2 2 1
3

8
3

2 2 2
3

+ − ( )( ) ∠ = + − ∠

− −( ) = + − ( )
= + −

cos cosBAD x y xy BCD

x y xy

x y xy

From the first equation, since x is already a side length and so is positive, we must have that
y x= 3 .

Substituting into the second equation, we obtain
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8
3

2 2 2
3

8
3

2

1
3

3 3

8

= + ( ) − ( )
=

=

x x x x

x

x

since x must be positive.  Thus, since y x= 3 , then y = 3 .

Looking then at ∆BDC , we have side lengths BC = 3 , CD = 1
3

 and BD = 8
3 .  (The last

is from the left side of the second cosine law equation.)  Thus, BC CD BD2 2 2= + , and so
∆BDC  is right-angled at D, whence BC is a diameter of the circle.

10. (a) To show that 8 is a savage integer, we must partition the set 1 2 3 4 5 6 7 8, , , , , , ,{ } according

to the given criteria.
Since the sum of the integers from 1 to 8 is 36, then the sum of the elements in each of
the sets A, B, and C must be 12.
C must contain both 3 and 6.
A can contain only the numbers 1, 5, 7, and may not contain all of these.
B can contain only the numbers 2, 4, 8, and may not contain all of these.
So if we let C = { }1 2 3 6, , , , A = { }5 7,  and B = { }4 8, , then these sets have the desired

properties.
Therefore, 8 is a savage integer.

(b) We use the strategy of putting all of the multiples of 3 between 1 and n in the set C, all of
the remaining even numbers in the set B, and all of the remaining numbers in the set A.
The sums of these sets will not likely all be equal, but we then try to adjust the sums to by
moving elements out of A and B into C, as we did in part (a), to try to make these sums
equal.  (Notice that we can’t move elements either into A or B, or out of C.)  We will use
the notation C  to denote the sum of the elements of C.

Since we are considering the case of n even and we want to examine multiples of 3 less
than or equal to n, it makes sense to consider n as having one of the three forms 6k ,
6 2k +  or 6 4k + .  (These forms allow us to quickly tell what the greatest multiple of 3
less than n is.)

Case 1: n k= 6
In this case, C contains at least the integers 3, 6, 9, …, 6k, and so the sum of C is
greater than one-third of the sum of the integers from 1 to n, since if we divide the
integers from 1 to n k= 6  into groups of 3 consecutive integers starting with 1, 2,
3, then the set C will always contain the largest of the 3.
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Case 2: n k= +6 4
Here, the sum of the integers from 1 to n k= +6 4 is
1
2

2 26 4 6 5 18 27 10 3 6 9 3 1k k k k k k+( ) +( ) = + + = + +( ) + , which is never

divisible by 3.  Therefore, n cannot be savage in this case because the integers
from 1 to n cannot be partitioned into 3 sets with equal sums.

Case 3: n k= +6 2
Here, the sum of the integers from 1 to n k= +6 2 is
1
2

26 2 6 3 18 15 3k k k k+( ) +( ) = + + , so the sum of the elements of each of the sets

A, B and C should be 6 5 12k k+ + , so that the sums are equal.
In this case C, contains at least the integers 3, 6, 9, …, 6k, and so

C k k k k k k≥ + + + = + + + +( ) = ( ) +( )( ) = +3 6 9 6 3 1 2 3 2 3 2 2 1 6 31
2

2L L

The set A contains at most the integers 1, 3, 5, 7, …, 6 1k + , but does not contain
the odd multiples of 3 less than n, ie. the integers 3, 9, 15, …, 6 3k − .  Therefore,
A k k

k k k k

k k k k

k k

≤ + + + + +( ) − + + + −( )
= +( ) + +[ ] − ( ) + −[ ]
= +( ) +( ) − ( )
= + +

1 3 5 6 1 3 9 6 3

3 1 1 6 1 3 6 3

3 1 3 1 3

6 6 1

1
2

1
2

2

L L

(To compute the sum of each of these arithmetic sequences, we use the fact that
the sum of an arithmetic sequence is equal to half of the number of terms times
the sum of the first and last terms.)

The set B contains at most the integers 2, 4, 6, 8, …, 6 2k + , but does not contain
the even multiples of 3 less than n, ie. the integers 6, 12, …, 6k .  Therefore,
B k k

k k k k

k k k k

k k

≤ + + + + +( ) − + + +( )
= +( ) + +[ ] − ( ) +[ ]
= +( ) +( ) − +( )
= + +

2 4 6 6 2 6 12 6

3 1 2 6 2 6 6

3 1 3 2 3 3

6 6 2

1
2

1
2

2

L L

Thus, the set C is 2 1k +  short of the desired sum, while the set A has a sum that is
k too big and the set B has a sum that is k +1 too big.

So in order to correct this, we would like to move elements from A adding to k,
and elements from B which add to k +1 all to set C.
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Since we are assuming that n is savage, then this is possible, which means that
k +1 must be even since every element in B is even, so the sum of any number of
elements of B is even.
Therefore, k is odd, and so k l= +2 1 for some integer l, and so

n l l= +( ) + = +6 2 1 2 12 8, ie. 
n + 4
12

 is an integer.

Having examined all cases, we see that if n is an even savage integer, then 
n + 4
12

 is an

integer.

(c) From (b), the only possible even savage integers less than 100 are those satisfying the

condition that 
n + 4
12

 is an integer, ie. 8, 20, 32, 44, 56, 68, 80, 92.  We already know that

8 is savage, so we examine the remaining 7 possibilities.
We make a table of the possibilities, using the notation from (b):

n k Sum of elements
to remove from A

Sum of elements
to remove from B

Possible?

20 3 3 4 No – cannot remove a sum of 3 from
A.

32 5 5 6 Yes – remove 5 from A, 2 and 4
from B

44 7 7 8 Yes – remove 7 from A, 8 from B
56 9 9 10 No – cannot remove a sum of 9 from

A.
68 11 11 12 Yes – remove 11 from A, 4 and 8

from B
80 13 13 14 Yes – remove 13 from A, 14 from B
92 15 15 16 No – cannot remove a sum of 15

from A (since could only use 1, 5, 7,
11, 13)

Therefore, the only even savage integers less than 100 are 8, 32, 44, 68 and 80.
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1. (a) Solution 1 (Midpoint Formula)
Since M is the midpoint of the line segment joining R and S, then looking at the
x-coordinate of M,

7
1

2
14 1

13

=
+

= +
=

a

a

a

Solution 2 (Slopes)
Since the slope of RM is equal to the slope of MS, then

3
6

3
7

7 6

13

=
−

− =
=

a
a

a

Solution 3 (Distances)

Since RM MS=  or RM MS2 2= , then

36 3 7

0 14 13

0 13 1

2 2

2

= + −( )
= − +
= −( ) −( )

a

a a

a a
Therefore, a = 13 or a = 1, but we reject a = 1, since 110,( ) does not lie on the line.

Thus, a = 13.
Answer: a = 13

(b) The base of ∆PQR  has length 8, and the height has length k − 2 (since k > 0).
Since the area of ∆PQR  is 24, then

1
2 8 2 24

4 8 24

4 32

8

( ) −( ) =
− =

=
=

k

k

k

k
Answer: k = 8

(c) We first determine the point of intersection of lines y x= +2 3 and y x= +8 15 , and then
substitute this point into the line y x b= +5 , since it lies on all three lines.

So we set the first two equations equal to each other:
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2 3 8 15

12 6

2

x x

x

x

+ = +
− =

= −
Substituting x = −2  into the first equation, we obtain y = −( ) + = −2 2 3 1, so the point of
intersection is − −( )2 1, , which must lie on the third line.

Thus,
− = −( ) +

=
1 5 2

9

b

b
Therefore, the value of b is 9.

2. (a) Solution 1

Since x = 4  is a root, then 4 3 4 02 − ( ) + =c  or c = −4.

Therefore, the quadratic equation is x x2 3 4 0− − = , which we can factor as
x x−( ) +( ) =4 1 0.  (This factorization is made easier since we already know one of the

roots.)  Therefore, the second root is x = −1.

Solution 2

The sum of the roots of x x c2 3 0− + =  is −( ) =−3
1 3, so since one root is 4, the second

root must be x = −1.
Answer: x = −1

(b) Solution 1
Since the two expressions are the same, then they must have the same value when we
substitute any value for x.  In particular, substitute x = 2, and so we get

2 2 1

2 3
2

2 3
9 2

7

2

2 2

( ) +

−
= +

−
= +
=

A

A

A

Solution 2
We compare the two expressions

2 1

3
2

3

2 3

3 3

2 6

3

2

2 2

2

2 2

2

2

x

x

A

x

x

x

A

x

x A

x

+
−

= +
−

=
−( )

−
+

−

=
− +

−
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Since the expressions are the same, the numerators must be the same, and so − + =6 1A
or A = 7.

Solution 3
2 1

3

2 6 7

3

2 3 7

3

2
7

3

2

2

2

2

2

2

2

x

x

x

x

x

x

x

+
−

=
− +

−

=
−( ) +

−

= +
−

Therefore, A = 7.
Answer: A = 7

(c) Solution 1
The original parabola can be written as

y x x= −( ) −( )3 1

which means its roots are x = 3 and x = 1.
When this parabola is shifted 5 units to the right, the parabola obtained must thus have
roots x = + =3 5 8 and x = + =1 5 6 .
Therefore, the new parabola is

y x x

x x

= −( ) −( )
= − +

8 6

14 482

and so d = 48.

Solution 2

The original parabola y x x= − +2 4 3 can be written as y x= −( ) −2 12 , and so its vertex
has coordinates 2 1,−( ) .  To get the vertex of the new parabola, we shift the vertex of the
original parabola 5 units to the right to the point 7 1,−( ).  Substituting this point into the

new parabola, we obtain

− = − ( ) +
− = − +

=

1 7 14 7

1 49 98

48

2 d

d

d
[An easier version of this solution is to recognize that if the original parabola passes
through 1 0,( ), then 6 0,( ) must be on the translated parabola.  Thus, 0 36 14 6= − ( ) + d  or

d = 48, as above.]
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Solution 3
To carry out a translation of 5 units to the right, we can define new coordinates X and Y,
with x y X Y, ,( ) = −( )5 .  So in these new coordinates the parabola will have equation

Y X X

X X X

X X

= −( ) − −( ) +

= − + − + +

= − +

5 4 5 3

10 25 4 20 3

14 48

2

2

2

Comparing this with the given equation, we see that d = 48.

3. (a) We make a table of the possible selections of balls a, b, c that give a b c= + :

a b c

2 1 1
3 1 2
3 2 1
4 1 3
4 2 2
4 3 1

Therefore, since there are 6 ways to get the required sum, then the probability that he
wins the prize is 6

64
3

32= .

Answer: 3
32

(b) Since the product of the three integers is 216, then

a ar ar

a r

ar

ar

( )( ) =

=

( ) =
=

2

3 3

3 3

216

216

6

6
Now we are given that a is a positive integer, but r is not necessarily an integer.
However, we do know that the sequence is increasing, so r > 1, and thus a < 6.
We check the possibilities for a between 1 and 5, and determine whether these

possibilities for a yield a value for a that makes the third term ( ar2) an integer (we
already know that ar = 6, so is an integer):

a r ar ar2

1 6 6 36
2 3 6 18
3 2 6 12
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4 3
2 6 9

5 6
5 6 36

5

So the four sequences that satisfy the required conditions are:
1, 6, 36;
2, 6, 18;
3, 6, 12;
4, 6, 9.

4. (a) Solution 1
Since MT is the perpendicular bisector of BC, then
BM MC= , and TM is perpendicular to BC.
Therefore, ∆CMT  is similar to ∆CBA , since they share a
common angle and each have a right angle.

A

B CM

T

But
CM

CB
=

1
2

 so 
CT

CA

CM

CB
= =

1
2

, and thus CT AT AB= = , ie. 
AB

AC
=

1
2

 or sin ∠( ) =ACB
1
2

.

Therefore, ∠ =ACB 30o .

Solution 2
Since TM AB, and CM MB= , then CT TA AB= = .

Join T to B.
Since ∠ =ABC 90o, then AC is the diameter of a circle
passing through A, C and B, with T as its centre.

A

B CM

T

Thus, TA AB BT= =  (all radii), and so ∆ABT  is equilateral.  Therefore, ∠ =BAC 60o, and

so ∠ =ACB 30o .

Solution 3

Join T to B, and let ∠ =BAC x .  Thus, ∠ = −ACB x90o

As in Solution 1 or Solution 2, ∆ATB  is isosceles, so
∠ = −ABT x90 1

2
o .

Since ∆TBM  is congruent to ∆TCM  (common side;

right angle; equal side), then ∠ = ∠ = −TBC ACB x90o

A

B CM

Tx

90° – x90° – x

1

2
x90° –

Looking at ∠ABC , we see that

90 90 90

90

60

1
2

3
2

°( ) + °( ) = °

° =
= °

– –x x

x

x
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Therefore, ∠ =ACB 30o .

Answer: ∠ =ACB 30o

(b) (i)  y

 x
0

2

4

– 4 – 2 2 4

– 2

– 4

1

f x( ) =
1

2x

f
–1

x( ) =
1

2 x

(ii) Solution 1

From the graph in (i), the points where f x
f x

− ( ) = ( )
1 1

 are 1 1
2,( )  and − −( )1 1

2, .

Solution 2

We determine the functions f x− ( )1  and 
1

f x( )  explicitly.

To get f x− ( )1 , we start with y x= 2 , interchange x and y to get x y= 2 , and solve

for y to get y x= 1
2  or f x x− ( ) =1 1

2 .

Also,
1 1

2f x x( ) = .

Setting these functions equal,
1
2

1
2

1

1

2

x
x

x

x

=

=
= ±

Substituting into f x− ( )1 , we obtain the points 1 1
2,( )  and − −( )1 1

2, .

(iii) Using f x x( ) = 2 , we see that f 1
2 1( ) = , and so
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f
f

f

f

− −

−

( )








 = 





= ( )
= ( )
=

1
1
2

1

1

1
2

1
2

1 1
1

1

1

where f − ( )1 1  is determined either from the explicit form of f x− ( )1  or from the

graph.

5. (a) Combining the logarithms,
log log

log

log

5 5

5

5
2

2

2

3 1 1

3 1 1

2 3 1

2 3 5

2 8 0

4 2 0

x x

x x

x x

x x

x x

x x

+( ) + −( ) =

+( ) −( )( ) =

+ −( ) =

+ − =

+ − =
+( ) −( ) =

Therefore, x = −4  or x = 2.  Substituting the two values for x back into the original
equation, we see that x = 2 works, but that x = −4  does not, since we cannot take the
logarithm of a negative number.

Answer: x = 2

(b) (i) From the table we have two pieces of information, so we substitute both of
these into the given formula.

