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Here are solutions to some of the questions. Not all solutions appear here for two reasons. First,
a whole bunch of the questions are answered (at least partially) somewhere in the notes, usually
after the question has been posed. Second, I don’t want to ruin the fun for you by giving you all
the answers!

Question Sheet 1

2. We exclude 0 because it doesn’t have a multiplicative inverse. As we’ll see later, every element
in a group must have an inverse.

3. (a) The table is

-1/-1 1 —i 3

(b) The identity in this group is the element 1.

(¢) The inverses for each element are give in the following table.
z [1]-1]i |4
a1

SHI

5. The elements of Z§ are {1,3,5,7} and the multiplication table is given by

x|1 35 7
1[1 35 7
313 1.7 5.
5/5 7 1 3
7|75 3 1

The order of the group is |Z§| = 4.

6. The orders of the groups are given as follows.

G ‘ L, ‘ Ly ‘ Poly(n) ‘ Sym(n) ‘ Braid(3) ‘ Z

|G|‘n‘p—1‘ 2n ‘ n! ‘ 00 ‘oo



1.

. Proof. Suppose ba = e = ca, then ba = ca. Multiplying on the right by a~

9. The Rubik’s cube is a group where each element is a move (say rotate the top layer by 90

degrees), and the operation is composition, that is do one move and then the other. A bit of
thought will convince you that this is indeed a group, where the identity is the “do nothing”
move.

Question Sheet 2

(b) The groups Zg and Zy X Zs are isomorphic, and the groups Poly(3) and Sym(3) are isomorphic.

However, Zg is not isomorphic to Poly(3) and one way to see this is that in Zg, a+b=b+a
for all elements. However in Poly(3), a * b # b a for all a,b € Poly(3).

. Up to isomorphism, there are two groups of order four, isomorphic to (Z4,+) and (Z§, x).

There is only one group of order 5. In fact, it follows from Lagrange’s theorem (which comes
at the end of the course) and a bit of work, that there is only one group of order p for any
prime, and it is isomorphic to (Z,, +).

. The copy of (Z3,+) is given by the subset {e, 71,72} in Poly(3). We can see this copy if we

replace e with 0, r; with 1, and ro with 2. This actually gives us an isomorphism between
Zs3 and {e,r1,7m2}. You can see the copy of Poly(n) in Sym(n) by labelling the corners of the
n-gon, and labelling the dots in Sym(n). Then for each element of Poly(n), you can find it
in Sym(n) by keeping track of how the element of Poly(n) permutes the corners, and doing
the same in Sym(n).

The notion of finding a copy of another group in a bigger group leads to the definition of
subgroups in the notes.

. The orders of elements z € Qg are given as follows.

v [ L] =i —j[k]-k
| [ 1] 2 |4] 4 |4] 4 |4 4

I we get b= ¢, and

SO inverses are unique. u

. Proof. Suppose we have two elements e, f such that ea = ¢ = fa. Then ea = fa and

1

multiplying on the right by a™ we have e = f so identities are unique. |

(a) i N * x | — m and the inverse of (\jJ is lgﬁ
ii. >§<*>< = >K and the inverse of >§< is >€<

(b) i. 6+ 7 =13 and the inverse of 8 is —8.
ii. 6+ 7 =4 and the inverse of 8 is 1.

. Zy and {1,—1,i,—i} have generators (1 and i respectively), but Z§ does not. Given two

groups of the same order with generators, we can find an isomorphism by simply replacing
one generator and all its powers with the other generator. From this we can conclude that
Zy is isomorphic to {1, —1,4, —i} but Z§ is not isomorphic to either of these.

Such an element is called a generator because it generates the whole group by just taking
powers of it. For example, 1,1+ 1,1+ 1+ 1, and 1+ 1+ 14 1 give all the elements of Zj4.
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1.

7.

(a) The cosets are {

[ E I XS 5 K}

(b) These cosets do not form a group like the cosets of nZ in Z do (to give Z,). To see
this, notice that the inverse of the first element in the second coset is itself (so 1t lives in
the second coset), however the inverse of the second element in this coset is in the third
coset. So it doesn’t make sense to talk about the inverse of the second coset being one
of the other cosets.

(c) The condition on the subgroup is called being a normal subgroup, and this means that
for any element g € G, gHg™! = H.

. All the subgroups of Qg are {1},{1,—1},{1,4,—1,—i},{1,4,—1,—j},{1,k,—1,—k}, and Og

itself, which have orders 1,2, 4,4, 4, 8 respectively.

FULE XRATE XS

) >€<, M}, and Sym(3) itself. These have orders

All the subgroups of Sym(3) are {

0] K

1,2,2,3,6 respectively.

. The subgroup of Braid(3) is the group that consists of all braids that start and end at the

J J
same spot. So [QJ is in this subgroup but N is not.
X N\

. Proof. Suppose a~'b € H. Then the coset a~'bH = H and so multiplying on the left by a

we have bH = aH and so a and b belong to the same coset.

On the other hand, if @ and b are in the same coset, then b = ah for some h € H. Multiplying
on the left by a~! we have that ¢ 'b = h and thus a='b € H. |

(a) Proof. Since the order of an element is the order of the subgroup generated by the
element, and by Lagrange’s theorem we know that the order of any subgroup must
divide the order of a group, we can conclude that the order of an element must divide
the order of the group it lives in. |

(b) Proof. First suppose a = 0 in Z,,. Then a”? = a mod p. So we can assume a # 0 mod p.
Since p is a prime, a must be an element of Z;, so consider a in the group (Zj, x).

We know that the order of ¢ must divide the order of the group, p — 1. We will now
prove that a?~! =1 mod p. Let the order of a be k, and since k divides p — 1, there is
some integer n such that kn = p — 1. Then

ap*1 =a¢™=1"=1 mod p.

We now have that a?~! = 1 mod p, so multiplying both sides by a we get a? = a
mod p, completing the proof. [

(a) The possible orders for subgroups of Zjs must be all the numbers that divide the order
of the group (by Lagrange’s theorem). Since the order is 12, the possible orders of
subgroups are 1,2,3,4,6, and 12. In fact, we see that there do exist subgroups of each of
these orders given by

{0}7 {07 6}7 {07 4, 8}> {0, 3,6, 9}7 {07 2,4,6,8, 10}’ and Zi2



respectively.

(b) In (Zy,+), it turns out that for each k that divides n, there is exactly one subgroup of
that order, which is pretty amazing!



