Math Circles — Finite Automata
Question Sheet 3 (Solutions)

Nickolas Rollick — nrollick@Quwaterloo.ca

November 21, 2018

Note: These solutions may give you the answers to all the problems, but they usually won’t tell you
how to get the answer. All the fun and profit lies in finding the answers for yourself... Also be aware that
some questions have more than one solution — this will only provide you with one of them!

Questions from Lesson

1. Describe all strings accepted by each of the following NFAs:

(a)
a,b

Solution: This NFA accepts all the strings that start with a.



a,b

Solution: This NFA accepts the string a, and nothing else.

Solution: This NFA accepts the strings that either start with a, or end with b.



2. Draw an NFA satisfying each set of conditions:

(a) Tt has four states, and accepts the language of strings that have no bs, or else have one or more
bs followed by a single a.

Solution:

(b) Tt has three states and allows three possible symbols: a, b, and c. It accepts the language defined
by the following conditions:

e The empty string is in the language.
e Given a string in the language, adding ab or abc to the end gives another string in the language.

(For example, ab, abe, abcab, abab, abcabe all belong to this language.)

Solution:



3. Given the following NFAs, construct DFAs that accept the same language:

(a)

Solution: As discussed during the session, designing a DFA that keeps track of all “possible
universes” leads to:




O

a

Solution: Again, we can follow the same “possible universes” construction that we discussed during
the session. The accepting states in the new DFA are the ones with a 1 in them, since state 1 is the
only accepting state of the NFA.




Extra Questions

4. Here, we will see that every finite language built out of strings of as and bs is regular. In other words,
given any finite collection of strings, there is some DFA that accepts exactly those strings and no
others.

(a) Draw an NFA with four states and three arrows that accepts the string bab and nothing else. Now
draw an NFA with six states and five arrows that accepts the string aaabb and nothing else.

Solution: For bab:

For aaabb:

(b) Building on the pattern from the previous part, suppose we are given any string of as and bs
(maybe it’s aaababbaabababba). Describe how to build an NFA that accepts that string, and
nothing else.

Solution: If the string has n symbols in it, we build an NFA that has n + 1 states, labelled 0 up
to n, and n arrows. There is one arrow from state 0 to state 1 labelled with the first letter of the
string, one from state 1 to state 2 labelled with the second letter, and so on. Only the last state
n is an accepting state. Unless the input to the NFA is exactly the specified string, the NFA will
either not make it to state n and reject the string, or it will read a letter that it can’t handle, and
break down.



(c)

Given any single string, explain why there is a DFA (not just an NFA) accepting that string, and
nothing else.

Solution: In the previous part, we showed there was an NFA that accepts the given string, and
nothing else. Applying the “parallel universes” construction, we can take that NFA and get a
DFA accepting the same language (so exactly that string, and nothing else).

Last time, we saw that for any two DFAs, accepting any two languages, we can build another DFA
accepting the strings in either language. Using this, explain how we can take any two strings and
build a DFA accepting those two strings and nothing else.

Solution: Given any two strings, we can apply the previous part to find two DFAs, each of which
accepts exactly one of the strings, and nothing else. Applying the construction from last time,
we can build a new DFA accepting only the strings accepted by either DFA. In other words, this
new DFA accepts the two given strings, and nothing else.

Building on the idea from the previous part, explain how we can take any finite number of strings
and build a DFA accepting those strings and nothing else.

Solution: Suppose we have a finite collection of strings, which we’ll call wy, ..., w,. By part (c),
we can find DFAs accepting w; and nothing else, wo and nothing else, w3 and nothing else, etc.
Taking the DFA accepting w; and nothing else and the one accepting we and nothing else, we
build a new DFA accepting the strings that either of these DFAs accept. In other words, this new
DFA accepts wi, ws, and nothing else.

Next, we take this new DFA and the one accepting w3 and apply the same construction, giving a
DFA accepting wy, ws, w3, and nothing else. Repeating this over and over again, we end up with
a DFA that accepts exactly w1, ..., w,.



5. Given any NFA, explain how to construct a new NFA with exactly one accepting state that accepts
the same language. (Hint: Try this on a few examples first — the NFA in Question 1(c) is a good place
to start.)

Solution: Here is how the construction works. Take the original NFA and add in one new state (this
will be the accepting state of the new NFA). Take all the accepting states of the original NFA and
add a blank arrow from those states to the new state. Then make all states of this new NFA rejecting
states, except for the new one we just added in.

Why does this accept the same language? We have to check that it accepts and rejects exactly the
same strings as the original NFA. First, suppose a string is accepted by the original NFA. This means
there is some collection of choices the original NFA can make when reading the string, where it ends
up at an accepting state. Since we haven’t taken away any arrows in the new NFA, the new NFA can
make the same choices and end up at the same state. The only problem is that this is not an accepting
state any more. But in the new NFA, there must be a blank arrow from this state to the new accepting
state, so this new NFA can choose to follow the blank arrow after reading the string and accept it.

Now suppose we have a string that is rejected by the original NFA. This means no matter what choices
the original NFA makes when reading the string, it will always be rejected. Note that the only extra
choices the new NFA can make are to follow the blank arrows to the new accepting state. But since
there are no arrows coming out of that state, if the NFA still has letters left to read when it does this,
it will break and reject the string. So the only way the new NFA can accept a string that the old NFA
rejected is if it follows one of the new blank arrows after reading all the symbols. The only way it can
do that is if it passes through an accepting state for the old NFA after reading all the symbols, which
would cause the string to be accepted by the original NFA too.

An example might be useful in making this clearer. Here is what we get when applying this construction
to the NFA from Question 1(c). The new accepting state has been labelled N (for “new”).




6. For any string, the reverse of that string is obtained by reversing the order of all the symbols. For
example, the reverse of aabab is babaa, and the reverse of abba is abba again. Given a language, we can
define the reverse language to be what you get if you reverse all the strings in the original language.

If a language is regular, explain why the reverse language is also regular. (Hint: Starting with a DFA
accepting the original language, turn it into an NFA with a single accepting state that accepts the
same language, using the previous question. Then convert that NFA into a new NFA accepting the
reverse language.)

Solution: Since every NFA can be converted into a DFA accepting the same language, it is enough to
build an NFA accepting the reverse language.

If a language is regular, we can find a DFA that accepts the language. Since a DFA is a special kind of
NFA, we can apply the previous question to turn this DFA into an NFA with a single accepting state
that also accepts the language.

Finally, we turn this NFA into an NFA accepting the reverse language. All we need to do is change
the initial (starting) state of the NFA into an accepting state, change the unique accepting state of the
NFA into an initial state, and reverse all of the arrows.

Then, given a string in the original language, there is some way the original NFA can accept it, by
following a collection of arrows from the initial state to the single accepting state. By starting at the
accepting state and following all those arrows backwards, we end up back at the initial state, which
means that our new NFA accepts the reverse string. The argument works the other way too: if the
new NFA accepts a string, then in the original NFA, there is some way to start at the accepting state,
follow the arrows backwards, and end up at the initial state after reading the string. This means the
original NFA accepts the reverse of this string, so that the string we started with is in the reverse
language.



