Intermediate Math Circles
 Wednesday, March 8, 2017
 Problem Set 5

1. What is the smallest positive integer x for which

$$
\sum_{i=1}^{100} i x
$$

is a perfect square?
Solution: We begin by simplifying the sum.

$$
\begin{aligned}
\sum_{i=1}^{100} i x & =x+2 x+3 x+\cdots+100 x \\
& =x(1+2+3+\cdots 100) \\
& =x\left(\frac{100(101)}{2}\right) \\
& =5050 x
\end{aligned}
$$

The prime factorization of 5050 is $2 \cdot 5^{2} \cdot 101$. For $5050 x$ to be a perfect square, its prime factors must come in pairs. Therefore, the smallest value of x such that the prime factors of $5050 x$ come in pairs is $x=2(101)=202$.
2. Consider a sequence where $t_{k}=3^{k}-2 k+2$. Calculate $\sum_{k=1}^{n} t_{k}$.

Solution: Each term t_{k} can be thought of as the sum of 3^{k} and $-2 k+2$. Therefore,

$$
\sum_{k=1}^{n} t_{k}=\sum_{k=1}^{n} 3^{k}+\sum_{k=1}^{n}(-2 k+2)
$$

The first of these two sums is a geometric series with n terms, the first term is 3 and the common ratio is 3 . Therefore this sum is $\frac{3\left(1-3^{n}\right)}{1-3}$ which simplifies to $\frac{3}{2}\left(3^{n}-1\right)$.
The second sum is an arithmetic series with n terms, the first term is 0 and the common difference is -2 . Therefore this sum is $\frac{n}{2}[2(0)+(n-1)(-2)]$ which simplifies to $-n(n-1)$.
Therefore, $\sum_{k=1}^{n} t_{k}=\frac{3}{2}\left(3^{n}-1\right)-n(n-1)$.
3. In a geometric sequence, the first term is 7 , the last term is 448 , and the sum is 889 . Find the third term.

Solution:

Let the number of terms in the sequence be n and let the common ratio be r. The last term of the sequence is $t_{n}=7 r^{n-1}=448$. We multiply both sides of this equation by r to obtain $7 r^{n}=448 r$.
The sum of the terms in the sequence is $7\left(\frac{1-r^{n}}{1-r}\right)=889$. Therefore $889-889 r=7-7 r^{n}$. We substitute $7 r^{n}=448 r$ to obtain $889-889 r=7-448 r$. Solving this equation we get $r=2$.
Therefore $t_{3}=7\left(2^{2}\right)=28$.
4. The sum of the first n terms of a sequence is $n(n+1)(n+2)$. What is the 10 th term of the sequence?

Solution:

Let S_{n} be the sum of the first n terms. Therefore,

$$
\begin{aligned}
t_{10} & =S_{10}-S_{9} \\
& =10(11)(12)-9(10)(11) \\
& =330
\end{aligned}
$$

5. Evaluate the sum $\sum_{i=1}^{28}\left[\frac{1}{i}-\frac{1}{i+2}\right]$

Solution:

$$
\begin{aligned}
& \sum_{i=1}^{28}\left[\frac{1}{i}-\frac{1}{i+2}\right] \\
& =\frac{1}{1}-\frac{1}{3}+\frac{1}{2}-\frac{1}{4}+\frac{1}{3}-\frac{1}{5}+\frac{1}{4}-\frac{1}{6}+\frac{1}{5}-\frac{1}{7}+\cdots+\frac{1}{26}-\frac{1}{28}+\frac{1}{27}-\frac{1}{29}+\frac{1}{28}-\frac{1}{30} \\
& =1+\frac{1}{2}-\frac{1}{29}-\frac{1}{30} \\
& =\frac{623}{435}
\end{aligned}
$$

6. Find $9+99+999+9999+\ldots$ to n terms.

Solution:

The sum is equivalent to $(10-1)+\left(10^{2}-1\right)+\left(10^{3}-1\right)+\cdots+\left(10^{n}-1\right)$. Rearranging we obtain $10+10^{2}+10^{3}+\cdots+10^{n}-n$. The first n terms of this sum is a geometric series where the first term is 10 and the common ratio is 10 . Therefore, the sum is $10\left(\frac{1-10^{n}}{1-10}\right)-n$ which simplifies to $\frac{10}{9}\left(10^{n}-1\right)-n$.

