CIMC Sample Contest

Part A

1. Determine the value of $\frac{\sqrt{25-16}}{\sqrt{25}-\sqrt{16}}$.
\{2008 Cayley \#2\}
2. In the diagram, $P T$ and $Q S$ are straight lines intersecting at R such that $Q P=Q R$ and $R S=R T$.

Determine the value of x.
\{2008 Cayley \#8\}

3. If $x+y+z=25, x+y=19$ and $y+z=18$, determine the value of y.
\{1998 Cayley \#11\}
4. The odd numbers from 5 to 21 are used to build a 3 by 3 magic square. (In a magic square, the numbers in each row, the numbers in each column, and the numbers on each diagonal have the same sum.) If 5, 9 and 17 are placed as shown, what is the value of x ?

	5	
9		17
x		

$\{2010$ Cayley \#16\}
5. What is the largest positive integer n that satisfies $n^{200}<3^{500}$?
$\{2010$ Cayley \#20\}
6. A coin that is 8 cm in diameter is tossed onto a 5 by 5 grid of squares each having side length 10 cm . A coin is in a winning position if no part of it touches or crosses a grid line, otherwise it is in a losing position. Given that the coin lands in a random position so that no part of it is off the grid, what is the probability that it is in a winning position?

\{2010 Cayley \#24\}

Part B

1. (a) Determine the average of the integers $71,72,73,74,75$.
(b) Suppose that $n, n+1, n+2, n+3, n+4$ are five consecutive integers.
(i) Determine a simplified expression for the sum of these five consecutive integers.
(ii) If the average of these five consecutive integers is an odd integer, explain why n must be an odd integer.
(c) Six consecutive integers can be represented by $n, n+1, n+2, n+3, n+4, n+5$, where n is an integer. Explain why the average of six consecutive integers is never an integer.
\{2010 Fryer \#2\}
2. (a) Quadrilateral $Q A B O$ is constructed as shown. Determine the area of $Q A B O$.

(b) Point $C(0, p)$ lies on the y -axis between $Q(0,12)$ and $O(0,0)$ as shown. Determine an expression for the area of $\triangle C O B$ in terms of p.
(c) Determine an expression for the area of $\triangle Q C A$ in terms of p.
(d) If the area of $\triangle A B C$ is 27 , determine the value of p.

$\{2010$ Galois \#2\}

Part B (continued)

3. If m is a positive integer, the symbol m ! is used to represent the product of the integers from 1 to m. That is, $m!=m(m-1)(m-2) \ldots(3)(2)(1)$. For example, $5!=5(4)(3)(2)(1)$ or $5!=120$. Some positive integers can be written in the form

$$
n=a(1!)+b(2!)+c(3!)+d(4!)+e(5!)
$$

In addition, each of the following conditions is satisfied:

- a, b, c, d, and e are integers
- $0 \leq a \leq 1$
- $0 \leq b \leq 2$
- $0 \leq c \leq 3$
- $0 \leq d \leq 4$
- $0 \leq e \leq 5$.
(a) Determine the largest positive value of N that can be written in this form.
(b) Write $n=653$ in this form.
(c) Prove that all integers n, where $0 \leq n \leq N$, can be written in this form.
(d) Determine the sum of all integers n that can be written in this form with $c=0$.
$\{2009$ Galois \#4\}