2 75 3 00

3 75 6 00

. .

. .

= ( )
= ( )

a

a

b

b

We can now proceed in either of two ways to solve for b.

Method 1 to find b
Dividing the second equation by the first, we obtain

3 75
2 75

6 00

3 00

6 00

3 00

6 00
3 00

2
.
.

.

.

.

.

.

.
= ( )

( )
= ( )

( )
= 



 =

a

a

b

b

b

b

b
b

or

2 1 363636b ≈ .
Taking logarithms of both sides,



2002 Euclid Solutions 9

log log .

log log .

log .
log

.

2 1 363636

2 1 363636

1 363636
2

0 4475

b

b

b

b

( ) ≈ ( )
( ) ≈ ( )

≈
( )

( )
≈

Method 2 to find b
Taking logarithms of both sides of the above equations, we obtain

log . log .

log log .

log log .

2 75 3 00

3 00

3 00

( ) = ( )( )
= ( ) + ( )( )
= ( ) + ( )

a

a

a b

b

b

Similarly,
log . log log .3 75 6 00( ) = ( ) + ( )a b

Subtracting the first equation from the second, we obtain
log . log . log . log .

log . log .
log . log .

.

3 75 2 75 6 00 3 00

3 75 2 75
6 00 3 00

0 4475

( ) − ( ) = ( ) − ( )( )
=

( ) − ( )
( ) − ( )

≈

b

b

b

We now continue in the same way for both methods.
Substituting this value for b back into the first equation above,

2 75 3 00

2 75

3 00

1 6820

0 4475

0 4475

. .

.

.

.

.

.

≈ ( )

≈
( )

≈

a

a

a
Therefore, to two decimal places, a = 1 68.  and b = 0 45. .

(ii) To determine the time to cook a goose of mass 8.00 kg, we substitute m = 8 00.
into the given formula:

t amb=

≈ ( )
≈

1 68 8 00

4 2825

0 45. .

.

.

Thus, it will take about 4.28 h until his goose is cooked.
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6. (a) Solution 1
Extend XA and ZF to meet at point T.

By symmetry, ∠ = ∠ =AXZ FZX 60o  and

∠ = ∠ =TAF TFA 60o , and so ∆TAF  and ∆TXZ  are both
equilateral triangles.
Since AF = 10 , then TA = 10 , which means
TX = + =10 5 15, and so XZ TX= = 15.

A B

C

DE

F

X

YZ

10

5T
60° 60°

60°

60°

60°5

Solution 2
We look at the quadrilateral AXZF.
Since ABCDEF is a regular hexagon, then

∠ = ∠ =FAX AFZ 120o.
Note that AF = 10 , and also AX FZ= = 5 since X
and Z are midpoints of their respective sides.

A

P XQZ

10

5

F

60°

5

60°

By symmetry, ∠ = ∠ =AXZ FZX 60o , and so AXZF is a trapezoid.
Drop perpendiculars from A and F to P and Q, respectively, on XZ.

By symmetry again, PX QZ= .  Now, PX AX= = ( ) =cos60 5 1
2

5
2

o .

Since APQF is a rectangle, then PQ = 10 .

Therefore, XZ XP PQ QZ= + + = + + =5
2

5
210 15.

Answer: XZ = 15

(b) We first determine the three points through which the circle passes.
The first point is the origin 0 0,( ).

The second and third points are found by determining the points of intersection of the two

parabolas y x= −2 3 and y x x= − − +2 2 9.  We do this by setting the y values equal.

x x x

x x

x x

x x

2 2

2

2

3 2 9

2 2 12 0

6 0

3 2 0

− = − − +

+ − =

+ − =
+( ) −( ) =

so x = −3 or x = 2.
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We determine the points of intersection by substituting
into the first parabola.

If x = 2, y = − =2 3 12 , so the point of intersection is
2 1,( ).

If x = −3, y = −( ) − =3 3 62 , so the point of intersection is
−( )3 6, .

Therefore, the circle passes through the three points
A 0 0,( ), B 2 1,( ) and C −( )3 6, .
Let the centre of the circle be the point Q a b,( ).

 y

x

C(– 3, 6)

B(2, 1)
A(0, 0)

Finding the centre of the circle can be done in a variety of ways.

Method 1 ∠ =( )CAB 90o

We notice that the line segment joining A 0 0,( ) to B 2 1,( )
has slope 1

2 , and the line segment joining A 0 0,( ) to

C −( )3 6,  has slope −2 , and so the two lines are

perpendicular (since 1
2 2 1−( ) = − ).  Therefore,

∠ =BAC 90o.
Since BC is a chord of the circle which subtends an angle

of 90o  at point A on the circle, then BC is a diameter of
the circle.  Therefore, the centre of the circle is the

midpoint of BC, which is the point −( )1
2

7
2, .

 y

x

C(– 3, 6)

B(2, 1)
A(0, 0)

Q

Method 2 (Equal radii)
We use the fact Q is of equal distance from each of the

points A, B and C.  In particular QA QB QC2 2 2= =  or

x y x y x y2 2 2 2 2 22 1 3 6+ = −( ) + −( ) = +( ) + −( )
From the first equality,

x y x y

x y

2 2 2 22 1

4 2 5

+ = −( ) + −( )
+ =

 y

x

C(– 3, 6)

B(2, 1)
A(0, 0)

Q
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From the second equality,

x y x y

x y

y x

−( ) + −( ) = +( ) + −( )
− + =

= +

2 1 3 6

10 10 40

4

2 2 2 2

Substituting the equation above into into 4 2 5x y+ = , we obtain 4 2 4 5x x+ +( ) =  or

6 3x = −  or x = − 1
2 .  Thus, y = − + =1

2
7
24 , and so the centre of the circle is −( )1

2
7
2, .

Method 3 (Perpendicular bisectors)
We determine the equations for the perpendicular
bisectors of AB and AC.  The centre is the point of
intersection of these two lines.
Since AB has slope 1

2 , then the slope of its perpendicular

bisector is −2 .  Since the midpoint of AB is 1 1
2,( ) , then

the perpendicular bisector is y x− = − −( )1
2 2 1  or

y x= − +2 5
2 .

Since AC has slope −2 , then the slope of its perpendicular

 y

x

C(– 3, 6)

B(2, 1)

Q

A(0, 0)

bisector is 1
2 .  Since the midpoint of AB is −( )3

2 3, , then the perpendicular bisector is

y x− = +( )3 1
2

3
2  or y x= +1

2
15
4 .

To find the point of intersection of these two lines, we set them equal:
− + = +

− =

= −

2 5
2

1
2

15
4

5
4

5
2

1
2

x x

x

x

From this, y = − −( ) + =2 1
2

5
2

7
2 , and so the centre of the circle is −( )1

2
7
2, .

7. (a) Solution 1
Using a known formula for the area of a triangle, A ab C= 1

2 sin ,

18 2 1 2 30

36 2 1 2

0 2 36

0 2 9 4

1
2

1
2

2

= +( )( )
= +( )( )( )
= + −
= +( ) −( )

x x

x x

x x

x x

sin o

and so x = 4  or x = − 9
2 .  Since x is positive, then x = 4 .
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Solution 2
Draw a perpendicular from A to P on BC.

Using ∆APC , AP AC x x= = ( ) =sin 30 2 1
2

o .

Now AP is the height of ∆ABC , so Area = ( )( )1
2 BC AP .

Then
18 2 1

0 2 36

0 2 9 4

1
2

2

= +( )( )
= + −
= +( ) −( )

x x

x x

x x

and so x = 4  or x = − 9
2 .

Since x is positive, then x = 4 .

30°

A

C B

2x

2x + 1

x

P

Answer: x = 4

(b) Let the length of the ladder be L.

Then AC L= cos 70o  and BC L= sin 70o .  Also,

′ =A C L cos55o  and ′ =B C L sin55o .
Since ′ =A A 0 5. , then
0 5 55 70

0 5

55 70

. cos cos

.

cos cos

= −

=
−

L L

L

o o

o o             (*)

Therefore,
BB BC B C

L L

L

′ = − ′

= −

= −( )
=

( ) −( )
−( )

≈

sin sin

sin sin

. sin sin

cos cos

.

70 55

70 55

0 5 70 55

55 70

0 2603

o o

o o

o o

o o
     (from (*))

 m

B

55° 70°
A C′A

′B

0.5 m
L cos 70°

L cos 55°

L sin 55°
L sin 70°

L

L

Therefore, to the nearest centimetre, the distance that the ladder slides down the wall is
26 cm.

8. (a) Solution 1
In total, there are 1

2 5 20 50× × =  games played, since each of 5 teams plays 20 games

(we divide by 2 since each game is double-counted).
In each game, there is either a loss or a tie.
The number of games with a loss is 44 + y from the second column, and the number of

games with a tie is 1
2 11+( )z  (since any game ending in a tie has 2 ties).
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So
50 44 11

100 88 2 11

1 2

1
2= + + +( )

= + + +
= +

y z

y z

y z
Since y and z are non-negative integers, z = 1 and y = 0.  So x = 19 since Team E plays

20 games.

Solution 2
In any game played, the final result is either both teams earning a tie, or one team
earning a win, and the other getting a loss.  Therefore, the total number of wins among all
teams equals the total number of losses, ie.

25 44

19

+ = +
− =

x y

x y                (1)
Also, since team E plays 20 games, then

x y z+ + = 20           (2)

So from (1), x must be at least 19, and from (2), x can be at most 20.
Lastly, we know that the total of all of the teams numbers of ties must be even, ie. 11+ z
is even, ie. z is odd.
Since x is at least 19, then z can be at most 1 by (2).
Therefore, z = 1.  Thus, x = 19 and y = 0.

Solution 3
In any game played, the final result is either both teams earning a tie, or one team
earning a win, and the other getting a loss.  Therefore, the total number of wins among all
teams equals the total number of losses, ie.

25 44

19

+ = +
− =

x y

x y                (1)
Also, since team E plays 20 games, then

x y z+ + = 20           (2)

So from (1), x must be at least 19, and from (2), x can be at most 20.
Consider the possibility that x = 20.  From (2), then y z= = 0, which does not agree with

(1).
Thus, the only possibility is x = 19.  From (1), y = 0, and so z = 1 from (2).  (These three

values agree with both equations (1) and (2).)



2002 Euclid Solutions 15

(b) Solution 1
Assume such a sequence a, b, c, d exists.  (We proceed by contradiction.)
Since the sum of any two consecutive terms is positive, a b+ > 0, b c+ > 0, and
c d+ > 0.  Adding these three inequalities, a b b c c d+( ) + +( ) + +( ) > 0 or

a b c d+ + + >2 2 0.
We are going to show that this statement contradicts the facts that are known about the
sequence.  We are told that the sum of any three consecutive terms is negative, ie.
a b c+ + < 0 and b c d+ + < 0.  Adding these two inequalities, a b c b c d+ +( ) + + +( ) < 0

or a b c d+ + + <2 2 0.
This is a contradiction, since the two conditions a b c d+ + + >2 2 0 and
a b c d+ + + <2 2 0 cannot occur simultaneously.
Therefore, our original assumption is false, and so no such sequence exists.

Solution 2
Assume such a sequence a, b, c, d exists. (We proceed by contradiction.)
We consider two cases.

Case 1: a ≤ 0
In this case, b > 0  since a b+ > 0.
Then, since a b c+ + < 0, we must have that c < 0.
But c d+ > 0, so d > 0.
This means that we have b > 0  and c d+ > 0, ie. b c d+ + > 0.
But from the conditions on the sequence, b c d+ + < 0, a contradiction.
Therefore, no such sequence exists with a ≤ 0.

Case 2: a > 0
In this case, it is not immediately clear whether b has to be positive or negative.
However, we do know that a b+ > 0 and a b c+ + < 0, so it must be true that
c < 0.
Then since b c+ > 0 and c d+ > 0, we must have both b > 0 and d > 0.  But then
b c d b c d+ + = + +( ) > 0 since c d+ > 0 and b > 0 .

This is again a contradiction.
Therefore, no such sequence exists with a > 0.
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9. (a) Let ∠ =BAC θ .  Then by
parallel lines,
∠ = ∠ =DJH BDE θ .

Thus, ∠ = −BED 90o θ  and so
∠ =NEM θ  since

∠ =DEF 90o .
Since DG u=  and HG v= ,
then DH u v= − .
Similarly, EN u w= − .

 A

D

J

B

C

M

E

K LG F

N

H

θ

θ

θ
wv

w

u – w θ

θ90 –

u – v

v

Looking at ∆DHJ  and ∆MNE , we see that tanθ =
−u v

v
 and tanθ =

−
w

u w
.

Therefore,
u v

v

w

u w
u v u w vw

u uv uw vw vw

u u v w

−
=

−
−( ) −( ) =

− − + =
− −( ) =

2

0

and since u ≠ 0, we must have u v w− − = 0 or u v w= + .
[Note: If u = 0, then the height of rectangle DEFG is 0, ie. D coincides with point A and
E coincides with point C, which says that we must also have v w= = 0 , ie. the squares
have no place to go!]

(b) Consider the cross-section of the sphere in the plane defined by the triangle.  This cross-
section will be a circle, since any cross-section of a sphere is a circle.  This circle will be
tangent to the three sides of the triangle, ie. will be the inscribed circle (or incircle) of the
triangle.  Let the centre of this circle be O, and its radius be r.  We calculate the value of r.

Join O to the three points of tangency, P, Q, R, and to
the three vertices A, B, C.  Then OP, OQ and OR
(radii) will form right angles with the three sides of
the triangle.  Consider the three triangles ∆AOB ,
∆BOC  and ∆COA.  Each of these triangles has a
height of r and they have bases 15, 9 and 12,
respectively.  Since the area of ∆ABC  is equal to the
sum of the areas of ∆AOB , ∆BOC , and ∆COA,

 B

R

A Q C

P

r

r

rO

So comparing areas,
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1
2

1
2

1
2

1
2

1
2

9 12 9 12 15

54 9 12 15

3

( )( ) = ( )( ) + ( )( ) + ( )( )
= + +( )
=

r r r

r

r

Now join the centre of the cross-sectional circle to the centre
of the sphere and let this distance be h.  Now, the line joining
the centre of the circle to the centre of the sphere will be
perpendicular to the plane of the triangle, so we can form a
right-angled triangle by joining the centre of the sphere to any
point on the circumference of the cross-sectional circle.  By
Pythagoras,

h r

h

2 2 25

4

+ =
=

5 h
r

This tells us that the top of the sphere is 9 units above the plane of the triangle, since the
top of the sphere is 5 units above the centre of the sphere.

10. (a) Consider a Pythagorean triangle with integer side lengths

a, b, c satisfying  a b c2 2 2+ = .  To show that this triangle
is Heronian, we must show that it has an integer area.
Now we know that the area is equal to 1

2 ab , so we must

show that either a or b is an even integer.
a

b
c

Suppose that both a and b are odd.  (We proceed by contradiction.)

