Intermediate Math Circles
 Wednesday, March 1, 2017
 Sequences and Series I

What Comes Next?

Find a pattern and give the next three numbers/objects in the sequence according to your pattern. (There could be more than one answer.)

1. $4,7,10,13,16, \ldots$
2. $2,10,50,250,1250, \ldots$
3. $1,4,10,22,46,94, \ldots$
4. $1,11,21,1211,111221,312211,13112221,1113213211, \ldots$

Sequence:

A sequence is an \qquad Our objects will usually be numbers. The numbers in the list are called the terms of the sequence.
We are especially interested in sequences where the terms of the sequence can be determined using some sort of rule or pattern.
We often use subscripts to indicate the term's place in the sequence. We label the $n^{\text {th }}$ term in the sequence as \qquad
For example, if our sequence is $4,7,10,13,16,19,22,25, \ldots$, then $t_{6}=$ \qquad .

Arithmetic Sequence:

An arithmetic sequence is a sequence with the property that \qquad
This difference is called the \qquad

Example: $4,7,10,13,16, \ldots$ is an arithmetic sequence with a common difference of \qquad

What is the general term, t_{n}, of an arithmetic sequence?
Let a be the first term of the sequence and let d be the common difference. Then
$t_{n}=$ \qquad
Practice:

1. If the first three terms of an arithmetic sequence are $49,41,33$, then what is the tenth term?
2. In an arithmetic sequence, the third term is 75 and the eleventh term is 131 . Find the eighth term.

Geometric Sequence:

A geometric sequence is a sequence with the property that \qquad
This ratio is called the \qquad

Example: 2, 10, $50,250,1250, \ldots$ is a geometric sequence with a common ratio of \qquad $-$

What is the general term, t_{n}, of a geometric sequence?
Let a be the first term of the sequence and let r be the common ratio. Then
$t_{n}=$ \qquad

Practice:

1. If the first three terms of an geometric sequence are $\frac{3}{2}, \frac{1}{2}, \frac{1}{6}$, then what is the eighth term?
2. The fifth term of a geometric sequence is 48 and its common ratio is 2 . Find the general term.

Sequences that Repeat:

We can form a sequence by repeating a finite sequence.
Example: $2,4,6,8,2,4,6,8,2,4,6,8, \ldots$ is a sequence that is formed by repeating the finite sequence \qquad

Practice:

1. A sequence is formed by endlessly repeating the finite sequence $1,3,5,7,9$. What is the $2017^{\text {th }}$ term of the sequence?
2. Find the units digit of 3^{35}.

Recursive Sequences:

A recursive sequence is a sequence in which the terms (except for the initial term(s)) are defined using \qquad
Example: We define a recursive sequence as $t_{1}=1, t_{2}=1$ and $t_{n}=t_{n-1}+t_{n-2}$ for $n \geq 3$.
Using this definition we obtain the sequence \qquad
This sequence is one of the most famous sequences. It is called the \qquad .

Arithmetic and Geometric Sequences Defined Recursively:

How do we define an arithmetic sequence recursively? \qquad
How do we define a geometric sequence recursively? \qquad .

Practice:

1. Given $t_{1}=1, t_{2}=2, t_{3}=3$ and $t_{n}=t_{n-1}-t_{n-2}+t_{n-3}$, for $n \geq 4$, find t_{7}.
2. Given $t_{1}=3$ and $t_{n}=n \cdot t_{n-1}$, for $n \geq 2$, find t_{9}.
3. Find a recursive definition for the sequence $1,3,-2,5,-7,12,-19,31, \ldots$.

Online Encyclopedia of Integer Sequences (www.oeis.org):

- Look up a sequence given part of the sequence:

What sequence is this? $61,52,63,94,46, \ldots$

- Find the next few terms in a sequence:

You are counting the number of dots in a triangle. You know the first few are $1,3,6,10$, 15 and you want to find the 100th number in the list.

The answer is \qquad

- Look up a sequence by name:

Mersenne primes are primes which are of the form $2^{p}-1$.
$3,7,31,127,8191,131071, \ldots$

