Intermediate Math Circles February 13: Solutions to Contest Preparation Problems (Geometry)

February 15, 2019

Apart from questions 8,10,11,12,14, and 15, the solutions can be found on the CEMC website.

1. \#6, 2002 Pascal Contest
2. \#17, 2003 Cayley Contest
3. \#15, 2007 Cayley Contest
4. \#18, 1998 Pascal Contest
5. \#15, 2001 Pascal Contest
6. \#21, 1998 Pascal Contest
7. \#19, 2001 Pascal Contest
8. \#20, 1995 Cayley Contest

Label the point $R=(a, b)$, draw points $S=(0, b)$ and $T=(a, 0)$, and connect S and T to R :

Since $S R \| B C$ and $R T \| A B$, we have that $\angle A S R=\angle R T C=\angle A B C=90^{\circ}$. Also, $\angle T R C=\angle B A C$. We also have that $\angle B A C=\angle S A R$, so $\triangle A B C, \triangle A S R$, and $\triangle R T C$ are all similar because they each have two (and hence, three) common angles. We know that
$R C$ is one quarter of the length of $A C$, or $\frac{R C}{A C}=\frac{1}{4}$. Since $\triangle A B C \sim \triangle R T C$, this means $\frac{T C}{B C}=\frac{R C}{A C}=\frac{1}{4}$. Rearranging, this gives $T C=\frac{1}{4} B C$, but $B C=6$, so $T C=\frac{6}{4}=\frac{3}{2}$. This means the point T has coordinates $\left(6-\frac{3}{2}, 0\right)=\left(\frac{9}{2}, 0\right)$, so $a=\frac{9}{2}$. Similarly, since $\triangle A B C \sim \triangle A S R$, we have $\frac{A R}{A C}=\frac{A S}{A B}$, but $\frac{A R}{A C}=\frac{3}{4}$, so $A S=\frac{3}{4} A B=\frac{3}{4}(2)=\frac{3}{2}$. This means the coordinates of S are $\left(0,2-\frac{3}{2}\right)=\left(0, \frac{1}{2}\right)$, so $b=\frac{1}{2}$. We now have that R is the point $\left(\frac{9}{2}, \frac{1}{2}\right)$, so the slope of the line $B R$ is

$$
\frac{\frac{9}{2}-0}{\frac{1}{2}-0}=\frac{\frac{9}{2}}{\frac{1}{2}}=\frac{1}{9}
$$

9. \#24, 2002 Cayley Contest

10. \#22, 1990 Cayley Contest

By the Pythagorean Theorem, the length of the line segment connecting $(0,5)$ to $(5,0)$ is $\sqrt{5^{2}+5^{2}}=\sqrt{50}=5 \sqrt{2}$. Thus, the longer base of the shaded trapezoid is one fifth of this length, or $\frac{5 \sqrt{2}}{5}=\sqrt{2}$. An argument involving similar triangles will show that the length of the shorter base of the trapzoid is one fifth of the distance between $(0,4)$ and $(4,0)$. The distance between these two points is $\sqrt{4^{2}+4^{2}}=\sqrt{32}=4 \sqrt{2}$, so the length of the shorter base is $\frac{4 \sqrt{2}}{5}=\frac{4}{5} \sqrt{2}$. The height of the trapezoid is the length of a perpendicular from $(0,4)$ to the line connecting $(0,5)$ to $(5,0)$. The small triangle created by doing this is a $45^{\circ}-45^{\circ}-90^{\circ}$ triangle, with a hypotenuse of length 1 , which means the height will be $\frac{1}{\sqrt{2}}$ [This follows from a fact in the slides.] Recall that the area of a trapezoid with base lengths b_{1} and b_{2} and height h is $\frac{1}{2} h\left(b_{1}+b_{2}\right)$. Therefore, the area of the trapezoid is

$$
\frac{1}{2} \frac{1}{\sqrt{2}}\left(\sqrt{2}+\frac{4}{5} \sqrt{2}\right)=\frac{1}{2}\left(1+\frac{4}{5}\right)=\frac{1}{2} \times \frac{9}{5}=\frac{9}{10}
$$

11. \#24, 1990 Cayley Contest.

