Intermediate Math Circles Wednesday, February 15, 2017
 Problem Set 2

1. Write down the adjacency matrix for each of the following graphs.

(b)

2. Draw a graph corresponding to each of the following adjacency matrices.

$$
A_{1}=\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 1 & 2 \\
1 & 2 & 0
\end{array}\right], \quad A_{2}=\left[\begin{array}{lllll}
1 & 2 & 0 & 0 & 1 \\
2 & 0 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 & 1 \\
0 & 1 & 0 & 2 & 1 \\
1 & 0 & 1 & 1 & 0
\end{array}\right]
$$

3. Explain how to decide whether or not a graph is simple by looking at its adjacency matrix alone. Decide which of the following adjacency matrices corresponds to a simple graph without drawing the graph.

$$
A_{1}=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 2 \\
0 & 2 & 0
\end{array}\right], \quad A_{2}=\left[\begin{array}{llll}
0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 \\
1 & 1 & 1 & 0 \\
1 & 1 & 0 & 0
\end{array}\right], \quad A_{3}=\left[\begin{array}{lllll}
0 & 1 & 1 & 0 & 1 \\
1 & 0 & 1 & 1 & 1 \\
1 & 1 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 \\
1 & 1 & 1 & 1 & 0
\end{array}\right]
$$

4. (a) Let G be a graph with vertices $v_{1}, v_{2}, \ldots, v_{n}$ and adjacency matrix A.
(i) Define B to be the $n \times n$ matrix whose (i, j)-entry is given by

$$
B_{i, j}=A_{i, 1} A_{1, j}+A_{i, 2} A_{2, j}+\cdots+A_{i, n} A_{n, j} .
$$

Show that $B_{i, j}$ is the number of walks of length 2 from v_{i} to v_{j}.
Hint: Remember that $A_{i, k}$ is the number of edges from v_{i} to v_{k}. With this in mind, how can we interpret each product $A_{i, k} A_{k, j}$?
(ii) With B as above, define C to be the $n \times n$ matrix with (i, j)-entry

$$
C_{i, j}=B_{i, 1} A_{1, j}+B_{i, 2} A_{2, j}+\cdots+B_{i, n} A_{n, j} .
$$

Show that $C_{i, j}$ is the number of walks of length 3 from v_{i} to v_{j}.
(b) A graph G and its corresponding adjacency matrix A are given below. Use the results of part (a) to compute the number of walks of length 2 from v_{1} to v_{6}.

$$
A=\left[\begin{array}{llllll}
2 & 2 & 1 & 1 & 1 & 1 \\
2 & 0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 & 2 \\
1 & 0 & 0 & 0 & 0 & 1 \\
1 & 1 & 1 & 2 & 1 & 1
\end{array}\right]
$$

5. Let G be a graph. If G is not connected, show that there is some way to order the vertices of G so that its adjacency matrix has the form

$$
A=\left[\begin{array}{cccc|cccc}
A_{1,1} & A_{1,2} & \cdots & A_{1, m} & 0 & 0 & \cdots & 0 \\
A_{2,1} & A_{2,2} & \cdots & A_{2, m} & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\
A_{m, 1} & A_{m, 2} & \cdots & A_{m, m} & 0 & 0 & \cdots & 0 \\
\hline 0 & 0 & \cdots & 0 & A_{m+1, m+1} & A_{m+1, m+2} & \cdots & A_{m+1, n} \\
0 & 0 & \cdots & 0 & A_{m+2, m+1} & A_{m+2, m+2} & \cdots & A_{m+2, n} \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 0 & A_{n, m+1} & A_{n, m+2} & \cdots & A_{n, n}
\end{array}\right]_{n \times n}
$$

for some integer m with $1 \leq m<n$. Explain why this is never possible when G is connected.
6. For each sequence d below, use the Havel-Hakimi algorithm to draw a simple graph with degree sequence d or show that such a graph does not exist.
(a) $d=(3,3,3,2,1)$
(b) $d=(4,4,4,2,2)$
(c) $d=(5,4,3,2,2,2,2,2)$
7. Explain why the backtracking process following the Havel-Hakimi algorithm always produces a simple graph.