In this case, let a k= +2 1 and b l= +2 1.  Then both a2  and b2  are odd, and so c2 is

even since a b c2 2 2+ = .  Therefore, c itself must be even, so let c m= 2 .
Therefore,

2 1 2 1 2

4 4 1 4 4 1 4

4 2 4

2 2 2

2 2 2

2 2 2

k l m

k k l l m

k k l l m

+( ) + +( ) = ( )
+ + + + + =

+ + +( ) + = ( )
But the right side is a multiple of 4, and the left side is not a multiple of 4.  This is a
contradiction.
Therefore, one of a or b must be even, and so the area of the triangle is an integer.
Thus, any Pythagorean triangle is Heronian.

(b) We examine the first few smallest Pythagorean triples:

3 4 5 3 4 52 = +( )
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5 12 13 5 12 132 = +( )
6 8 10 (Does not fit pattern)

7 24 25 7 24 252 = +( )
It appears from the first few examples that perhaps we can form a Pythagorean triple by
using any odd number greater than 1 as its shortest leg.
Next, we notice from the pattern that the sum of the second leg and the hypotenuse is the
square of the shortest leg, and that these two side lengths differ by 1.
Will this pattern always hold?
Let a k= +2 1 with k ≥ 1.  (This formula will generate all odd integers greater than or

equal to 3.)  Can we always find b so that c b= +1 and a b c2 2 2+ = ?
Consider the equation

2 1 1

4 4 1 2 1

4 4 2

2 2

2 2 2

2 2 2

2

2

k b b

k k b b b

k k b

b k k

+( ) + = +( )
+ + + = + +

+ =

= +
So we can always find a b to make the equation true.  Therefore, since a can be any odd
integer greater than or equal to 3, then we can make any odd number the shortest leg of a

Pythagorean triangle, namely the Pythagorean triangle a k= +2 1, b k k= +2 22 ,

c k k= + +2 2 12 .  (Check that a b c2 2 2+ =  does indeed hold here!)

(c) We consider forming a triangle by joining two
Pythagorean triangles along a common side.  Since any
Pythagorean triangle is Heronian, then the triangle that is
formed by joining two Pythagorean triangles in the manner
shown will have integer side lengths and will have integer
area, thus making it Heronian.
So again, we make a list of Pythagorean triples

3 4 5
5 12 13
6 8 10
7 24 25
8 15 17
9 40 41
10 24 26
11 60 61
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We notice that we can scale any Pythagorean triangle by an integer factor and obtain
another Pythagorean triangle.  This will enable us to create two Pythagorean triangles
with a common side length.
Also, we note that when joining two Pythagorean triangles, the hypotenuse of each
triangle becomes a side length in the new triangle.  Since we cannot have a side length
divisible by 3, 5, 7 or 11, this eliminates the 3-4-5, 6-8-10, and 7-24-25 triangles from the
list above.
Suppose we scale the 8-15-17 triangle by a factor of 4 to obtain 32-60-68 and join to the
11-60-61 triangle in the manner shown.
Thus we obtain a 43-61-68 triangle, which has integer area because its height is an even
integer.
Therefore, a 43-61-68 triangle is Heronian.

[It is worth noting that this is not the only such
triangle, but it is the one with the shortest sides.]

61
60

11 32

68
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1. (a) What are the values of x such that 2 3 92x –( ) = ?

Solution 1

       
2 3 9

2 3 9 0

2

2

x

x

–

– –

( ) =

( ) =

2 3 3 2 3 3 0x x– – –( ) +( ) = [by difference of squares]

       2 6 2 0x x–( )( ) =
so x = 3  or  x = 0.

Solution 2
2 3 92x –( ) =

2 3 3x – =  or 2 3 3x – –=
Therefore x = 3 or x = 0.

Solution 3
4 12 9 9

4 12 0

4 3 0

2

2

x x

x x

x x

–

–

–

+ =

=
( ) =

Therefore x = 0 or x = 3.

(b) If f x x x( ) = 2 3 5– – , what are the values of k such that f k k( ) = ?

Solution
If f k k( ) = , then k k k2 3 5– – =

 

k k

k k

2 4 5 0

5 1 0

– –

–

=
( ) +( ) =

so      k = 5 or k = –1.

(c) Determine all x y,( ) such that x y2 2 25+ =  and x y– = 1.

Solution 1  (Algebraic)
Since x y– = 1, then x y= +1 (or y x= –1).

So since x y2 2 25+ = , then

  y y+( ) + =1 252 2 or      x x2 21 25+ ( ) =–
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y y y

y y

y y

y y

y

2 2

2

2

2 1 25

2 2 24 0

12 0

4 3 0

4 3

+ + + =

+ =

+ =
+( )( ) =

=

–

–

–

– ,

x x x

x x

x x

x x

2 2

2

2

2 1 25

2 2 24 0

12 0

4 3 0

+ + =

=

=
( ) +( ) =

–

– –

– –

–
 x = 4 3, –

and using x y= +1, and using y x= –1,
we get x = – ,3 4. we get y = 3 4, – .
So the solutions are x y, – , – , ,( ) = ( ) ( )3 4 4 3 .

Solution 2  (Graphical)
Placing each of x y2 2 25+ =  and x y– = 1 on a
grid we have the diagram at the right.

 y

 x
(1, 0)

(4, 3)

(5, 0)

(0, –1)

(– 3, – 4)

(0, 5)
x – y = 1

x2 + y2 = 25

Therefore, the solutions are x y, – , –( ) = ( )3 4 , (4, 3).

2. (a) The vertex of the parabola y x b b h= ( ) + +– 2  has coordinates 2 5,( ).  What is the value of h?

Solution
Since the x-coordinate of the vertex is 2, then b = 2.
Since the y-coordinate of the vertex is 5, then b h+ = 5.  Since b = 2, then h = 3.

(b) In the isosceles triangle ABC, AB AC=  and ∠ = °BAC 40 .
Point P is on AC  such that BP  is the bisector of ∠ ABC .
Similarly, Q is on AB such that CQ bisects ∠ ACB .  What is the
size of ∠ APB , in degrees?

A

PQ

B C
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Solution
Let ∠ = °ABC x2 .  Since ∆ ABC  is isosceles, then ∠ = °ACB x2 .
Since BP  bisects ∠ ABC , ∠ = ∠ = °ABP CBP x .
Similarly, ∠ = ∠ = °ACQ BCQ x .
The angles in ∆ ABC  add to 180°, so

40 2 2 180

35

° + ° + ° = °
=

x x

x .
In ∆ APB , the angles add to 180°, so

40 35 180

105

° + ° + ∠ = °
∠ = °

APB

APB .

A

PQ

B C

x°
x°

x°
x°

40°

(c) In the diagram, AB = 300, PQ = 20, and QR = 100 .  Also,
QR is parallel to AC .  Determine the length of BC , to the

nearest integer.

 A

 B
 R

 P

 Q

 C

Solution 1
Since QR AC , ∠ = ∠ =QRP BAC α  (alternating angles).

From ∆ RPQ , tan α = 1
5

.

In ∆ ACB, since tan α = =1
5

BC

AC
, let BC x=  and

AC x= 5 .  (This argument could also be made by just
using the fact that ∆ RQP  and ∆ ACB are similar.)

By Pythagoras, x x2 2 225 300+ = , x = =90 000
25

58 83˙ . .

Therefore BC = 59 m to the nearest metre.

 A

 B
 R

 P

 Q

 C

20
100

α
α

Solution 2
Since QR AC , ∠ = ∠QRP BAC (alternating angles).

This means ∆ ∆ABC RPQ~  (two equal angles).

By Pythagoras,
PR QP QR2 2 2= +  A

 B
 R

 P

 Q

 C

20
100

  PR = + =100 20 10 4002 2 .
Since ∆ ∆ABC RPQ~ ,
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BC

AB

PQ

RP

BC
AB PQ

RP

=

= ⋅

= ⋅

=

300 20
10 400

58 83˙ .
BC  is 59 m (to the nearest metre).

3. (a) In an increasing sequence of numbers with an odd number of terms, the difference between
any two consecutive terms is a constant d, and the middle term is 302.  When the last 4 terms
are removed from the sequence, the middle term of the resulting sequence is 296.  What is the
value of d?

Solution 1
Let the number of terms in the sequence be 2 1k + .
We label the terms a a a k1 2 2 1, , ..., + .
The middle term here is ak+ =1 302.

Since the difference between any two consecutive terms in this increasing sequence is d,
a a dm m+ =1 –  for m k= 1 2 2, , ..., .
When the last 4 terms are removed, the last term is now a k2 3–  so the middle term is then
ak–1 296= .  (When four terms are removed from the end, the middle term shifts two terms to

the left.)
Now 6 21 1 1 1= = ( ) + ( ) = + =+ +a a a a a a d d dk k k k k k– – –– – .

Therefore d = 3.

Solution 2
If the last four terms are removed from the sequence this results in 302 shifting 2 terms to the
left in the new sequence meaning that 302 296 2– = d , d = 3.

(b) There are two increasing sequences of five consecutive integers, each of which have the
property that the sum of the squares of the first three integers in the sequence equals the sum
of the squares of the last two.  Determine these two sequences.

Solution
Let n be the smallest integer in one of these sequences.
So we want to solve the equation n n n n n2 2 2 2 21 2 3 4+ +( ) + +( ) = +( ) + +( )  (translating the

given problem into an equation).
Thus n n n n n n n n n2 2 2 2 22 1 4 4 6 9 8 16+ + + + + + = + + + + +
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n n

n n

2 8 20 0

10 2 0

– –

– .

=
( ) +( ) =

So n = 10 or n = – 2.
Therefore, the sequences are 10, 11, 12, 13, 14 and – 2, –1, 0, 1, 2.

Verification
– –2 1 0 1 2 52 2 2 2 2( ) + ( ) + = + =  and 10 11 12 13 14 3652 2 2 2 2+ + = + =

4. (a) If f t t( ) = 



sin –π π

2
, what is the smallest positive value of t at which f t( ) attains its

minimum value?

Solution 1

Since t > 0, π π πt – –
2 2

> .  So sin –π πt
2( )  first attains its minimum value when

π π π
t

t

–

.
2

3
2

2

=

=

Solution 2

Rewriting f t( ) as, f t t( ) = ( )[ ]sin –π 1
2

.

Thus f t( ) has a period 
2

2
π

π
=  and appears in the diagram

at the right.
Thus f t( ) attains its minimum at t = 2 .  Note that f t( )
attains a minimum value at t = 0  but since t > 0, the
required answer is t = 2 .

 f (t)

t

1

2
1
2

5
2
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 (b) In the diagram, ∠ = °ABF 41 , ∠ = °CBF 59 , DE  is

parallel to BF , and EF = 25.  If AE EC= , determine the
length of AE , to 2 decimal places.

41°
59°

B

D

C

E

F

A

25

Solution
Let the length of AE EC=  be x.
Then AF x= – 25.

In, ∆ BCF , 
x

BF

+ = °( )25
59tan .

In ∆ ABF , 
x

BF

–
tan

25
41= °( ).

Solving for BF  in these two equations and equating,

BF
x x= +

°
=

°
25

59
25

41tan
–

tan
so tan tan –41 25 59 25°( ) +( ) = °( )( )x x

25 59 41 59 41

25 59 41

59 41

79 67

tan tan tan – tan

tan tan

tan – tan

˙ . .

° + °( ) = ° °( )

=
° + °( )

° °
=

x

x

x

41°
59°

B

D

C

E

F

A

25

x

x – 25

Therefore the length of AE  is 79.67.

5. (a) Determine all integer values of x such that x x2 23 5 0–( ) +( ) < .

Solution
Since x2 0≥  for all x, x2 5 0+ > .  Since x x2 23 5 0–( ) +( ) < , x2 3 0– < , so x2 3<  or

– 3 3< <x .  Thus x = – , ,1 0 1.

(b) At present, the sum of the ages of a husband and wife, P, is six times the sum of the ages of
their children, C.  Two years ago, the sum of the ages of the husband and wife was ten times



2001 EUCLID SOLUTIONS 8

the sum of the ages of the same children.  Six years from now, it will be three times the sum
of the ages of the same children.  Determine the number of children.

Solution
Let n be the number of children.
At the present, P C= 6 , where P and C are as given. (1)
Two years ago, the sum of the ages of the husband and wife was P – 4, since they were each
two years younger.
Similarly, the sum of the ages of the children was C n– 2( )   (n is the number of children).
So two years ago, P C n– –4 10 2= ( ) (2),   from the given condition.
Similarly, six years from now, P C n+ = +( )12 3 6 (3),   from the given condition.
We want to solve for n.
Substituting (1) into each of (2) and (3),

6 4 10 2C C n– –= ( ) or 20 4 4n C– = or 5 1n C– =
6 12 3 6C C n+ = +( ) or – –18 3 12n C+ = or – –6 4n C+ =

Adding these two equations, – –n = 3, so n = 3.
Therefore, there were three children.

6.  (a) Four teams, A, B, C, and D, competed in
a field hockey tournament.  Three
coaches predicted who would win the
Gold, Silver and Bronze medals:

Medal     Gold     Silver     Bronze

Team

• Coach 1 predicted Gold for A, Silver for B, and Bronze for C,
• Coach 2 predicted Gold for B, Silver for C, and Bronze for D,
• Coach 3 predicted Gold for C, Silver for A, and Bronze for D.

Each coach predicted exactly one medal winner correctly.  Complete the table in the answer
booklet to show which team won which medal.

Solution
If A wins gold, then Coach 1 has one right.  For Coach 3 to get one right, D must win bronze,
since A cannot win silver.  Since D wins bronze, Coach 2 gets one right.  So C can’t win
silver, so B does which means Coach 1 has two right, which can’t happen.  So A doesn’t win
gold.
If B wins gold, then Coach 2 has one right.  For Coach 1 to get one right, C wins bronze, as B
can’t win silver.
For Coach 3 to get one right, A wins silver.
So Gold to B, Silver to A and Bronze to C satisfies the conditions.
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(b) In triangle ABC, AB BC= = 25 and AC = 30. The
circle with diameter BC  intersects AB at X and AC  at
Y.  Determine the length of XY .

 B

 X

 A Y C

Solution 1
Join BY .  Since BC  is a diameter, then ∠ = °BYC 90 .
Since AB BC= , ∆ ABC  is isosceles and BY  is an
altitude in ∆ ABC , then AY YC= = 15.
Let ∠ =BAC θ .
Since ∆ ABC  is isosceles, ∠ =BCA θ .
Since BCYX  is cyclic, ∠ =BXY 180 – θ and so
∠ =AXY θ .

θ θ

θ
25

15 15

 B

 X

 A Y C
Thus ∆ AXY  is isosceles and so XY AY= = 15.

Therefore XY = 15.

