Math Circles - Finite Automata
 Question Sheet 2

Nickolas Rollick - nrollick@uwaterloo.ca
November 14, 2018

Questions from Lesson

1. Consider the DFA from last time, accepting the abba language:

Write down a DFA accepting the complement of this language (the strings NOT accepted by the original DFA).
2. Here is a DFA accepting the strings that start and end with b :

Here is a DFA accepting the strings containing baa inside them:

(a) Can you build a DFA accepting the intersection of these two languages (the strings accepted by both DFAs)?
(b) Can you build a DFA accepting the union of these two languages (the strings accepted by either DFA)?
3. Is every language a regular language? If not, can you provide an example of a language that is not regular?

Extra Questions

4. The language of legal bracketings is a collection of strings using the letters a (left bracket) and b (right bracket) following the rule that every b in the string must have a matching a coming before it. Which of the following strings belong to this language?
(a) a
(b) $b a$
(c) $a b a b$
(d) $a b b a$
(e) $a a b b$
(f) $a b a b b$
(g) $a b a a b a b b$

Is the language of legal bracketings regular? Why or why not?
5. The steps we talked about for building a DFA accepting the union or intersection of two regular languages always work, but sometimes it creates more states than we really need. When we built a DFA accepting the strings that start and end with b, and contain baa somewhere inside, the resulting DFA had nine states.

Can you write down a DFA accepting the same language, but with only six states?
6. Suppose we have two regular languages, which we'll call L_{1} and L_{2}. Consider the language of all strings belonging to L_{1} but not L_{2}. Is this language always regular?
If so, describe a process for building a DFA accepting this language, given DFAs accepting L_{1} and L_{2}. If not, explain why not.

