Intermediate Math Circles
 Wednesday March 27, 2019
 Introduction to Vectors II

Review of last week.
We looked at

1. naming vectors
2. equal and opposite vectors
3. adding vectors
4. scalar multiplication
5. subtracting vectors
6. real world applications
7. vector proofs

Vector Notation

When we look at $\overrightarrow{A B}$, we notice to get from A to B we move 2 units right and 3 units up.
We can represent $\overrightarrow{A B}$ as
$\overrightarrow{A B}=$
or
$\overrightarrow{A B}=$
$\xrightarrow[A B]{\mathrm{Or}}=$
We are going to use $\overrightarrow{A B}=$

For each vector, there is a related vector called the

The position vector $[a, b]$ starts at \qquad and ends at the point \qquad —.
Find the value for each variable.
a) $[3, \mathrm{~b}]=[\mathrm{a}, 5]$
b) $[\mathrm{c}+\mathrm{d},-2]=[5, \mathrm{~d}]$

Adding, Subtracting and Scalar Multiplication

Adding Vectors
Find the resultant of the following vectors.
a) $[1,2]+[5,7]$
b) $[3,-2]+[-4,5]$
c) $[2,-3]+[-2,3]$

Notice that the answer for c) is \qquad This is known as the \qquad vector written as \qquad
Note: that the \qquad vector has \qquad magnitude and \qquad direction.

Adding and Scalar Multiplication

1) Simplify the following:
a) $3[4,2]$
b) a[5,2]
c) $2[3,2]+4[1,-2]$
2) Given $\vec{u}=[1,5]$ and $\vec{v}=[3,-2]$, find the following
a) $3 \vec{u}$.
b) $4 \vec{v}$.
c) $2 \vec{u}+3 \vec{v}$.
d) $a \vec{u}+b \vec{v}$

Adding, Subtracting and Scalar Multiplication

1) Simplify the following:
a) $-3[4,-11]$
b) $[12,1]-[4,-3]$
c) $2[5,3]-4[2,-2]$
2) Given $\vec{u}=[3,2]$ and $\vec{v}=[-4,3]$, find the following
a) $2 \vec{u}-3 \vec{v}$
b) $a \vec{u}-b \vec{v}$

Magnitude of Vectors

1) Find the following:
a) $|\vec{u}|$ when $\vec{u}=[8,15]$
b) $|\vec{v}|$ when $\vec{v}=[-12,5]$
c) $|\vec{a}|$ when $\vec{a}=[3,6]$
d) $|\vec{b}|$ when $\vec{u}=[0,0]$
2) Given $\vec{u}=[4,-3]$ and $\vec{v}=[5,12]$, find the following:
a) $|\vec{u}|+|\vec{v}|$
b) $|\vec{u}+\vec{v}|$
c) $|3 \vec{u}-2 \vec{v}|$

Vectors and Lines

Review Given the line $y=\frac{3}{2} x+1$. What do we know about this line?
a) slope $=$ \qquad b) y-int $=$
\qquad
We can graph it as well. Label y-int. Move up \qquad and over \qquad to next point. Or down
\qquad and back \qquad Then add line.

Vector Equation
The direction vector is $[3,2] . \mathrm{A}(1,3)$ is a point on the line.

This will give the following equation \qquad .

Let's find another 'point' on the line by putting letting $t=1$.

$$
\begin{aligned}
\vec{r} & =\square+\square \\
& =\square+\square \\
& =\square
\end{aligned}
$$

This is the position vector for the point \qquad from the graph.
To find other position vectors, and hence points, we just need to give different values for t.

Let's find 3 points on the line $\vec{r}=[-1,-2]+t[1,1]$ by letting $\mathrm{t}=-1, \mathrm{t}=0$ and $\mathrm{t}=1$. Then graph the line.
$\vec{r}=$ \qquad
\qquad

$$
=
$$

\qquad
So one point on the line is \qquad
$\vec{r}=$ \qquad $=$ \qquad
\qquad
So another point on the line is \qquad
$\vec{r}=$ \qquad $=$ \qquad
\qquad
A third point on the line is \qquad
So the three points are

Let's find 3 points on the line $\vec{r}=[1,2]+t[-3,1]$ by letting $\mathrm{t}=-1, \mathrm{t}=0$ and $\mathrm{t}=1$. Then graph the line.

In general the vector equation passing through the point $\mathrm{P}(\mathrm{x}, \mathrm{y})$ and with direction vector \vec{m} is , where \qquad is the position vector of P .

Why do we use \vec{m} for direction?
Recall in the first line we saw had a slope of \qquad and the direction vector was \qquad
So if the direction vector is \qquad the slope will be \qquad
$\underline{\text { Parametric Equation }}$
For the vector equation, $\vec{r}=[3,2]+t[4,5]$ let's let $\vec{r}=[x, y]$. We now have the equation:

This can be rewritten as

$$
\begin{aligned}
- & =\square+ \\
& =\square
\end{aligned}
$$

These can be taken apart to get the equations:

These are called the \qquad of the line.
Let's find 3 points on the line

$$
\begin{aligned}
& x=1+2 t \\
& y=3-t
\end{aligned}
$$

When $\mathrm{t}=-1$, point is

When $\mathrm{t}=0$, point is

When $\mathrm{t}=1$,
point is

Try graphing

$$
\begin{aligned}
& x=3-2 t \\
& y=-2 t
\end{aligned}
$$

Is the point $(5,1)$ on the line

$$
\begin{aligned}
& x=4+t \\
& y=3-2 t
\end{aligned}
$$

For the point to be on the line then the t in both equations must be true. There are two ways to do this.

1) Let $x=5$.

Solve for t
Check in y
$5=4+t$
$t=1$
$y=3-2(1)=5$
This is the value of y in the point. So $(5,1)$ is on the line.
2) Let $x=5$ and $y=1$.

Solve for t in both
Compare the t s.
$x=5=4+t$
$t=1$
$y=1=3-2 t$
$-2=-2 t$
$t=1$
Since these t s are the same the point is on the line.

Is the point $(5,5)$ on the line?

$$
\begin{aligned}
& x=4+t \\
& y=3-2 t
\end{aligned}
$$

Is the point $(7,0)$ on the line

$$
\begin{aligned}
& x=3-2 t \\
& y=4+2 t
\end{aligned}
$$

$\underline{\text { Parametric to Vector Equation }}$
Rewrite the following into a vector equation.

$$
\begin{aligned}
& x=4+7 t \\
& y=3+6 t
\end{aligned}
$$

Just reverse the process we did to get to parametric.

Therefore the vector equation is \qquad

Find the direction vectors for the following lines?
a) $\vec{r}=[3,2]+t[4,7]$
b) $\begin{gathered}x=3-2 t \\ y=4+2 t\end{gathered}$
c) $y=\frac{3}{5} x+2$

Scalar Equation
Starting with the equation

$$
\begin{aligned}
& x=3+4 t \\
& y=2+5 t
\end{aligned}
$$

Now set the two t s equal to each other.

\square	$=$
	$=$
	$=$
	$=$
	$=$

This is called the scalar form of a line.
But we know it as the standard form of a line.
We have now come full circle because we can rewrite this as \qquad

Try rewriting the following into scalar form.
a) $\begin{aligned} & x=5-3 t \\ & y=4+t\end{aligned}$
b) $\vec{r}=[5,3]+t[-1,2]$