Solution 2
Join BY .  ∠ = °BYC 90  since it is inscribed in a

semicircle.
∆ BAC is isosceles, so altitude BY  bisects the

base.

Therefore BY = =25 15 202 2– .
Join CX .  ∠ = °CXB 90  since it is also inscribed in
a semicircle.
The area of ∆ ABC  is

25

15 15

 B

 X

 A Y C

7
20

24

1
2

AC( ) BY( ) = 1
2

AB( ) CX( )
1
2

30( ) 20( ) = 1
2

25( ) CX( )

CX = 600
25

= 24.

From ∆ ABY  we conclude that cos ∠ = = =ABY
BY

AB

20
25

4
5

.

In ∆ BXY , applying the Law of Cosines we get XY BX BY BX BY XBY( ) = ( ) + ( ) ( )( ) ∠2 2 2 2– cos .
Now (by Pythagoras ∆ BXC),
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BX BC CX

BX

2 2 2

2 225 24

49

7

=

=
=
=

–

–

.
Therefore XY2 2 2 4

5
7 20 2 7 20= + ( )( )–

 
= +
=

49 400 224

225

–

.
Therefore XY = 15.

7. (a) What is the value of x such that log log –2 2 2 2 2x( )( ) = ?

Solution
log log –

log –

–

–

–

2 2

2
2

2

4

2 2 2

2 2 2

2 2 2

2 2 2

2 2 16

2 18

9

2

x

x

x

x

x

x

x

( )( ) =

( ) =

=

=
=
=
=

( )

(b) Let f x kx( ) = +2 9, where k is a real number.  If f f3 6 1 3( ) ( ) =: : , determine the value of
f f9 3( ) ( )– .

Solution
From the given condition,

f

f

k

k
3
6

2 9

2 9

1
3

3

6
( )
( )

= +
+

=

3 2 9 2 9

0 2 3 2 18

3 6

6 3

k k

k k

+( ) = +

= ( )– – .

We treat this as a quadratic equation in the variable x k= 23 , so
0 3 18

0 6 3

2=
= ( ) +( )

x x

x x

– –

– .

Therefore, 2 63k =  or 2 33k = – .  Since 2 0a >  for any a, then 2 33k ≠ – .

So 2 63k = .  We could solve for k here, but this is unnecessary.
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We calculate f f k k9 3 2 9 2 99 3( ) ( ) = +( ) +( )– –

      

=

= ( )
=
=

2 2

2 2

6 6

210

9 3

3 3 3

3

k k

k k

–

–

–

.

Therefore f f9 3 210( ) ( ) =– .

8. (a) On the grid provided in the answer booklet, sketch y x= 2 4–  and y x= 2 .

Solution
 y

 x
0

2

4

– 4 – 2 2 4

– 2

– 4

– 6

y = x2 – 4

y = 2 x
6

6– 6

(b) Determine, with justification, all values of k for which y x= 2 4–  and y x k= +2  do not

intersect.

Solution
Since each of these two graphs is symmetric about the y-axis (i.e. both are even functions),
then we only need to find k so that there are no points of intersection with x ≥ 0.
So let x ≥ 0 and consider the intersection between y x k= +2  and y x= 2 4– .

Equating, we have, 2 42x k x+ = – .
Rearranging, we want x x k2 2 4 0– – +( ) =  to have no solutions.
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For no solutions, the discriminant is negative, i.e.

20 4 0

4 20

5

+ <
<
<

k

k

k

–

– .

So y x= 2 4–  and y x k= +2  have no intersection points when k < – 5.

(c) State the values of k for which y x= 2 4–  and y x k= +2  intersect in exactly two points.

(Justification is not required.)

Solution Analysing Graphs
For k < – 5, there are no points of
intersection.  When k = – 5, the
graph with equation y x k= +2  is
tangent to the graph with equation
y x= 2 4–  for both x ≥ 0 and x ≤ 0.
So k = – 5 is one possibility for two
intersection points.

 y

 x
0

2

4

– 4 – 2 2 4

– 2

– 4

– 6

6

6– 6

y = x2 – 4

– 5y = 2 x
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For – –5 4< <k  a typical graph

appears on the right.
i.e. for – –5 4< <k , there will be 4

points of intersection.

 y

 x
0

2

4

– 4 – 2 2 4

– 2

– 4

– 6

6

6– 6

When k = – 4, a typical graph

appears on the right.

 y

 x
0

2

4

– 4 – 2 2 4

– 2

– 4

– 6

6

6– 6



2001 EUCLID SOLUTIONS 14

So when k > – 4, there will only be

two points of intersection, as the
contact point at the cusp of
y x= 2 4–  will be eliminated.  An

example where k = – 2 is shown.

 y

 x
0

2

4

– 4 – 2 2 4

– 2

– 4

– 6

6

6– 6

+ k, k > – 4y = 2 x

y = x2 – 4

So the possibility for exactly two distinct points of intersection are k = – 5, k > – 4.

9. Triangle ABC is right-angled at B and has side lengths which
are integers. A second triangle, PQR, is located inside ∆ ABC
as shown, such that its sides are parallel to the sides of ∆ ABC
and the distance between parallel lines is 2.   Determine the
side lengths of all possible triangles ABC, such that the area of
∆ ABC  is 9 times that of ∆ PQR .

2

 A

 B  C

 Q  R

 P

2

2

Solution 1
Let the sides of ∆ ABC  be AB c= , BC a= , AC b= , a, b, c are all integers.
Since the sides of ∆ PQR  are all parallel to the sides of ∆ ABC , then ∆ ABC  is similar to ∆ PQR .

Now the ratio of areas of ∆ ABC  to ∆ PQR  is 9 32=  to 1, so the ratio of side lengths will be 3 to 1.

So the sides of ∆ PQR  are PQ c=
3
, QR a=

3
, PR b=

3
.



2001 EUCLID SOLUTIONS 15

So we can label the diagram as indicated.
We join the corresponding vertices of the two triangles as

Area of trapezoid

Area of trapezoid

Area of trapezoid

Area of

Area of

BQRC

CRPA

APQB

PQR

ABC

+ ∆

∆ .

Doing so gives,

2
2
3

2
2
3

2
2
3 18 72

a b c
ac ac



 + 



 + 



 + =

Or upon simplifying ac a b c= + +3 3 3  (Note that this
relationship can be derived in a variety of ways.)

 A

 B  C

 Q  R

 P

a
3

c
3

b
3

c
b

a

ac c b a

ac c a b

= + +
=

3 3 3

3 3 3– –

ac c a a c– –3 3 3 2 2= + (since b a c= +2 2 )

a c c a ac a c ac a c2 2 2 2 2 2 2 29 9 6 6 18 9+ + + = +( )– – (squaring both sides)

ac ac c a– –6 6 18 0+( ) =
 ac c a– –6 6 18 0+ = (as ac ≠ 0 )

  

c a a

c
a

a

c
a

– –

–
–

–
.

6 6 18

6 18
6

6
18

6

( ) =

=

= +

Since a is a side of a triangle, a > 0.  We are now looking for positive integer values such that
18

6a –
 is also an integer.

The only possible values for a are 3, 7, 8, 9, 12, 15 and 24.
Tabulating the possibilities and calculating values for b and c gives,

a 3 7 8 9 12 15 24
c 0 24 15 12 9 8 7
b – 25 17 15 15 17 25

Thus the only possibilities for the triangle are 7 24 25, ,( ), 8 15 7, ,( )  and 9 12 15, ,( ).

Solution 2
The two triangles are similar with areas in the ratio 1:9.
Therefore the sides are in the ratio 1:3.
Let a BC= , b CA= , c BA= .
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Then a PQ
3

= , b QR
3

= , c PR
3

= .

Locate points K, L on BC ; M, N  on CA ; and T, S on AB as
shown.

BC BK KL LC

a BK a

= + +

= + +
3

2  Q  R

 P
c

b

a

T

S

A

B

C M N

2

2

2K

L

Therefore BK a= 2
3

2– .

In a similar way, AN b= 2
3

2– .

Now ∆ ∆BKP BTP≅  and ∆ ∆ANR ASR≅ , both by HL .

Therefore BT BK a= = 2
3

2–  and AS AN b= = 2
3

2– .

Now, AB AS ST BT= + +
c b a

c b a

c b a

b c a

c= + +

= +

= +
= + ( )

2
3 3

2
3

2
3

2
3

2
3

2 2

4

6

6

– –

–

–

– .

By Pythagoras, a b c2 2 2+ =

  a2 + [c + (6 – a)]2 = c2

  a2 + c2 + 2c(6 – a) + (6 – a)2 = c2

   a2 +            (6 – a)2 = – 2c(6 – a)
2a2 –        12a + 36 = 2c(a – 6)
  a2 –          6a + 18 = c(a – 6)

c
a a

a

c
a a

a

c a
a

= +

= ( ) +

= +

2 6 18
6

6 18
6

18
6

–
–

–
–

–
.

Since a and c are integers, a – 6 is a divisor of 18.
Also since b c<  and b c a= + ( )6 – , we conclude that 6 0– a <  so a – 6 0> .

Thus a – 6 can be 1, 2, 3, 6, 9, 18.
The values of a are:  7, 8, 9, 12, 15, 24.
Matching values for c:  25, 17, 15, 15, 17, 25
Matching values for b:  24, 15, 12, 9, 8, 7
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The distinct triangles are (7, 24, 25), (8, 15, 17) and (9, 12, 15).

10. Points P and Q are located inside the square ABCD such that
DP is parallel to QB and DP = QB = PQ.  Determine the
minimum possible value of ∠ ADP .

 

 A  B

 D  C

 P

 Q

Solution 1
Placing the information on the coordinate axes, the diagram
is indicated to the right.
We note that P has coordinates a b,( ).
By symmetry (or congruency) we can label lengths a and b
as shown.  Thus Q has coordinates 2 2– , –a b( ).
Since PD PQ= , a b a b2 2 2 22 2 2 2+ = ( ) + ( )– –

or, 3 3 8 8 8 02 2a b a b+ + =– –

a b– –4
3

2 4
3

2 8
9( ) + ( ) =

P is on a circle with centre O 4
3

4
3

,( ) with r = 2
3

2 .

The minimum angle for θ  occurs when DP is tangent to the
circle.

 A(0, 2)  B(2, 2)

 D(0, 0)  C(2, 0)

 P(a, b)

b
a

θ

θ

b

 Q(2 – a, 2 – b)

a

So we have the diagram noted to the right.
Since OD  makes an angle of 45°  with the x -axis then

∠ =PDO 45 – θ and OD = 4
3

2 .

Therefore sin –45
2

2

1
2

2
3
4
3

θ( ) = =  which means 45 30° = °– θ  or

θ = °15 .
Thus the minimum value for θ  is 15°.

 P

θ

2
3

2

O 4
3, 4

3( )
45 – θ

D

Solution 2
Let AB BC CD DA= = = = 1.
Join D to B.  Let ∠ =ADP θ .  Therefore, ∠ =PDB 45 – θ .

Let PD a=  and PB b=  and PQ
a=
2

.
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We now establish a relationship between a and b.
In ∆ PDB , b a a2 2 2 2 2 45= + ( )( ) ( )– cos – θ

or, cos –
–

45
2

2 2

2 2

θ( ) = +a b

a
(1)

 A  B

 D  C

 P

a

θ

b

R
Q

45
– θ

a
2

In ∆ PDR , 
a

a a
2

2
2

2
2

2
45

2
2

2




 = +







( )– cos – θ

or, cos –45
2

3
4

2 1
2θ( ) =

+a

a
(2)

Comparing (1) and (2) gives, 
a b

a

a

a

2 2 3
4

2 1
22

2 2 2
– + =

+
.

Simplifying this, a b2 22 2+ =

or, b
a2

22
2

= –
.

Now cos –

–
–

45

2
2

2

2 2
1

4 2
3

2
2

2

θ( ) =
+







= +





a
a

a
a

a
.

Now considering 3
2

a
a

+ , we know 3
2

0
2

a
a

–






≥

or, 3
2

2 6a
a

+ ≥ .

Thus, cos –45
1

4 2
2 6

3
2

θ( ) ≥ ( ) =

cos –45
3

2
θ( ) ≥ .

cos –45 θ( )  has a minimum value for 45 30° = °– θ  or θ = °15 .

Solution 3
Join BD.  Let BD meet PQ at M.  Let ∠ =ADP θ .
By interior alternate angles, ∠ = ∠P Q  and
∠ = ∠PDM QBM .
Thus ∆ ∆PDM QBM≅  by A.S.A., so PM QM=  and
DM BM= .
So M is the midpoint of BD and the centre of the square.
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Without loss of generality, let PM = 1.  Then PD = 2.
Since θ α+ = °45  (see diagram), θ  will be minimized when
α  is maximized.

 A  B

 D  C

 P

2

θ
M

Q

1

α

Consider ∆ PMD .

Using the sine law, 
sin sinα

1 2
=

∠( )PMD
.

To maximize α , we maximize sin α .

But sin
sin

α =
∠( )PMD

2
, so it is maximized when sin ∠( ) =PMD 1.

In this case, sin α = 1
2

, so α = °30 .

Therefore, θ = ° ° = °45 30 15– , and so the minimum value of θ  is 15°.

Solution 4
We place the diagram on a coordinate grid, with D 0 0,( ),
C 1 0,( ), B 0 1,( ), A 1 1,( ).
Let PD PQ QB a= = = , and ∠ =ADP θ .
Drop a perpendicular from P to AD, meeting AD at X.
Then PX a= sin θ , DX a= cos θ.
Therefore the coordinates of P are a asin , cosθ θ( ) .
Since PD BQ , then ∠ =QBC θ.
So by a similar argument (or by using the fact that PQ are
symmetric through the centre of the square), the coordinates
of Q are 1 1– sin , cosa aθ θ+( ).

 A(0, 1)  B(1, 1)

 D(0, 0)  C(1, 0)

 P

 Q

X

a
a

a

Now PQ a( ) =2 2, so 1 2 1 22 2 2– sin – cosa a aθ θ( ) + ( ) =
2 4 4 42 2 2 2 2+ + +( ) =a a a asin cos – sin cosθ θ θ θ
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2 4 4

2 3

4

2 3

4 2

1

2

1

2
45 45

2 3

4 2
45

2 2

2

2

2

+ = +( )
+ = +

+ = + = °( ) + °( )

+ = + °( )

a a a

a

a

a

a

a

a

– sin cos

sin cos

sin cos cos sin sin cos

sin

θ θ

θ θ

θ θ θ θ

θ

Now         a – 2
3

2
0



 ≥

a a

a a

2 2
3

2
3

2

2 0

3 2 6 2 0

–

–

+ ≥

+ ≥

 

3 2 2 6

3 2

4 2

3

2

2

2

a a

a

a

+ ≥

+ ≥

and equality occurs when a = 2
3

.

