Intermediate Math Circles Wednesday, February 15, 2017 Problem Set 2

1. Write down the adjacency matrix for each of the following graphs.

2. Draw a graph corresponding to each of the following adjacency matrices.

$$A_1 = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 1 & 2 \\ 1 & 2 & 0 \end{bmatrix}, \quad A_2 = \begin{bmatrix} 1 & 2 & 0 & 0 & 1 \\ 2 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 2 & 1 \\ 1 & 0 & 1 & 1 & 0 \end{bmatrix}$$

3. Explain how to decide whether or not a graph is simple by looking at its adjacency matrix alone. Decide which of the following adjacency matrices corresponds to a simple graph without drawing the graph.

$$A_{1} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 2 \\ 0 & 2 & 0 \end{bmatrix}, \quad A_{2} = \begin{bmatrix} 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 0 \end{bmatrix}, \quad A_{3} = \begin{bmatrix} 0 & 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 & 0 \end{bmatrix}$$

- 4. (a) Let G be a graph with vertices v_1, v_2, \ldots, v_n and adjacency matrix A.
 - (i) Define B to be the $n \times n$ matrix whose (i, j)-entry is given by

$$B_{i,j} = A_{i,1}A_{1,j} + A_{i,2}A_{2,j} + \dots + A_{i,n}A_{n,j}.$$

Show that $B_{i,j}$ is the number of walks of length 2 from v_i to v_j .

Hint: Remember that $A_{i,k}$ is the number of edges from v_i to v_k . With this in mind, how can we interpret each product $A_{i,k}A_{k,j}$?

(ii) With B as above, define C to be the $n \times n$ matrix with (i, j)-entry

$$C_{i,j} = B_{i,1}A_{1,j} + B_{i,2}A_{2,j} + \dots + B_{i,n}A_{n,j}.$$

Show that $C_{i,j}$ is the number of walks of length 3 from v_i to v_j .

(b) A graph G and its corresponding adjacency matrix A are given below. Use the results of part (a) to compute the number of walks of length 2 from v_1 to v_6 .

5. Let G be a graph. If G is not connected, show that there is some way to order the vertices of G so that its adjacency matrix has the form

	$A_{1,1}$	$A_{1,2}$	• • •	$A_{1,m}$	0	0	•••	0]
A =	$A_{2,1}$	$A_{2,2}$	• • •	$A_{2,m}$	0	0	• • •	0	
		:	·	:	•		•••	÷	
	$A_{m,1}$	$A_{m,2}$	• • •	$A_{m,m}$	0	0	• • •	0	
	0	0	•••	0	$A_{m+1,m+1}$	$A_{m+1,m+2}$	•••	$A_{m+1,n}$	
	0	0	• • •	0	$A_{m+2,m+1}$	$A_{m+2,m+2}$	•••	$A_{m+2,n}$	
	:	:	·	÷	:	÷	۰.	÷	
	0	0	•••	0	$A_{n,m+1}$	$A_{n,m+2}$	•••	$A_{n,n}$	$\Big _{n \times n}$

for some integer m with $1 \le m < n$. Explain why this is never possible when G is connected.

- 6. For each sequence d below, use the Havel-Hakimi algorithm to draw a simple graph with degree sequence d or show that such a graph does not exist.
 - (a) d = (3, 3, 3, 2, 1)
 - (b) d = (4, 4, 4, 2, 2)
 - (c) d = (5, 4, 3, 2, 2, 2, 2, 2)
- 7. Explain why the backtracking process following the Havel-Hakimi algorithm always produces a simple graph.