Note that

$$
\angle A B E+\angle E B F=\angle A B F=\angle A B C+\angle C B F
$$

We also have that $A B C D$ is a square and are given that $\angle E B F=90^{\circ}$, which means $\angle E B F=$ $\angle A B C$, so the above equation implies $\angle A B E=\angle C B F$. Also, $\angle D A B=90^{\circ}$, and $D C F$ is a straight line, so $\angle B C F=180^{\circ}-\angle D C B=180^{\circ}-90^{\circ}=90^{\circ}$. Finally, we have $A B=B C$ since they are sides of the same square, so we can conclude that $\triangle A E B \cong \triangle B C F$ by angle-side-angle congruence. Since $A B=A D=A E+E D=4+2=6$, we have, by the Pythagorean Theorem that $E B^{2}=A E^{2}+A B^{2}$, or $E B=\sqrt{4^{2}+6^{2}}=\sqrt{16+36}=\sqrt{52}$. Since $\triangle A E B \cong \triangle B C F$, this means $B F=\sqrt{52}$ as well. Triangle $E B F$ is right, so its area is

$$
\frac{1}{2} \times B F \times E B=\frac{1}{2} \sqrt{52} \sqrt{52}=\frac{1}{2}(52)=26
$$

12. \#19, 1995 Cayley Contest

The length of each diameter is $2 \times 2=4$, and the other chords are all equal to each other by symmetry, so the total will be $4+4+4 x$ where x is the length of any of the shorter chords. We partially label the diagram as follows:

The diameters are perpendicular, and $A C$ is parallel to the vertical diameter, which means $A C \perp O B$. We also have $O B$ equal to itself and $O A=O C$ because they are radii of the same circle, which means $\triangle O B A \cong \triangle O B C$ because they are right triangles with an equal leg and hypotenuse. Therefore, $A B=A C$, so the value of x is $2 A B$. We are given that $O A=2$ and $O B=1$, so by the Pythagorean Theorem, $O A^{2}=O B^{2}+A B^{2}$ or $A B=\sqrt{2^{2}-1^{2}}=\sqrt{3}$. Thus, the total length of the all of the chords is

$$
4+4+4 \times 2 \sqrt{3}=8(1+\sqrt{3})
$$

13. \#25, 2000 Pascal Contest
14. \#21, 1995 Cayley Contest

Connect P to Y, Q to Z, and R to X and let A, B, C, D, E, F and G represent the areas of various triangles as shown:

$\triangle P Q R$ and $\triangle P X R$ each have height which is the distance from the point R to the line $Q X$. Also, since $Q P=P X$, these triangles have equal bases. Thus, $\triangle P Q R$ and $\triangle P X R$ have the same area, so $A=D$. Similarly, triangles $\triangle P R X$ and $\triangle Z R X$ have the same height, and since $P R=R Z$, we also have that $D=E$. So far, we have $A=D=E$. Similar reasoning shows that $A=B=C=D=E=F=G$. The area of $\triangle X Y Z$ is equal to $A+B+C+D+E+F+G$, which, by the previous fact, equals $7 A$. Therefore, we have $7 A=420$, so $A=60$ which means the area of $\triangle P Q R$ is 60 .
15. \#23, 1990 Cayley Contest

Label the centres of the circles, from left to right by A, B, and C. Let D, E, and F be on $Q R$ so that $A D, B E$, and $C F$ are each perpendicular to $Q R$, as shown. As well let H be on $A D$ so that $B H \| Q R$

Let r_{1} denote the radius of the large circles, and r_{2} denote the radius of the small circle. Line segment $A D$ is parallel to $B E$, so $H D$ is parallel to $B E$. $H B$ was constructed so that $H B \| D E$, so $H D E B$ is a parallelogram, which means $H D=B E$. By properties of circles,
we have $A D=r_{1}$ and $B E=r_{2}$. Putting this together with $H D=B E$, we have $A H=r_{1}-r_{2}$. By another property of circles, $A B=r_{1}+r_{2}$. By the Pythagorean Theorem, we then have $A B^{2}=A H^{2}+H B^{2}$, so

$$
\left(r_{1}+r_{2}\right)^{2}=\left(r_{1}-r_{2}\right)^{2}+H B^{2}
$$

or

$$
r_{2}^{2}+2 r_{1} r_{2}+r_{2}^{2}=r_{1}^{2}-2 r_{1} r_{2}+r_{2}^{2}+H B^{2}
$$

Simplifying gives $4 r_{1} r_{2}=H B^{2}$. Again using that $H D E B$ is a parallelogram, we have that $H B=D E$. By the symmetry in the diagram, $D E=E F$, so $D F=2 D E=2 H B$. Also, $\angle A D F=\angle D F C=90^{\circ}$ and $A D=C F$, so $A D F C$ is a rectangle which means $A C=D F=$ $2 H B$. By properties of circles, $A C=2 r_{1}$. Combining all of this, we have that

$$
4 r_{1} r_{2}=H B^{2}=\left(\frac{A C}{2}\right)^{2}=\left(\frac{2 r_{1}}{2}\right)^{2}=r_{1}^{2}
$$

Dividing both sides by $r_{1} r_{2}$ gives $4=\frac{r_{1}}{r_{2}}$. Therefore, the ratio of the area of the smaller circle to one of the larger circles is $1: 4$.