So sin θ + °( ) ≥45
3

2
 and thus since 0 90° ≤ ≤ °θ , then θ + ° ≥ °45 60  or θ ≥ °15 .

Therefore the minimum possible value of ∠ ADP  is 15°.
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1. (a) If x + =27 125
1

3

1

3 , what is the value of x?

Solution

125 5
1

3 = , 27 3
1

3 =
Therefore, x = =5 3 2– .

(b) The line y ax c= +  is parallel to the line y x= 2  and passes through the point 1 5,( ).  What is

the value of c?

Solution
Since the two given lines are parallel, the line y ax c= +  has slope 2 and is of the form,
y x c= +2 .  Since 1 5,( ) is on the line, 5 2 1= ( ) + c

c = 3.

(c) The parabola with equation
y x= ( )– –2 162  has its vertex at A

and intersects the x-axis at B, as
shown.  Determine the equation for
the line passing through A and B.

y

xO

A

B

Solution
For y = 0, x – –2 16 02( ) =

x x– – –2 4 2 4 0( )[ ] ( ) +[ ] =

Therefore x = 6 or x = – 2.
Thus, the x-intercepts of the parabola are – 2 and 6, and B has coordinates 6 0,( )  .
The vertex of the parabola is at A 2 16, –( ) .

Equation of line containing 6 0,( )  and 2 16, –( )  has slope 
–
–
16

2 6
4= .

Thus the line has equation, 
y

x
y x

–
–

–
0
6

4 4 24= ⇔ = .

2. (a) Six identical pieces are cut from a board, as shown in the diagram.  The angle of each cut is x° .
The pieces are assembled to form a hexagonal picture frame as shown.  What is the value of x?



2000 Euclid Solutions 3

x° x° x° x° x° x° x°

Solution
Each interior angle of a regular hexagon is 120°.
Putting the frame together we would have the following

2 120x =  (in degrees)

  x = °60

120°

120°
x

x

(b) If log log10 103x y= + , what is the value of 
x
y

?

Solution
log – log

    log

10 10

10

3

3

x y

x

y

=

⇔ 





=

⇔ = =x

y
10 10003

(c) If x
x

+ =1 13
6

, determine all values of x
x

2
2

1+ .

Solution 1   ‘Squaring both sides’

x
x

+



 = 





1 13
6

2 2

; squaring

x
x

2
22

1 169
36

+ + =

x
x

2
2

1 169
32

2+ = –

x
x

2
2

1 169
36

72
36

97
36

+ = =–

Solution 2   ‘Creating a quadratic equation and solving’

6
1

6
13
6

x x
x

x+



 = 





6 6 132x x+ =
6 13 6 02x x– + =
3 2 2 3 0x x– –( )( ) =
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x = 2
3

  or  x = 3
2

For x = 2
3

, x
x

2
2

1+

= 



 +







2
3

1

2
3

2

2

= +

= +

=

4

9

9

4

81 16

36

97

36

For x = 3
2

, 
3
2

1

3
2

2

2




 +







= +9
4

4
9

= 97
36

3. (a) A circle, with diameter AB as shown,
intersects the positive y-axis at point
D d0,( ).  Determine d. D 0, d

A –2, 0 B 8, 0

y

x
O

Solution 1
The centre of the circle is 3 0,( ) and the circle has a radius of 5.

Thus d2 23 5+ =

                   
d

d

2 2 2

2

5 3

16

=

=

–

Therefore d = 4, since d > 0.

Solution 2
Since AB is a diameter of the circle, ∠ = °ADB 90  and ∠ = °AOD 90 .
∆ ∆ADO DBO~

Therefore, 
OD

AO

BO

OD
=

and  d2 2 8= ( )
  d2 16=
    d = 4, since d > 0.
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Solution 3
∠ = ∠ = ∠ = °ADB AOD BOD 90

In ∆ AOD AD d, 2 24= + .

In ∆ BOD DB d, 2 264= + .

In ∆ ADB d d, 4 64 1002 2+( ) + +( ) =

2 322d =
d = 4, d > 0.

(b) A square PQRS  with side of length x

is subdivided into four triangular
regions as shown so that area A  +
area B  = area C .  If PT = 3 and

RU = 5, determine the value of x.

P T S

U

RQ x

x

3

5

A

B

C

Solution
Since the side length of the square is x, TS x= – 3 and VS x= – 5

Area of triangle A x= ( )( )1
2

3 .

Area of triangle B x= ( )( )1
2

5

Area of triangle C x x= ( )( )1
2

5 3– – .

From the given information, 
1
2

3
1
2

5
1
2

5 3x x x x( ) + ( ) = ( )( )– – .

3 5 8 152x x x x+ = +–

x x2 16 15 0– + =

x x– –15 1 0( )( ) =

Thus x = 15 or x = 1.
Therefore x = 15 since x = 1 is inadmissible.

    Labelled diagram

P T S

U

RQ x

x

3

5

A

B

C

x – 3

x – 5

4. (a) A die, with the numbers 1, 2, 3, 4, 6, and 8 on its six faces, is rolled.  After this roll, if an odd
number appears on the top face, all odd numbers on the die are doubled.  If an even number
appears on the top face, all the even numbers are halved.  If the given die changes in this way,
what is the probability that a 2 will appear on the second roll of the die?



2000 Euclid Solutions 6

Solution
There are only two possibilities on the first roll - it can either be even or odd.

Possibility 1  ‘The first roll is odd’

The probability of an odd outcome on the first roll is 
1
3

.

After doubling all the numbers, the possible outcomes on the second roll would now be 2, 2, 6,

4, 6, 8 with the probability of a 2 being 
1
3

.

Thus the probability of a 2 on the second roll would be 
1
3

1
3

1
9

× = .

Possibility 2   ‘The first is even’

The probability of an even outcome on the first roll is 
2
3

.

After halving all the numbers, the possible outcomes on the second roll would be 1, 1, 3, 2, 3, 8.

The probability of a 2 on the second die would now be 
1
6

.

Thus the probability of a 2 on the second roll is 
2
3

1
6

1
9

× = .

The probability of a 2 appear on the top face is 
1
9

1
9

2
9

+ = . 

b) The table below gives the final standings for seven of the teams in the English Cricket League in
1998.  At the end of the year, each team had played 17 matches and had obtained the total
number of points shown in the last column.  Each win W, each draw D, each bonus bowling
point A, and each bonus batting point B received w, d, a and b points respectively, where w, d, a
and b are positive integers.  No points are given for a loss.  Determine the values of w, d, a and
b if total points awarded are given by the formula:   Points = × + × + × + ×w W d D a A b B .

                     Final Standings

 W   Losses D     A     B   Points
Sussex 6 7 4 30 63 201
Warks 6 8 3 35 60 200
Som 6 7 4 30 54 192
Derbys 6 7 4 28 55 191
Kent 5 5 7 18 59 178
Worcs 4 6 7 32 59 176
Glam 4 6 7 36 55 176
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Solution
There are a variety of ways to find the unknowns.
The most efficient way is to choose equations that have like coefficients.  Here is one way to
solve the problem using this method.

For Sussex: 6 4 30 63 201w d a b+ + + =
For Som: 6 4 30 54 192w d a b+ + + =
Subtracting, 9 9b = b = 1

If b = 1
For Derbys: 6 4 28 55 191w d a+ + + =

6 4 28 136w d a+ + = (1)
For Sussex: 6 4 30 63 201w d a+ + + =

6 4 30 138w d a+ + = (2)
Subtracting, (2) – (1)  2 2a =

a = 1.
We can now calculate d and w by substituting a = 1, b = 1 into a pair of equations.
An efficient way of doing this is by substituting a = 1, b = 1 into Som and Worcs.
For Som: 6 4 84 192w d+ + =

6 4 108w d+ = (3)
For Worcs:  6 3 85 200w d+ + =

 6 3 105w d+ = (4)
Subtracting, (3) – (4)  d = 3.
Substituting d = 3 in either (3) or (4), 6 4 3 108w + ( ) =  (substituting in (3))

6 96w =
w = 16.

Therefore w = 16, d = 3, a b= = 1.

5. (a) In the diagram, AD DC= ,
sin .∠ =DBC 0 6 and ∠ = °ACB 90 .
What is the value of tan ∠ ABC ?

A

B C

D

Solution
Let DB = 10.
Therefore, DC AD= = 6.
By the theorem of Pythagoras, BC2 2 210 6 64= =– .
Therefore, BC = 8.
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Thus, tan ∠ = =ABC
12
8

3
2

.

(b) On a cross-sectional diagram of the
Earth, the x and y-axes are placed so
that O 0 0,( ) is the centre of the Earth
and C 6 40 0 00. , .( ) is the location of

Cape Canaveral.  A space shuttle is
forced to land on an island at
A 5 43 3 39. , .( ), as shown.  Each unit

represents 1 000  km.  Determine the

distance from Cape Canaveral to the
island, measured on the surface of the
earth, to the nearest 10 km.

A 5.43, 3.39

O 0, 0
C 6.40, 0.00

Solution
Calculating ∠ AOC

Calculating arc length
Distance

Solution

tan
.
.

∠ =AOC
3 39
5 43

∠ = 



 = °AOC tan

.

.
.–1 3 39

5 43
31 97

The arc length AC =
°

( )( )[ ] =31 97
360

2 6 40 3 57
.

. .π  units

The distance is approximately 3570 km.

6. (a) Let x   represent the greatest integer which is less than or equal to x.  For example, 3 3  = ,
2 6 2.  = .  If x is positive and x x  = 17, what is the value of x?

Solution
We deduce that 4 5< <x .
Otherwise, if x x x≤   ≤4 16, , and if x x x≥   ≥5 25, .
Therefore x  = 4
Since x x  = 17

4 17x =
x = 4 25.
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(b) The parabola y x= +– 2 4  has vertex

P and intersects the x-axis at A and B.
The parabola is translated from its
original position so that its vertex
moves along the line y x= + 4  to the

point Q.  In this position, the parabola
intersects the x-axis at B and C.
Determine the coordinates of C. x

O B C

P

A

Q
y x 4

. .

.
.

.

y

  
Solution 1
The parabola y x= +– 2 4  has vertex P 0 4,( ) and intersects the x-axis at A – ,2 0( ) and B 2 0,( ) .

The intercept B 2 0,( )  has its pre-image, ′B  on the parabola y x= +– 2 4 .  To find ′B , we find
the point of intersection of the line passing through B 2 0,( ) , with slope 1, and the parabola

y x= +– 2 4 .
The equation of the line is y x= – 2.

Intersection points, x x– –2 42= +

    
x x

x x

2 6 0
3 2 0

+ =
+( )( ) =

–
– .

Therefore, x = – 3 or x = 2.
For x = – 3, y = =– – –3 2 5.  Thus ′B  has coordinates – , –3 5( ) .

If – , – ,3 5 2 0( ) → ( )  then the required general translation mapping y x= +– 2 4  onto the
parabola with vertex Q is x y x y, ,( ) → + +( )5 5 .

Possibility 1
Using the general translation, we find the coordinates of Q to be,
P Q Q0 4 0 5 4 5 5 9, , ,( ) → + +( ) = ( ).
If C is the reflection of B in the axis of symmetry of the parabola, i.e. x = 5, C has coordinates
8 0,( ).

Possibility 2
If ′B  has coordinates – , –3 5( )  then ′C  is the reflection of ′B  in the y-axis.  Thus ′C  has
coordinates 3 5, –( ) .
If we apply the general translation then C has coordinates 3 5 5 5+ +( ), –  or 8 0,( ).
Thus C has coordinates 8 0,( ).

Possibility 3
Using the general translation, we find the coordinates of Q to be,
P Q Q0 4 0 5 4 5 5 9, , ,( ) → + +( ) = ( ).
The equation of the image parabola is y x= ( ) +– – 5 92 .
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To find its intercepts, – –x 5 9 02( ) + =

      x
x
–

– .
5 9

5 3

2( ) =
= ±

Therefore x = 8 or x = 2.
Thus C has coordinates 8 0,( ).

Solution 2
The translation moving the parabola with equation y x= +– 2 4  onto the parabola with vertex Q
is T t t,( ) because the slope of the line y x= + 4  is 1.
The pre-image of ′B  is 2 – , –t t( ).

Since ′B  is on the parabola with vertex P, we have

 

– – –

– – –

–

t t

t t t

t t

= ( ) +
= + +
=

2 4

4 4 4

5 0

2

2

2

t t – .5 0( ) =
Therefore, t = 0  or t = 5.
Thus ′B  is – , –3 5( ) .
Let C have coordinates c, 0( ).
The pre-image of C is c – , –5 5( ).

Therefore, – – –5 5 42= ( ) +c .

Or, c – 5 92( ) = .

Therefore c – 5 3=  or c – –5 3= .

c = 8 or       c = 2
Thus C has coordinates 8 0,( ).

Solution 3
The translation moving the parabola with equation y x= +– 2 4  onto the parabola with vertex Q
is T p p,( )  because the slope of the line y x= + 4  is 1.
Q will have coordinates p p, +( )4 .

Thus the equation of the image parabola is y x p p= ( ) + +– – 2 4.
Since 2 0,( )  is on the parabola,

0 2 4

5 0
5 0

2

2

= ( ) + +
=

( ) =

– –

–
– .

p p

p p
p p

Therefore p = 0 or p = 5.
The coordinates of Q are 5 9,( ).

As in solution 1, we can use either reflection properties or the equation of the parabola
to find that C has coordinates 8 0,( ).
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7. (a) A cube has edges of length n, where n is an integer.  Three faces, meeting at a corner, are
painted red.  The cube is then cut into n3 smaller cubes of unit length.  If exactly 125 of these
cubes have no faces painted red, determine the value of n.

Solution
If we remove the cubes which have red paint, we are left with a smaller cube with measurements,
n n n– – –1 1 1( ) × ( ) × ( )

Thus, n –1 1253( ) =
n = 6.

(b) In the isosceles trapezoid ABCD ,
AB CD x= = .  The area of the
trapezoid is 80 and the circle with
centre O and radius 4 is tangent to the
four sides of the trapezoid.
Determine the value of x.

B C

A D

x x
O

Solution
Using the tangent properties of a circle, the
lengths of line segments are as shown on the
diagram.

Area of trapezoid ABCD BC AD= ( ) +( )1
2

8

= +( )
=

4 2 2 2

8

b x b

x

–

.
Thus, 8 80x = .
Therefore, x = 10.

B C

 A D

x x
O

b b
b

x – b

x – bx – b

x – b

b
4

4

8. In parallelogram ABCD , AB a=  and
BC b= , where a b> .  The points of
intersection of the angle bisectors are
the vertices of quadrilateral PQRS .

(a) Prove that PQRS  is a rectangle.

(b) Prove that PR a b= – .

A BF

CD E

P

S

Q

R

N

M  

Solution
(a) In a parallelogram opposite angles are equal.

