Math Circles — Finite Automata
Question Sheet 2 (Solutions)

Nickolas Rollick — nrollick@Quwaterloo.ca

November 14, 2018

Note: These solutions may give you the answers to all the problems, but they usually won’t tell you
how to get the answer. All the fun and profit lies in finding the answers for yourself... Also be aware that
some questions have more than one solution — this will only provide you with one of them!

Questions from Lesson

1. Consider the DFA from last time, accepting the abba language:

a




Write down a DFA accepting the complement of this language (the strings NOT accepted by the
original DFA).

Solution: As mentioned during the session, the easiest way to do this is to change all the accepting
states into rejecting states and all rejecting states into accepting states:

a




2. Here is a DFA accepting the strings that start and end with b:

b

Here is a DFA accepting the strings containing baa inside them:




(a) Can you build a DFA accepting the intersection of these two languages (the strings accepted by
both DFAs)?

Solution: We did this one during the session as well. Here it is:
. a .
@ @ ’
a b a,b
@ 0 a @
a



(b) Can you build a DFA accepting the union of these two languages (the strings accepted by either

DFA)?
| .‘

Solution: This was also done in our session:
' a ‘ b

a,b

OF@)=0s
°®C

a

6'@



3. Is every language a regular language? If not, can you provide an example of a language that is not
regular?
Solution: As discussed in our session, not every language is regular. The language of strings with
some number of as followed by an equal number of bs is an example. To see why, suppose there were a
DFA accepting this language. Then there are two different strings a™ and a™ that put the DFA into
the same state if given as input. (There are only finitely many states, but infinitely many strings with
a bunch of as in a row, so this must happen). Call this state g.

The DFA must accept both a”b™ and a™b", since both strings belong to the language. So if the DFA
is in state ¢ and reads m letter bs in a row, it ends up in some accepting state r. But then the DFA
ends up in state r after reading a™b™ as well, so it must accept that string. Since a™b" is not in the
language, a DFA accepting this language cannot exist.

Extra Questions

4. The language of legal bracketings is a collection of strings using the letters a (left bracket) and b (right
bracket) following the rule that every b in the string must have a matching a coming before it.

Which of the following strings belong to this language?

)
) ba
(c) abab
(d) abba
) aabb
) ababb
) abaababb

Is the language of legal bracketings regular? Why or why not?

Solution: The strings abab, aabb, and abaababb belong to the language, while a, ba, abba, and ababb
do not.

The language of legal bracketings is not regular, for exactly the same reason that the language in the
previous solution is not regular. Indeed, we can use the same argument! Notice that all strings with
some number of as followed by an equal number of bs belong to the language of legal bracketings (it’s
some number of open brackets followed by the same number of closed brackets).

If there were a DFA accepting the language of legal bracketings, it must have a finite number of states.
Therefore, there are two different strings @™ and a™, where the DFA ends up in the same state g after
reading both. Again, both a™b™ and a™b™ are in the language of legal bracketings, so the DFA must
accept both strings.

So, if we start the DFA and give it the string a”, it ends up in state g. If we follow that with b™, it must
end up in some accepting state, because a™b™ must be accepted. But then a™b™ must be accepted as
well, since the DFA ends up in state ¢ after reading ™ and goes to the same accepting state after
reading b". Since a™b" is not a legal bracketing, no such DFA can exist.



5. The steps we talked about for building a DFA accepting the union or intersection of two regular
languages always work, but sometimes it creates more states than we really need. When we built a
DFA accepting the strings that start and end with b, and contain baa somewhere inside, the resulting
DFA had nine states.

Can you write down a DFA accepting the same language, but with only six states?

Solution: The key is to notice that when the DFA we constructed reads an a, there is no way the
string can possibly be accepted. So, we can collapse all of the states in that part of the DFA into a
single “trash can” state (labelled T here).




6. Suppose we have two regular languages, which we’ll call L1 and L,. Consider the language of all strings
belonging to Ly but not Ly. Is this language always regular?

If so, describe a process for building a DFA accepting this language, given DFAs accepting L1 and L.
If not, explain why not.

Solution: Yes, this language is always regular. To see why, suppose we start with a DFA accepting
L, and a DFA accepting Lo. In today’s session, we argued that we can build a DFA accepting all the
strings mot in Lo, just by flipping all the accepting and rejecting states.

So now we have a DFA accepting exactly the strings in Ly, and a DFA accepting exactly the strings
NOT in Ls. Now, we can always build a DFA accepting only the strings accepted by both of these
DFAs, by keeping track of the states of both machines at the same time (like we did in Question 2).
The accepting states of this new DFA are the ones labelled with states that are both accepting states
for the original DFAs.

This new DFA we have at the end accepts strings belonging to L; and not in Ls.



