Intermediate Math Circles Wednesday, March 22, 2017 Analytic Geometry I

Addition Magician

Two players begin a game with a piece of paper and a pencil. Players alternate turns, each player adding $1,2,3$, or 4 to the total on their turn and whoever goes first starts with a total of 0 . The winner is the player who brings to total to 33 . Is there a winning strategy? Is the player going first or the player going second guaranteed to win with this strategy?

Double Trouble

Two players begin a game with two separate bags of soccer balls, one bag with 13 balls and the other with 17 . Players alternate turns and on each turn a players removes $1,2,3$, or 4 balls from one of the two bags. A player can only remove balls from one bag. The winner is the person who after their turn both bags are empty. Is there a winning strategy? Is the player going first or the players going second guaranteed to win with this strategy?

2014 Fryer - Question 3

Triangle $A B C$ begins with vertices $A(6,9), B(0,0), C(10,0)$, as shown. Two players play a game using $\triangle A B C$. On each turn a player can move vertex A one unit, either to the left or down. The x - and y-coordinates of A cannot be made negative. The person who makes the area of $\triangle A B C$ equal to 25 wins the game.
(a) What is the area of $\triangle A B C$ before the first move in the game is made?

(b) Dexter and Ella play the game. After several moves have been made, vertex A is at $(2,7)$. It is now Dexter's turn to move. Explain how Ella can always win the game from this point.
(c) Faisal and Geoff play the game, with Faisal always going first. There is a winning strategy for one of these players; that is, by following the rules in a certain way, he can win the game every time no matter how the other player plays.
(i) Which one of the two players has a winning strategy?
(ii) Describe a winning strategy for this player.
(iii) Justify why this winning strategy described in (ii) always results in a win.

What's So Special About a Math Game?

Example of Game Theory, which is widely used in economics, politics, evolution, psychology Business, Accounting, and Finance

- The world of business and finance is a competitive place
- Mathematics and computer science are what make businesses competitive and accountable
- One of the ways you can set yourself apart is by developing that "mathematical tool belt"
- Not just the technical skills, but also your problem solving skills

What is Analytic Geometry?

- Also called "Coordinate Geometry" or "Cartesian Geometry"
- There are two branches

1. Plane Analytic Geometry which deals with points, lines, and curves restricted to a plane (two dimensional space)
2. Solid Analytic Geomerty which deals with points, lines, planes, curves, and surfaces in a three dimensional space.

- Developed largely by René Descartes in the 1600s and brought about lots of advantages to solving geometric problems
- Deals with solving geometric problems by algebraic methods

Why Should You Care?

Coordinates are everywhere!

- Navigation
- Design
- Construction
- Physics
- Chemistry
- Think about how often you see graphs

Review of Line Segments in R^{2}

Cartesian Coordinates (aka Rectangular Coordinates)

Review of Lines in R^{2}

Points \& Line Segments

- Any point $\mathrm{P}(\mathrm{x}, \mathrm{y})$
- Line Segment AB
- Distance Formula

Given points $A\left(x_{1}, y_{1}\right)$ and $B\left(x_{2}, y_{2}\right)$, then the length of line segment $A B$

$$
d_{A B}=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$

- Midpoint Formula

Given points $A\left(x_{1}, y_{1}\right)$ and $B\left(x_{2}, y_{2}\right)$, then the length of line segment $A B$

$$
\mathrm{M}\left(\frac{\left(x_{1}+x_{2}\right)}{2}, \frac{\left(y_{1}+y_{2}\right)}{2}\right)
$$

Distance Formula Notation Given points $A\left(x_{1}, y_{1}\right)$ and $B\left(x_{2}, y_{2}\right)$, then the length of line segment $A B$

$$
d_{A B}=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$

Notation:

- $A B$
- $|A B|$
- $d_{A B}$
- $d(A, B)$
- $|\overline{A B}|$

So Long Flatland... Hello R^{3}

In R^{2} we have an x- and y-axes.
In R^{3} we have an $\mathrm{x}-, \mathrm{y}$-, and z -axes.

R^{3} You Beautiful Axes You

Any point in R^{3} has an x, y, and z component.
I.e. $(x, y, z) \in R^{3}$.

Where is $(0,0,0)$?
Where is $(3,0,0)$?
Where is $(0,-2,0)$?
Where is $(0,0,1)$?

Where is $(1,4,0)$?
Where is $(3,0,-2)$?
Where is $(0,1,1)$?
Where is $(2,-1,1)$?

Going the Distance

In R^{2} we know $d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$, but what about measuring distances in R^{3} ?

In R^{3} we just found out the distance from $(0,0,0)$ to any point (x, y, z) is

$$
d=\sqrt{x^{2}+y^{2}+z^{2}}
$$

What about for any two given points $A\left(x_{1}, y_{1}, z_{1}\right)$ and $B\left(x_{2}, y_{2}, z_{2}\right)$?

$$
d_{A B}=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}}
$$

Example [Turn the Crank]

Given the rectangular prism below, find the length of line segment $A H$.

Example [The Crank is Broken!]

A ladybug wishes to travel from B to A on the surface of a wooden block with dimensions 2 by 4 by 8 as shown in the diagram.

Determine the shortest distance for the ladybug to walk.

Example [Finding the Middle Ground]:

Find the coordinates of the midpoint of points $\mathrm{C}(-4,7)$ and $\mathrm{D}(1,-8)$.

Example [Internal Division of a Line Segment]:

Find the coordinates of the point N dividing the distance between $\mathrm{C}(-4,7)$ to $\mathrm{D}(1,-8)$ internally in the ratio $2: 3$.

Example [Internal Division of a Line Segment in General]:

Find the coordinates of the point N dividing the distance between $\mathrm{C}(-4,7)$ to $\mathrm{D}(1,-8)$ internally in the ratio $a: b$.

Challenge [Develop a Formula]:

Come up with a formula for dividing the distance between $\left(x_{1}, y_{1}\right)$ to $\left(x_{2}, y_{2}\right)$ internally into the ratio $a: b$.

Review of Lines in R^{2}

- Lines contain infinitely many line segments
- Slope
- Slope measures steepness and direction of a line (upward or downward)
- Given $A\left(x_{1}, y_{1}\right)$ and $B\left(x_{2}, y_{2}\right)$ where $x_{1} \neq x_{2}$

$$
\text { slope }=m=\frac{\text { rise }}{\text { run }}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{y_{1}-y_{2}}{x_{1}-x_{2}}
$$

- Slope of a horizontal line is 0
- Slope of a vertical line is undefined
- When lines are parallel $m_{1}=m_{2}$
- When lines are perpendicular $m_{2}=-\frac{1}{m_{1}}$

Example [Diagonals of a Rectangle]:

a.) Show that the diagonals of a rectangle bisect each other
b.) Determine under what conditions will the diagonals of a rectangle be perpendicular bisectors of each other

Review of Lines in R^{2}

Equations of Lines

- Horizontal Line: $y=k$ where $k \in R$
- Vertical Line: $x=h$ where $h \in R$
- Slope-intercept Equation: $y=m x+b$
- General Equation: $A x+B y+C=0$
- Points in intersections

Case 1: no points of intersection
Case 2: one point of intersection
Case 3: infinitely many points of intersection
(i.e. they are collinear)

Example [Distance from a Point to a Line]:

Given the line $\mathscr{L}: 2 x+y-10=0$ and $P(-2,9)$
a.) Find the point on \mathscr{L}, call it Q , closest to P
b.) State the equation of the line through PQ in slope-intercept form