Since DF  and BE  bisect the two angles, let ∠ ADF  = ∠CDF  = ∠ ABE  = ∠CBE

= x  (in degrees)
Also ∠ = ∠ =CDF AFD x  (alternate angles)
Let ∠ DAM  = ∠ BAM  = ∠ DCN  = ∠ BCN  = y (in degrees)
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For any parallelogram, any two
consecutive angles add to
180°, ∴ + =2 2 180x y

or, x y+ = 90 .

Therefore in ∆ PAF , ∠ = °APF 90 .

A BF

CD E

P

S

Q

R

N

M

x

x
x

yyx
x

y y

A F

P

y x

Using similar reasoning and properties of parallel lines we get right angles at Q, R and S.
Thus PQRS  is a rectangle.

Solution
(b) Since AM  is a bisector of ∠ DAB, let ∠ = ∠ =DAM BAM y .

Also, ∠ =DMA y  (alternate angles)
This implies that ∆ ADM  is isosceles.

Using the same reasoning in ∆CBN , we see that it is also isosceles and so the diagram may
now be labelled as:

A BF

CD E

P

S

Q

R

N

M

y

x
x

yyx
x

y y
a – b b

b

b

y

a

AN a b= –

Thus ∆ ADM  and ∆CBN  are identical isosceles triangles.
Also, AM NC  (corresponding angles)
     or, AP NR .

By using properties of isosceles triangles (or congruency), AP NR=  implying that APRN  is a
parallelogram.
Thus AN PR=  and since AN a b= – , PR a b= –  (as required)
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9. A permutation of the integers 1, 2, ..., n is a listing of these integers in some order.  For
example, 3 1 2, ,( ) and 2 1 3, ,( ) are two different permutations of the integers 1, 2, 3.  A

permutation a a an1 2, , ...,( ) of the integers 1, 2, ..., n is said to be “fantastic” if a a ak1 2+ + +...

is divisible by k, for each k from 1 to n.  For example, 3 1 2, ,( ) is a fantastic permutation of 1, 2,

3 because 3 is divisible by 1, 3 1+  is divisible by 2, and 3 1 2+ +  is divisible by 3.  However,
2 1 3, ,( ) is not fantastic because 2 1+  is not divisible by 2.

(a) Show that no fantastic permutation exists for n = 2000.
(b) Does a fantastic permutation exist for n = 2001?  Explain.

Solution
(a) In our consideration of whether there is a fantastic permutation for n = 2000, we start by

looking at the 2000th position.
Using our definition of fantastic permutation, it is necessary that  2000 1 2 3 2000+ + + +( )L .

Since 
  
1 2 3 2000

2000 2001
2

1000 2001+ + + + = ( )( ) = ( )( )L , it is required that

2000 1000 2001( ) .

This is not possible and so no fantastic permutation exists for n = 2000.

Solution

(b) The sum of the integers from 1 to 2001 is 
2001 2002

2
2001 1001

( )( ) = ( )( ) which is divisible by

2001.  If t1, t2 , ..., t2001 is a fantastic permutation, when we remove t2001 from the above sum,

and what remains must be divisible by 2000.
We now consider   t t t1 2 2000+ + +L  and determine what integer is not included in the

permutation.

  

t t t t

t

1 2 2000 2001

2001

2001 2002
2

1001 2001

+ + + = ( )( )

= ( )( )

L –

–

Since 1001 2001 2 003 001( )( ) = , t2001 must be a number of the form k001 where k is odd.
The only integer less than or equal to 2001 with this property is 1001.  Therefore t2001 1001= .

So the sum up to t2000 is 2 003 001 1001 2 002 000– = .
When we remove t2000 we must get a multiple of 1999.

The largest multiple of 1999 less than 2 002 000 is 1999 1001 2 000 999( )( ) = .  This would
make t2000 2 002 000 2 000 999 1001= =–  which is impossible since t t2000 2001≠ .  If we
choose lesser multiples of 1999 to subtract from 2 002 000 we will get values of t2000 which

are greater than 2001, which is also not possible.
Thus, a fantastic permutation is not possible for n = 2001.
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10. An equilateral triangle ABC has side
length 2.  A square, PQRS , is such

that P lies on AB, Q lies on BC , and
R and S lie on AC  as shown.  The
points P, Q, R, and S move so that P,
Q and R always remain on the sides
of the triangle and S moves from AC
to AB through the interior of the
triangle.  If the points P, Q, R and S
always form the vertices of a square,
show that the path traced out by S is a
straight line parallel to BC .

 

A

P

B Q C

S

R

In essence, this solution establishes that the perpendicular distance from S to BC  is
s sin cosθ θ+( )  and then showing that this is a constant by finding s sin cosθ θ+( )  as part of

the base which is itself a constant length.

Solution
Let ∠ =RQC θ and from S draw a line

perpendicular to the base at P.
Then ∠ = +( ) =TQB 180 90 90– –θ θ .

Let s be the length of the side of the square.
From R draw a line perpendicular to BC  at D
and then through S draw a line parallel to BC .
From R draw a line perpendicular to this line at
E.

A

T

B Q C

S

R

P

E

30°

90 –

DF

60°

From ∆ RQD, RD s= sin θ.
Since ∠ =QRD 90 – θ then ∠ =SRE θ .
From ∆ SER , ER s= cos θ .
The perpendicular distance from S to BC  is RD ER s s+ = +sin cosθ θ which we must now

show is a constant.

We can now take each of the lengths DC DQ PF FB, , ,  and express them in terms of s.

From ∆ RDC  which is a 30 60 90° ° °– –  triangle, 
DC

RD
= 1

3
.

Since RD s= sin θ (from above)

DC s s= ( ) =1
3

3
3

sin sinθ θ .



2000 Euclid Solutions 15

From ∆ RDQ, 
QD

RQ
= cos θ, QD s= cos θ .

From ∆ TFQ, sin θ = FQ

s
 and cos θ = TF

s
.

or, FQ s= sin θ and TF s= sin θ .

From ∆ TFB, 
BF

TF
BF TF s s= = = =1

3
1
3

1
3

3
3

, cos cosθ θ .

Since DC QD FQ BF+ + + = 2 , 
3

3
3

3
2s s s ssin cos sin cosθ θ θ θ+ + + = .

3
3

2

2

3
3

1

s s s s

s s

cos sin cos sin

cos sin

θ θ θ θ

θ θ

+( ) + +( ) =

+ =
+







Thus s scos sinθ θ+  is a constant and the path traced out by S is a straight line parallel to BC .

Note: A number of enquiries have been made about this question.  Several individuals have made the
comment that it is not possible to do this under the given conditions.  What is not mentioned,
and what is not realized, is that the size of the square changes.  This makes it possible for the
square to exist under the given conditions.
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1. (a) If x– – –1 1 13 4= + , what is the value of x?

Solution
1 1

3
1
4x

= +

1 7
12x

=

∴ =x
12
7

(b) If the point P – ,3 2( ) is on the line 3 7 5x ky+ = , what is the value of k?

Solution
Since P is on the line, its coordinates must satisfy the equation of the line.
Thus, 3 3 7 2 5–( ) + ( ) =k

 14 14k =
     k = 1

(c) If x x2 2 0– – = , determine all possible values of 1
1 6

2– –
x x

.

Solution 1
x x2 2 0– – = Substituting

x x– 2 1 0( ) +( ) = For x = 2, 1
1
2

3
2

– –

∴ =x 2 or x = –1          = –1

For x = –1, 1 1 6+ –
          = – 4

Solution 2

1
1 6 6

2

2

2– –
– –

x x

x x

x
=

 =
( )x x

x

2

2

2 4– – –

= – 4
2x

  (since x x2 2 0– – = )

But x x x x2 2 2 1 0– – –= ( ) +( ) =   ∴ =x 2  or  x = –1.

Substituting x = 2,
–

– .

4

4
1=

 or x =

=

=

– ,

–

–

1

4

1
4
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2. (a) The circle defined by the equation x y+( ) + ( ) =4 3 92 2–  is moved horizontally until its centre

is on the line x = 6.  How far does the centre of the circle move?

Solution
The identifying centre is – ,4 3( ).
Therefore the centre moves 10 units.

y

x

6, 3( )

x = 6x = – 4

– 4, 3( )

(b) The parabola defined by the equation y x= ( )– –1 42  intersects the x-axis at the points P and Q.
If a b,( ) is the mid-point of the line segment PQ, what is the value of a?

Solution 1
Intercepts of parabola are 3 and –1.
Midpoint is 1, ∴ =a 1.

Solution 2
Axis of symmetry is x = 1.
(or vertex is at 1 4, –( ))

By symmetry, a = 1.

(c) Determine an equation of the quadratic
function shown in the diagram.

6

–3 –1 O

y

x
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Solution 1
Let the equation of the parabola be y ax bx c= + +2 .
The parabola passes through the points – ,3 0( ), – ,1 0( ) and 0 6,( ) .
Substituting 0 6,( )  gives, 6 0 0 6= + + =c c, .
Substituting – ,3 0( ) and – ,1 0( ) gives,

0 9 3 6= +a b–
and 0 6= +a b– .
Solving gives, a = 2, b = 8.
The equation is y x x= + +2 8 62 .

Solution 2

The general form of the quadratic function is,
y k x x= +( ) +( )3 1 .
Since 0 6,( )  is on the parabola,

6 0 3 0 1

2

= +( ) +( )
∴ =

k

k .
The equation is y x x= +( ) +( )2 3 1 .

6

–3 –1 O

y

x

Solution 3
Let the equation of the parabola be y a x c= +( ) +2 2 .
Since 0 6,( )  is on parabola, 6 4= +a c ,
and – ,1 0( ) is on parabola,   0 = +a c .

Solving, a = 2, c = – 2.

∴ Equation is y x= +( )2 2 22 – .

3. (a) How many equilateral triangles of side 1
cm, placed as shown in the diagram, are
needed to completely cover the interior of
an equilateral triangle of side 10 cm? ...

...

10 cm

...

...
...
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Solution1

If we proceed by pattern recognition, we find
after row 1 we have a total of 1 triangle, after
two rows we have 22  or 4 triangles.  After ten
rows we have 102  or 100 triangles. ...

...

10 cm

...

...
...

Solution 2
This solution is based on the fact that the ratio of areas for similar triangles is the square
of the ratio of corresponding sides.  Thus the big triangle with side length ten times that
of the smaller triangle has 100 times the area.

(b) The populations of Alphaville and Betaville were equal at the end of 1995.  The population
of Alphaville decreased by 2.9% during 1996, then increased by 8.9% during 1997, and
then increased by 6.9% during 1998.  The population of Betaville increased by r % in each
of the three years.  If the populations of the towns are equal at the end of 1998, determine
the value of r correct to one decimal place.

Solution
If P is the original population of Alphaville and Betaville,

P P
r

. . .971 1 089 1 069 1
100

3

( )( )( ) = +



 (1)

  1 1303 1
100

3

. = +





r
(2)

From here,
Possibility 1

1
100

1 1303
1

3+ = ( )r
.

1
100

1 0416+ =r
.

          r ˙ %= 4 2.

Or, Possibility 2

3 1
100

1 1303log log .+



 =r

log .

.

1
100

01773

1
100

1 0416

+



 =

+ =

r

r

                     r ˙ %= 4 2.
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4. (a) In the diagram, the tangents to the two
circles intersect at 90° as shown.  If the
radius of the smaller circle is 2, and the
radius of the larger circle is 5, what is the
distance between the centres of the two
circles?

Solution
The distance from the centre of smaller circle to
the point of intersection is 2 2 .
The distance from the centre of larger circle to
the point of intersection is 5 2 .
Therefore the total distance is 7 2 .

2

2

5

5

(b) A circular ferris wheel has a radius of 8 m and rotates at a rate of 12° per second.  At
t = 0 , a seat is at its lowest point which is 2 m above the ground.  Determine how
high the seat is above the ground at t = 40 seconds.

Solution
At t = 40, the seat would have rotated 480°  or
120° from its starting position.
We draw the triangle as shown.
The height above the ground is
2 8 8 30+ + °sin

= 14 m.

30°
8

8

8 sin 30°

5. (a) A rectangle PQRS  has side PQ on the

x-axis and touches the graph of
y k x= cos  at the points S and R as

shown.  If the length of PQ is π
3

 and the

area of the rectangle is 
5
3
π

, what is the

value of k? P Q

S R

y

x
O

π
2

–
2
π



1999 Euclid Solutions 7

Solution

If PQ = π
3

, then by symmetry the coordinates of R

are 
π π
6 6

, cosk



 .

Area of rectangle PQRS k k= 



 = ( )





π π π
3 6 3

3
2

cos

But 
3
6

5
3

k π π=      ∴ =k
10

3
 or 

10
3

3 . P Q

S R

y

x
O

π
2

–
2
π

(b) In determining the height, MN , of a
tower on an island, two points A and B,
100 m apart, are chosen on the same
horizontal plane as N.  If ∠ = °NAB 108 ,
∠ = °ABN 47  and ∠ = °MBN 32 ,

determine the height of the tower to the
nearest metre. A

N
B

100 m

M

Solution

In ∆ BAN , ∠ = °BNA 25
Using the Sine Law in ∆ BAN ,

NB

sin sin108
100

25°
=

°

 Therefore NB = °
°

≈100 108
25

225 04
sin

sin
. ,

A

N
B

100 m

M

108° 47°
32°

25°

Now in ∆ MNB , 
MN

NB
= °tan 32

MN = °
°

× °100 108
25

32
sin

sin
tan  ˙ .= 140 6

The tower is approximately 141 m high.
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6. (a) The points A, P and a third point Q (not
shown) are the vertices of a triangle which
is similar to triangle ABC.  What are the
coordinates of all possible positions for
Q ?

B 1, 1( )
P 2, 2( )

C 2,0( )

y

x
A 0, 0( )

Solution
Q Q

Q Q

Q Q

4 0 0 4

2 0 0 2

2 2 2 2

, , ,

, , ,

– , , , –

( ) ( )
( ) ( )
( ) ( )

B 1, 1( )
P 2, 2( )

C 2,0( )

y

x
A 0, 0( )

Q – 2, 2( )

Q 0, 4( )

Q 0, 2( )

Q 2, – 2( )

Q 4, 0( )

(b) Determine the coordinates of the points of intersection of the graphs of
y x= ( )log –10 2  and y x= +( )1 110– log .

Solution
The intersection takes place where,

log – – log10 102 1 1x x( ) = +( )
log – log10 102 1 1x x( ) + +( ) =

log – –10
2 2 1x x( ) =
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x x2 2 10– – =

x x

x x

x or

2 12 0

4 3 0

4 3

– –

–

–

=
( ) +( ) =

=
For x = – 3, y is not defined.
For x = 4 , y = =log ˙ .10 2 0 3.

The graphs therefore intersect at 4 210, log( ) .

