Intermediate Math Circles Wednesday, March 1, 2017 Problem Set 4

1. Find the tens digit of 2^{2017}.

Solution:

To find the tens digit of 2^{2017} we make a table of the last two digits of 2^{i}. (For the single digit powers we will consider the power to start with the digit 0 .)

i	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22
2^{i}	02	04	08	16	32	64	28	56	12	24	48	96	92	84	68	36	72	44	88	76	52	04

We notice that the last two digits of 2^{22} are the same as the last two digits of 2^{2}. Therefore, from this point onward the last two digits will cycle through a sequence which has 20 terms. (Notice that the last two digits of 2^{1} are not part of this repeating sequence.)
Since $2017=1+100(20)+16$, then we need to pick out the sixteenth term in the repeated sequence. This term is 72 . (It is the last two digits of 2^{17}.) Therefore, the tens digit of 2^{2017} is 7 .
2. The sequence of numbers $a_{1}, a_{2}, a_{3}, \ldots$ satisfies $\frac{a_{m}}{a_{n}}=\frac{m}{n}$ for every pair of positive integers m and n. If $a_{3}=5$, evaluate $3 a_{20}$.
Solution: Since $\frac{a_{m}}{a_{n}}=\frac{m}{n}$, then $\frac{a_{3}}{a_{20}}=\frac{3}{20}$. But we also know that $a_{3}=5$. So, $\frac{5}{a_{20}}=\frac{3}{20}$. Therefore $3 a_{20}=5(20)=100$.
3. Find a geometric sequence and an arithmetic sequence that have the same first three terms.

Solution: Consider a geometric sequence that begins $a, a r, a r^{2}$, where r is the common ratio. Consider an arithmetic sequence that begins $a, a+d, a+2 d$ where d is the common difference. Since the first three terms of the two sequences match, then $a=a$, $a r=a+d$ and $a r^{2}=a+2 d$.
If $a=0$, then the geometric sequence is a sequence where every term is 0 . In this situation, the common ratio could be any value. We also notice that this we can think of this sequence as an arithmetic sequence where the common difference is 0 . Therefore, the sequence where every term is 0 is both a geometric and an arithmetic sequence and we've solved the problem.
Is this sequence the only solution? Let's assume that $a \neq 0$ and return to our equations.
We multiply both sides of the second equation by 2 and then subtract the third equation to obtain $2 a r-a r^{2}=a$. Since $a \neq 0$ we can divide both sides by a to obtain $2 r-r^{2}=1$, Rearranging we obtain the equation $r^{2}-2 r+1=0$. This factors as $(r-1)^{2}=0$, and therefore the only solution is $r=1$. If $r=1$, then our geometric sequence is a constant sequence where every term is a. We notice that a constant sequence can be thought of as an arithmetic sequence where the common difference, d, is 0 . And if we use the fact that $r=1$, then our second equation does in fact give us that $d=0$.
Therefore, if a geometric sequence and an arithmetic sequence have the same first three terms, then they are both in fact a constant sequence, where every term in the sequence is a, the value of the first term.
4. Consider the sequence $t_{1}=1, t_{2}=-1$ and $t_{n}=\left(\frac{n-3}{n-1}\right) t_{n-2}$ where $n \geq 3$. What is the value of t_{2016} ?

Solution:

Using the formula for t_{n}, we calculate the next few terms in the sequence. Thus, $t_{3}=0$, $t_{4}=-\frac{1}{3}, t_{5}=0, t_{6}=-\frac{1}{5}, t_{7}=0, t_{8}=-\frac{1}{7}$. Using pattern recognition we can see that the even terms are 0 and the odd terms are $-\frac{1}{n-1}$. Therefore $t_{2016}=-\frac{1}{2015}$.

Another Solution:

Using the definition of t_{n} we obtain

$$
\begin{aligned}
t_{2016} & =\left(\frac{2013}{2015}\right) t_{2014} \\
& =\frac{2013}{2015}\left(\frac{2011}{2013}\right) t_{2012} \\
& \vdots \\
& =\frac{2013}{2015}\left(\frac{2011}{2013}\right) \ldots\left(\frac{3}{5}\right)\left(\frac{1}{3}\right) t_{2} \\
& =\left(\frac{1}{2015}\right) t_{2}
\end{aligned}
$$

Since $t_{2}=-1$, then $t_{2016}=-\frac{1}{2015}$.
5. In a sequence, every term after the second term is twice the sum of the two preceding terms. The seventh term of the sequence is 8 , and the ninth term is 24 . What is the eleventh term of the sequence?

Solution:

This sequence is a recursive sequence with the following definition: $t_{n}=2\left(t_{n-1}+t_{n-2}\right)$ for $n \geq 3$.
Therefore,

$$
\begin{aligned}
t_{9} & =2\left(t_{8}+t_{7}\right) \\
24 & =2 t_{8}+2(8) \quad\left(\text { Since } t_{9}=24 \text { and } t_{7}=8\right) \\
8 & =2 t_{8} \\
t_{8} & =4
\end{aligned}
$$

Using the recursive definition of the sequence we calculate $t_{10}=2(24+4)=56$ and $t_{11}=2(56+24)=160$.
6. Consider the sequence defined by $t_{n}=n^{2}$. Find a recursive definition for this sequence. (There is more than one answer.)

Solution:

The sequence starts as follows $1,4,9,16,25,36, \ldots$.

The difference between consecutive terms forms the sequence $3,5,7,9,11,13, \ldots$ This sequence is the odd integers starting at 3 .
Therefore one possible recursive definition for the given sequence is $t_{1}=1, t_{n}=t_{n-1}+2 n-1$ for $n \geq 2$.