7. (a) On the grid provided in the answer booklet, draw the graphs of the functions
y x= +– 2 1 and y x= – 2 .  For what value(s) of k will the graphs of the
functions y x= +– 2 1 and y x k= +– 2  intersect?  (Assume x and k are real

numbers.)

Solution
y

x

1

2

3

1 2 3 4 5– 1– 2– 3– 4– 5– 6
– 1

– 2

– 3

– 4

– 5

4

5

y = x – 2

A 2, – 2 3( )

y = –2 x +1

The graph of y x k= +– 2  is identical in size and shape compared to that of y x= – 2 .  The

parameter, k, just means that the graph can take any position on the line x = 2 for all real values
of k.  If we allow y x k= +– 2  to move and it slides down to point A, this implies that for
k = – 2 3  the graphs will intersect.  The graphs will also intersect for k < – 2 3 which is
easily seen graphically.  Thus the required values for k are k ≤ – 2 3, .
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(b) Part of the graph for y f x= ( )  is shown,

0 2≤ <x .

If f x f x+( ) = ( )2 1

2
 for all real values

of x, draw the graph for the intervals,
– 2 0≤ <x  and 2 6≤ <x .

y

x
2

4

4 6– 2

8

Solution
y

x
2

4

4 6– 2

8

In (b) students did not know how to use the functional equation,  f x f x+( ) = ( )2 1
2

.  We will

give an example to indicate how we might use this notation to get the required graph.

Let x = 1 which gives us f f3 11
2

( ) = ( )when we substitute into the given equation.  Since

f 1 2( ) =  (which we read from the given graph) we can say that f 3 2 11
2

( ) = ( ) = .  This means

that (3, 1) is a point on the new graph.  We can proceed from here by considering different
values for x.
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8. (a) The equation y x ax a= + +2 2  represents a parabola for all real values of a.  Prove that each of

these parabolas pass through a common point and determine the coordinates of this point.

Solution 1
Since y x ax a= + +2 2  for all a, a R∈ , it must be true for a = 0 and a = 1.

For a = 0, y x= 2; for a = 1, y x x= + +2 2 1.

By comparison, (or substitution) x x x

x

y

2 2 2 1

1

2
1

4

= + +

∴ =

⇒ =

–

We must verify that x = –1
2

, y = 1
4

 satisfies the original.

Verification: y x ax a a a a a= + + = 



 + 



 + = + =2

2

2
1

2
2

1
2

1
4

1
4

– –
–

∴





–
,

1
2

1
4

 is a point on y x ax a= + +2 2 , a R∈ .

Note:
Students can choose values other than a = 0, a = 1 to achieve the same result.

Solution 2
If y x ax a= + +2 2  represents a parabola for all real values of a then it is true for all a and b

where a b≠ .
So, y x ax a= + +2 2  and y x bx b= + +2 2  (by substitution of a and b into y x ax a= + +2 2 )

Since we are looking for common point, x ax a x bx b2 22 2+ + = + +
2 2 0ax bx a b– –+ =
a x b x2 1 2 1 0+( ) +( ) =–
a b x–( ) +( ) =2 1 0

Since a b≠ , 2 1 0x + =  ⇒ =x
–1
2

 and y = 1
4

.

Solution 3
(1) The parabola can be written as, y x a x= + +( )2 2 1 .

(2) If 2 1 0x + = , then x = –1
2

 and y = 1
4

 by substitution

Line (2) is true for all values of a and hence 
–

,
1

2
1
4





  is a point that is always on the given

parabola.

Solution 4
Let the common point be p q,( ) for all a.
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∴  p q ap a= + +2 2

For a = 0, q p= 2

For a = 1, q p p= + +2 2 1

∴  2 1 0p + = , p = –1
2

 and q = 1
4

Hence the point is 
–

,
1

2
1
4





 .

Verification as in Solution 1.

(b) The vertices of the parabolas in part (a) lie on a curve.  Prove that this curve is itself a parabola
whose vertex is the common point found in part (a).

Solution
Calculating the coordinates of the vertex of y x ax a= + +2 2 ,

 
y x ax a a a

y x a a a

= + + +

= +( ) +

2 2 2

2 2

2 –

–

∴ Vertex is – , –a a a2 +( ) .

We can determine the required by letting x a= –  and y a a= +– 2 .

Substitute a x= –  into y a a= +– 2  to obtain y x x= – –2 .

Completing the square of y x x= – –2  gives y x= +



 +–

1
2

1
4

2

.

∴





–
,

1
2

1
4

 is the vertex of y x x= – –2 .

9. A ‘millennium’ series is any series of consecutive integers with a sum of 2000.  Let m
represent the first term of a ‘millennium’ series.
(a) Determine the minimum value of m.
(b) Determine the smallest possible positive value of m.

Solution 1 - Parts (a) and (b)
Series is, m m m m k+ +( ) + +( ) + + + ( )( ) =1 2 1 2000... –

Therefore, 
m k m k m m+( ) +( ) ( ) =–

–
–1

2
1

2
2000

  k m k2 1 4000+( ) =–

Parity Argument
If k is odd then 2 1m k+ –  is even and vice-versa.
(Note:  This is true because if k is odd then k –1 is even as is 2m  so 2 1m k+ – , is itself even.  A
similar argument can be made for k an even integer to show that 2 1m k+ –  is odd.)
One of the factors of 4000 must be 1, 5, 25 or 125 which gives the eight cases listed below.

Note:
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If we had used m m m k+ +( ) + + +( ) =1 2000... , we would have arrived at
k m k+( ) +( ) =1 2 4000  and then the parity argument is virtually identical to that presented just

above.

Listing of Possibilities
k 2 1m k+ – m

1 4000 2000
5 800 398

25 160 68
125 32 –46

4000 1 –1999
800 5 –397
160 25 –67
32 125 47

(a) minimum value of m is –1999
(b) smallest possible positive value of m is 47

Solution 2 - Parts (a) and (b)
Note that this argument is very similar to the previous but initially it looks different.
With n integers in the series:  m m m n+ + + + + ( )[ ] =1 1 2000... –

1
2

2 1 2000n n m+( ) =–

n m n2 2 1 4000 0+ ( ) =– –

Since n is a positive integer this expression factors.
Since the sum of the roots is – –2 1m( ), an odd integer, the roots must be one odd and one

even.
The product of the roots is 4000.
The odd divisors of 4000 are 1, 5, 25 or 125.

Factorization 2 1m –( ) m

n n–1 4000( ) +( ) 3999 2000
n n– 5 800( ) +( ) 795 398
n n– 25 160( ) +( ) 135 68
n n–125 32( ) +( ) – 93 – 46

n n+( )( )1 4000– – 3999 –1999
n n+( )( )5 800– – 795 – 397
n n+( )( )25 160– –135 – 67
n n+( )( )125 32– 93 47

(a) –1999
(b) 47

Possible Solution - Part (a)
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If we start with a negative number m and add consecutive integers the sum will remain negative
until we have added the integers from m to m  at which time the sum will be 0.  To reach a
positive sum we add one more term, giving us a sum of m +1.  Thus if we add the numbers

–1999, ..., 1999, 2000 we get a sum of 2000.  However, if we start with an integer m less than
–1999 and add until we get to m +1 the sum will be greater than 2000, and will get even

larger if we add further integers.  Thus the minimum value for m is –1999.

This argument recognizes that –1999 is an answer but also justifies that m = –1999 is the
minimum answer.

10. ABCD  is a cyclic quadrilateral, as shown, with
side AD d= , where d is the diameter of the
circle.  AB a= , BC a=  and CD b= .  If a, b
and d are integers a b≠ ,
(a) prove that d cannot be a prime number.
(b) determine the minimum value of d.

A

B
C

D
d

a

a

b

Solution
(a) Join A to C and since ∠ ACD  is in a semicircle,

∠ = °ACD 90 .
Let ∠ =ABC α , ∴∠ = °CDA 180 – α  (cyclic quad.)

From  ∆ ABC , AC a a a2 2 2 22= + – cos α .

From ∆ ACD , AC d b2 2 2= –  and cos –180°( ) =α b

d

or cos
–α = b

d
.

By substitution, d b a a
b

d
2 2 2 22 2– –

–= 





A

B
C

D
d

a

b
α

180°– α

a

    d db a d a b3 2 2 22 2– = +

    d d b a d b2 2 22–( ) = +( )

   2 2a d d b d b= ( ) ≠– ,

Note that this relationship could also be reached in the following way:
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A Possible Second Method for deriving, 2 2a d d b= ( )–
Using ∆OBC  for example,

From ∆OBC , a
d d d d2

2 2

4 4
2

2 2
= + 








– cos α

∴ = ( )a
d2

2

2
1 – cos α

But cos α = =

b

d
b

d
2

2

.

A

B
C

D

a

a

α
α

Od

2
d

2

α

b

2
b

2

By substitution, 2 2a d d b= ( )–  as before.

From here we can use the above relationships to arrive at a contradiction.
From 2 2a d d b= ( )– , if we start by assuming d is a prime then d = 2  or d ≥ 3.

Case 1 d = 2
If we make the substitution d = 2  in 2 2a d d b= ( )–  then we have,

     

2 2 2

2

2

2

2

2

a b

a b

b a

= ( )
=

+ =

–

–

.
Since a and b are integers then this implies a b= = 1 which is not possible since we are told that
a and b must be different.

Case 2 d ≥ 3, d a prime
Students should start by looking at the relationship, 2 2a d d b= ( )– .  If d ≥ 3 and we look at

the left and right side of this relationship then d must divide into the left hand side.  Since d > 2,
it is not possible that d 2.  So clearly, then, d must divide a2 .  However, we made the

assumption that d is prime and greater than 2 so d not only divides a2  but d also divides a.
This is not possible, however, since d is the diameter of the circle and is larger than a.  Our
original assumption that d was prime must be incorrect and so d must be a composite number.

Note:
Students should observe that there was nothing in our proof that prevents d from being a
composite number.  In part (b) an example is given to show this possibility.

Solution
(b) Note that d is not prime so d ≠ 2 , 3, 5, 7, etc.

Try d = 4, 2 4 42a b= ( )–

     a b2 2 4= ( )– .

If b = 1 or 3 then a2 6=  or 2 so a is not an integer.
If b = 2 then a = 2 but a b≠  so this is not possible.
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Try d = 6 , 2 6 62a b= ( )– , a b2 3 6= ( )– .

If b = 1, 2, 4 or 5 then a is not an integer.
If b = 3 then a = 3 but a b≠  as before.

Try d = 8, 2 8 82a b= ( )– , a b2 4 8= ( )– .
∴ =b 7 gives a = 2, an acceptable solution.

So the minimum value of d is 8.
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1. (a) If one root of x x c2 2 0+ =–  is x =1, what is the value of c?

Solution 1
If x =1, by substituting, c = 3.

Solution 2
By division,

)x x x c

x x

x c

x

c

x
– –

–

–

–

–

1 2

3

3 3

3

3
2

2

+

+

+

If the remainder is zero, – c + =3 0

 c = 3.

(b) If 2 82 4x – = , what is the value of x?

Solution
2 22 4 3x – =
Therefore, 2 4 3x – =

  x = 7
2

.

(c) Two perpendicular lines with x-intercepts  – 2 and 8 intersect at 0, b( ).  Determine all values of

b.

Solution 1
If the lines are perpendicular their slopes are negative
reciprocals.

Thus,   
b b

–
–

8 2
1× =

   b2 16= , b = ±4 .

 y

x

(0, b)

(– 2, 0) (8, 0)

Solution 2
Using Pythagoras, b b– – –0 0 8 0 0 2 102 2 2 2 2( ) + ( )[ ]+ ( ) + +( )[ ] =

2 322b = , b = ±4 .

Solution 3
The vertices of the triangle represents three points on a circle with – ,2 0( ) and 8 0,( ) being the
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coordinates of the end points of the diameter.  This circle has centre C 3 0,( )  and r = 5.  The

equation for this circle is x y– 3 252 2( ) + =  and if we want to find the y-intercepts we let x = 0
which gives b = ±4 .

2. (a) The vertex of y x b= ( ) +–1 2  has coordinates 1 3,( ).  What is the y-intercept of this parabola?

Solution
The vertex of parabola is 1, b( ).
Therefore, b = 3.
The required equation is now y x= ( ) +–1 32 .
For the y-intercept, let x = 0 .

Thus, yint –= ( ) + =0 1 3 42 .

(b) What is the area of ∆ ABC  with vertices A – ,3 1( ) , B 5 1,( ) and C 8 7,( )?

Solution
Drawing the diagram gives a triangle with a height of 6 and a base of 8 units.
The triangle has an area of 24 square units.

(c) In the diagram, the line y x= +1 intersects the

parabola y x x= 2 3 4– –  at the points P and Q.

Determine the coordinates of P and Q.

y

x

Q

P O

Solution
Consider the system of equations y x= +1, y x x= 2 3 4– – .

Comparison gives x x x+ =1 3 42 – –

x x

x x

2 4 5 0

5 1 0

– –

– .

=
( ) +( ) =

Therefore x = 5 or x = –1.
If x = 5, y = 6 and if x = –1, y = 0.
The required coordinates are P – ,1 0( ) and Q 5 6,( ) .

3. (a) The graph of y mx=  passes through the points 2 5,( ) and 5, n( ).  What is the value of mn ?
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Solution
Since 2 5,( ) is on y mx= , 5 2= m .

Since 5, n( ) is on y mx= , n m= 5 .

So mn m m m m= ( ) = = ( ) = =5 6 2 3 35 125.

(b) Jane bought 100 shares of stock at $10.00 per share.  When the shares increased to
a value of $N each, she made a charitable donation of all the shares to the Euclid
Foundation.  She received a tax refund of 60% on the total value of her donation.
However, she had to pay a tax of 20% on the increase in the value of the stock.
Determine the value of N if the difference between her tax refund and the tax paid
was $1000.

Solution
Jane’s charitable donation to the Euclid Foundation was 100N  dollars.
Her tax refund was 60% of 100N  or 60N  dollars.
The increase in the value of her stock was 100 10N –( ) or 100 1000N –( )  dollars.

Jane’s tax payment was 20% of 100 1000N –  or 20 200N – .
From the given, 60 20 200 1000N N– –( ) =
Upon simplification, 40N = 800

  N = 20.
Therefore the value of N was 20.

4. (a) Consider the sequence t t1 21 1= =, –  and t
n

n
tn n= 



–
– –

3
1 2 where n ≥ 3.  What is the value of

t1998?

Solution 1
Calculating some terms, t1 1= , t2 1= – , t3 0= , t4

1
3

= – , t5 0= , t6
1

5
= –  etc.

By pattern recognition, t1998
1

1997
= – .

Solution 2
t t t

t

1998
1995

1997 1996
1995

1997

1993

1995 1994

1995

1997

1993

1995

1991

1993

3

5

1

3 2

1

1997

= = ×

= ⋅ ⋅ ⋅

=

L

–

(b) The nth term of an arithmetic sequence is given by t nn = 555 7– .
If S t t tn n= + + +1 2 ... , determine the smallest value of n for which Sn < 0.
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Solution 1
This is an arithmetic sequence in which a = 548 and d = – 7.

Therefore, S n nn
n n= ( ) + ( )( )[ ] = +[ ]2 2

2 548 1 7 7 1103– – – .

We now want n n
2

7 1103 0– +( ) < .

Since n > 0 , – 7 1103 0n + <

   n >157 4
7

.

Therefore the smallest value of n is 158.

Solution 2

For this series we want, tk
k

n

<
=
∑ 0

1

, or 555 7 0
1

– k
k

n

( ) <
=
∑ .

Rewriting, 555 7
1

2
0n

n n
–

( ) +( ) <

 

1110 7 7 0

7 1103 0

2

2

1103

7

n n n

n n

n

– –

–

.

<

>

>or,

The smallest value of n is 158.

Solution 3
We generate the series as 548, 541, 534, ..., 2, – 5, ..., – , –544 551.
If we pair the series from front to back the sum of each pair is – 3.

Including all the pairs 548 551– , 541 544–  and so on there would be 79 pairs which give a
sum of – 237.
If the last term, – 551, were omitted we would have a positive sum.

Therefore we need all 79 pairs or 158 terms.

5. (a) A square OABC  is drawn with vertices as
shown.  Find the equation of the circle with
largest area that can be drawn inside the square.

 y

x

B(0, 4)

A(2, 2)C(– 2, 2)

O(0, 0)



1998 Euclid Solutions 6

Solution
The square has a side length of 2 2 .
The diameter of the inscribed circle is 2 2 , so its radius is 2 .
The centre of the circle is 0 2,( ) .
The required equation is x y2 22 2+ ( ) =–  or x y y2 2 4 2 0+ + =– .

(b) In the diagram, DC  is a diameter of the larger circle centred at
A, and AC  is a diameter of the smaller circle centred at B.  If
DE  is tangent to the smaller circle at F, and DC =12,
determine the length of DE . D

A B
C

E
F

Solution
Join B to F and C to E.
FB DE⊥  and DFE  is a tangent .
Since DC  is a diameter, ∠ = °DEC 90 .
Thus FB EC .

By Pythagoras, DF = =9 3 722 2– .
Using similar triangles (or the side splitting theorem)
we have,

D
A B

C

E
F

α

OR
DE

DF

DC

DB
= EC

FB
= 12

9

DE

6 2
4
3

= EC FB= 4
3

DE = 8 2   or  128 EC = 4
By Pythagoras, DE = 8 2  or 128 .

6. (a) In the grid, each small equilateral triangle has side length 1.  If
the vertices of ∆WAT  are themselves vertices of small
equilateral triangles, what is the area of ∆WAT ?

W

T

A
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Solution 1
AT2 2 21 4 2 1 4 60 13= + ( )( ) ° =– cos
Since ∆WAT  is an equilateral triangle with a side of

length 13 , its height will be 
3

2
13( ) .  The area of

A

T

1
60°

∆WAT  is thus, 1
2

3
2

13
4

13 13 3( )( )





= .  It is also possible to use the formula for the area

of a triangle,

Area = 1
2

ab csin .  Since the triangle is equilateral, area of ∆WAT
AT= =3
4

13 3
4

2

.

Solution 2
Since the small triangles have sides 1, they have a

height of 3

2
.

Consider rectangle PQTU .

Then

W

T

A

U

QP

∆ ∆ ∆ ∆WAT PQTU APW WQT TUA

PQ QT AP PW WQ QT TU UA

= − − −

= − − −

= ( ) − ( ) − ( ) − ( )
= −

=

( )( ) ( )( ) ( )( ) ( )( )

( . ) ( . ) ( ) ( . )

1

2

1

2

1

2

1

2
3 3

2

1

2

1

2
3

2
3 5 2 3 2 5 1 2 3 3 5

7 3
15 3

4

13 3

4

 (b) In ∆ ABC , M is a point on BC  such that BM = 5 and

MC = 6 .  If AM = 3 and AB = 7, determine the exact
value of AC .

5 6

7
3

B M C

A

Solution

From ∆ ABM , cos
– –

–
< =

( )( )
=B

3 7 5
2 7 5

13
14

2 2 2

.

From ∆ ABC , AC2 2 2 13
14

7 11 2 7 11 27= + ( )( )( ) =– .

Therefore, AC = 27 .
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7. (a) The function f x( )  has period 4.  The graph of one
period of y f x= ( )  is shown in the diagram.  Sketch

the graph of y f x f x= ( ) + +( )[ ]1

2
1 3– , for – 2 2≤ ≤x .

.....

.....

y

0 x

2

1 2–1

– 2

–2
– 3 3

Solution 1
(a)  x f x( ) f x –1( ) f x +( )3

1
2

1 3f x f x–( ) + +( )[ ]
– 2 0 2 2 2
–1 – 2 0 0 0

0 0 – 2 – 2 – 2

1 2 0 0 0
2 0 2 2 2

.....

.....

y

0 x

2

1 2–1

– 2

–2
– 3 3

Now plot the points and join them with straight line segments.

Solution 2
Since f x( )  has period 4, f x f x+( ) = ( )3 1– .

Therefore, y f x f x f x f x f x= ( ) + +( )[ ] = ( ) + ( )[ ] = ( )1
2

1
2

1 3 1 1 1– – – – .

The required graph is that of y f x= ( )–1  which is formed by shifting the given graph 1 unit to
the right.

(b) If x and y are real numbers, determine all solutions x y,( ) of the system of equations

 x xy2 8 0– + =
 x x y2 8 0– + = .

Solution 1
Subtracting,

x xy

x x y

xy x y

x y x

y x

2

2

8 0

8 0

8 8 0

8 1 1 0

8 1 0

–

–

– –

–

–

+ =

+ =

+ + =
+( ) +( ) =
( ) +( ) =

y = 8   or   x = –1



1998 Euclid Solutions 9

If y = 8, both equations become x x2 8 8 0– + = , x = ±4 2 2 .
If x = –1 both equations become y + =9 0, y = – 9.

The solutions are – , – , ,1 9 4 2 2 8( ) +( ) and 4 2 2 8– ,( ) .

Solution 2

If x xy2 8 0– + = , y
x

x
= +2 8

.

And x x y2 8 0– + =  implies y x x= 8 2– .

Equating, 
x

x
x x

2
28

8
+ = –

or, x x3 27 8 0– + = .
By inspection, x = –1 is a root.

By division, x x x x x3 2 27 8 1 8 8– –+ = +( ) +( ).
As before, the solutions are – , –1 9( ), 4 ± 2 2, 8( ) .

8. (a) In the graph, the parabola y x= 2 has been translated to
the position shown.  Prove that de f= .

y

x
–d , 0( )

0, – f( )
e, 0( )

Solution
Since the given graph is congruent to y x= 2 and has x-intercepts – d  and e, its general form is
y x d x e= +( )( )– .
To find the y-intercept, let x = 0.  Therefore y-intercept = – de.
We are given that the y-intercept is – f .
Therefore – –f de=  or f de= .

(b) In quadrilateral KWAD, the midpoints of KW  and AD

are M and N respectively.  If MN AW DK= +( )1

2
,

prove that WA  is parallel to KD .

 y

x
K

W A

D

M N
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Solution 1
Establish a coordinate system with K 0 0,( ), D a2 0,( )  on
the x-axes.  Let W be 2 2b c,( )  and A be 2 2d e,( ).
Thus M is b c,( ) and N is a d e+( ), .

KD  has slope 0 and slope WA
e c

d b
= –

–
.

Since MN AW DK= +( )1
2

a d b e c

a d b e c

a d b e c

+( ) + ( )

= + ( ) + ( )





= + ( ) + ( )





– –

– –

– –

2 2

1

2
2 2

1

2
2 2

2 2 2 2 2

2 2

 y

x

M(b, c)

W(2b, 2c) A(2d, 2e)

N(a + d, e)

K(0, 0) D(2a, 0)

Squaring both sides gives,

a d b e c a a d b e c d b e c

a a d b d b a a d b e c d b

+( ) + ( ) = + ( ) + ( ) + ( ) + ( )

+ ( ) + ( ) = + ( ) + ( ) + ( )

– – – – – –

– – – – –

2 2 2 2 2 2 2

2 2 2 2 2 2

2

2 2

Simplifying and dividing by 2a  we have, d b d b e c– – –= ( ) + ( )2 2 .

Squaring, d b d b e c– – –( ) = ( ) + ( )2 2 2 .

Therefore e c–( ) =2 0  or  e c= .
Since e c=  then slope of WA  is 0 and KD AW .

Solution 2
Join A to K and call P the mid-point of AK .
Join M to P, N to P and M to N.
In ∆KAW , P and M are the mid-points of KA and KW .

Therefore, MP = 1

2
WA .

Similarly in ∆KAD, PN KD= 1
2

.

Therefore MP PN MN+ = .

 y

x

M(b, c)

W(2b, 2c) A(2d, 2e)

N(a + d, e)

K(0, 0) D(2a, 0)

As a result M, P and N cannot form the vertices of a triangle but must form a straight line.
So if MPN  is a straight line with MP WA and PN KD  then WA KD as required.

Solution 3
We are given that AN ND=  and WM MK= .
Using vectors,

(1) MN MW WA AN= + + (from quad. MWAN )

(2) MN MK KD DN= + + (from quad. KMND )

It is also possible to write, MN MW KD AN= +– – ,
(3)  (This comes from taking statement (2) and making
appropriate substitutions.)
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If we add (1) and (3) we find, 2MN WA KD= + .

But it is given that 2 MN AW DK= + .

From these two previous statements, MN  must be parallel to WA  and KD  otherwise

2 MN AW DK< + .

Therefore, WA KD.

9. Consider the first 2n  natural numbers.  Pair off the numbers, as shown, and multiply the two
members of each pair.  Prove that there is no value of n for which two of the n products are equal.

(n + 1)n (n + 2) (n + 3) (2n – 1). . . 2m. . . (n – 1)(n – 2)321

. . .

Solution 1
The sequence is 1 2 2 2 1 3 2 2 2 1 2 1 1n n n k n k p n p n n( ) ( ) ( ) +( ) +( ) +( ), – , – , ..., – , ..., – , ..., .
In essence we are asking the question, ‘is it possible that k n k p n p2 1 2 1– –+( ) = +( ) where p and k

are both less than or equal to n?’
k n k p n p2 1 2 1– –+( ) = +( ) (supposing them to be equal)

2 22 2nk k k np p p– –+ = +
p k nk np k p

p k p k n k p k p

p k p k n

p k p k n

2 2 2 2 0

2 0

2 1 0

2 1 0

– – –

– – –

– – –

– – –

+ + =

( ) +( ) + ( ) + ( ) =
( ) +( )[ ] =
( ) +( ) =

Since p and k are both less than or equal to n, it follows p k n+ ≠– –2 1 0 .  Therefore p k=  and they

represent the same pair.  Thus the required is proven.

Solution 2
The products are 1 2 1 1n +( )– , 2 2 1 2n +( )– , 3 2 1 3n +( )– , ..., n n n2 1+( )– .

Consider the function, y x n x x n x f x= +( ) = + +( ) = ( )2 1 2 12– – .
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The graph of this function is a parabola, opening down, with

its vertex at x n= + 1
2

.

The products are the y-coordinates of the points on the
parabola corresponding to x n=1 2 3, , , ..., .  Since all the

points are to the left of the vertex, no two have the same      y-
coordinate.
Thus the products are distinct.

y

x

x = n + 1
2

Solution 3

The sum of these numbers is 
2 2 1

2
n n +( )

 or n n2 1+( ) .

Their average is 
n n

n
n

2 1
2

1
2

+( ) = + .

The 2n  numbers can be rewritten as,

n
n

n n n n n
n+ 



 + + + + + + + + 




1
2

2 1
2

1
2

3
2

1
2

1
2

1
2

1
2

1
2

3
2

1
2

2 1
2

–
–

, , – , – , , , ,
–

L L .

The product pairs, starting from the middle and working outward are

P n1
1
2

2 1
4

= +( ) –

P n2
1
2

2 9
4

= +( ) –

  M

P n
n

n = +











1
2

2 1
2

2 2

–
–

Each of the numbers 
2 1

2

2k –



  is distinct for k n= 1 2 3, , , ...,  and hence no terms of Pk  are equal.

Solution 4
The sequence is 1 2 2 2 1 3 2 2 2 1n n n n n n( ) ( ) ( ) ( )[ ], – , – , ..., – – .

This sequence has exactly n terms.
When the kth term is subtracted from the k +( )1 th term the difference is

k n k k n k n k+( )[ ] ( )[ ] = ( )1 2 2 1 2– – – – – .  Since n k> , this is a positive difference.

Therefore each term is greater than the term before, so no two terms are equal.

10. The equations x x2 5 6 0+ + =  and x x2 5 6 0+ =–  each have integer solutions whereas only one of
the equations in the pair x x2 4 5 0+ + =  and x x2 4 5 0+ =–  has integer solutions.
(a) Show that if x px q2 0+ + =  and x px q2 0+ =–  both have integer solutions, then it is

possible to find integers a and b such that p a b2 2 2= + .  (i.e. a b p, ,( ) is a Pythagorean triple).
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(b) Determine q in terms of a and b.

Solution
(a) We have that x px q2 0+ + =  and x px q2 0+ =–  both have integer solutions.

For x px q2 0+ + = , its roots are 
– –p p q± 2 4

2
.

In order that these roots be integers, p q2 4–  must be a perfect square.

Therefore, p q m2 24– =  for some positive integer m.

Similarly for x px q2 0+ =– , it has roots 
– p p q± +2 4

2
 and in order that these roots be

integers p q2 4+  must be a perfect square.

Thus p q n2 24+ =  for some positive integer n.

Adding gives 2 2 2 2p m n= +  (with n m≥  since n p q2 2 4= +
 ≥ =p q m2 24– )

And so p m n
n m n m2 2 2

2 21
2

1
2 2 2

= + = +



 + 




–
.

We note that m and n have the same parity since m p q p2 2 24 2= ≡ ( )– mod  and

n p q p2 2 24 2≡ + ≡ ( )mod .

Since 
n m+

2
 and 

n m–
2

 are positive integers then p a b2 2 2= +  where a
n m= +

2
 and

b
n m= –

2
.

(b) From (a), a
n m= +

2
 and b

n m= –
2

 or n a b= +  and m a b= – .

From before, p q n2 24+ =

 

4

4 2

2 2 2

2 2 2

q n p

a b a b

q ab

=

= +( ) +( )
=

–

–

.

Therefore, q
ab=
2

.
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