# Intermediate Math Circles <br> Wednesday March 27, 2019 <br> Problem Set 2 - Solutions 

## 1. Solution

(a) $\vec{u}+\vec{v}+\vec{w}=[3,7]+[0,4]+[2,-5]=[5,6]$
(b) $3 \vec{u}-2 \vec{v}=3[3,7]-2[0,4]=[9,21]-[0,8]=[9,13]$
(c) $-2 \vec{u}+\frac{1}{8} \vec{v}+3 \vec{w}=[-6,-14]+\left[0, \frac{1}{2}\right]+[6,-15]=\left[0,-\frac{59}{2}\right]$

## 2. Solution

$$
\begin{aligned}
& a[1,1]+b[1,1]+c[1,1]-a[1,2]+b[1,2]-a[-1,-1]+b[-1,-1]+c[-1,-1] \\
& =a([1,1]-[1,2]+[1,1])+b([1,1]+[1,2]+[-1,-1])+c([1,1]+[-1,-1]) \\
& =a[1,0]+b[1,2]
\end{aligned}
$$

## 3. Solution

(a) $a=4, b=4$

We have $a=4$. Thus, $6=a+b \Longrightarrow 6=4+b$. Therefore, $b=2$.
(b) $a=2, b=6$

We have $2=a$. Thus, $b=3 a \Longrightarrow b=3(2)=6$.

## 4. Solution A)

(a) $|\vec{v}|=\sqrt{9+16}=5$
(b) $\vec{u}=\frac{1}{5}[4,3]=\left[\frac{4}{5}, \frac{3}{5}\right]$
(c) $|\vec{u}|=\sqrt{\left(\frac{4}{5}\right)^{2}+\left(\frac{3}{5}\right)^{2}}=\sqrt{\frac{16}{25}+\frac{9}{25}}=\sqrt{\frac{25}{25}}=1$
B) $\vec{u}$ has the same direction of $\vec{v}$ but $\frac{1}{5}$ the magnitude of $\vec{v}$

## 5. Solution

(a) $|\vec{v}|=\sqrt{25+144}=13 ; \vec{u}=\frac{1}{13}[5,12]=\left[\frac{5}{13}, \frac{12}{13}\right]$

$$
|\vec{u}|=\sqrt{\left(\frac{5}{13}\right)^{2}+\left(\frac{12}{13}\right)^{2}}=\sqrt{\frac{25}{169}+\frac{144}{169}}=\sqrt{\frac{169}{169}}=1
$$

(b) $|\vec{v}|=\sqrt{16+49}=\sqrt{65} ; \vec{u}=\frac{1}{\sqrt{65}}[4,7]=\left[\frac{4}{\sqrt{65}}, \frac{7}{\sqrt{65}}\right]$

$$
|\vec{u}|=\sqrt{\left(\frac{4}{\sqrt{65}}\right)^{2}+\left(\frac{7}{\frac{4}{\sqrt{65}}}\right)^{2}}=\sqrt{\frac{16}{65}+\frac{65}{65}}=\sqrt{\frac{65}{65 s}}=1
$$

(c) $|\vec{v}|=\sqrt{a^{2}+b^{2}} ; \vec{u}=\frac{1}{\sqrt{a^{2}+b^{2}}}[a, b]=\left[\frac{a}{\sqrt{a^{2}+b^{2}}}, \frac{b}{\sqrt{a^{2}+b^{2}}}\right]$

$$
|\vec{u}|=\sqrt{\left(\frac{a}{\sqrt{a^{2}+b^{2}}}\right)^{2}+\left(\frac{b}{\sqrt{a^{2}+b^{2}}}\right)^{2}}=\sqrt{\frac{a^{2}}{\sqrt{a^{2}+b^{2}}}+\frac{b}{\sqrt{a^{2}+b^{2}}}}=\sqrt{\frac{a^{2}+b^{2}}{a^{2}+b^{2}}}=1
$$

## 6. Solution

(a) $t=-1, \operatorname{pt}(0,-3) ; t=0, \operatorname{pt}(3,-1) ; t=1, \operatorname{pt}(6,1)$

(b) $t=-1, \operatorname{pt}(3,5) ; t=0, \operatorname{pt}(4,3) ; t=1, \operatorname{pt}(5,1)$


## 7. Solution A)

(a) $t=-1$, pt $\mathrm{A}(1,6) ; t=0$, pt $\mathrm{B}(3,5) ; t=1$, pt $\mathrm{C}(5,4)$
(b) $t=-1$, pt $\mathrm{D}(9,2) ; t=0$, pt $\mathrm{E}(5,4) ; t=1$, pt $\mathrm{F}(1,6)$

B) They are the same line.

## 8. Solution

(a) The two direction vectors are $[2,-1]$ and $[-4,2]$. Since $[-4,2]=-2[2,-1]$, they are parallel to each other and have the 'same' direction
(b) Sub 3 into the $x$ of second equation $3=5-4 t \Longrightarrow-2=-4 t \Longrightarrow t=\frac{1}{2}$ Check with $y ; y=4+2 \frac{1}{2}=4+1=5 \Longrightarrow$ the point is on the line. Therefore the lines are the same.

## 9. Solution

The two direction vectors are $[3,-2]$ and $[6,-4]$. Since $[6,-4]=2[3,-2]$ they have the 'same' direction.
Show $[6,5]$ is in the other line.
Sub 6 into the $x \Longrightarrow 6=9+6 t \Longrightarrow-3=6 t \Longrightarrow t=\frac{-1}{2}$
Check with $y ; y=-4\left(\frac{-1}{2}\right)=2 \Longrightarrow$ the point is not on the line.
Therefore the lines are not the same.

## 10. Solution

Rewrite the second equation in slope y-int form. $3 x+2 y-19=0 \Longrightarrow 2 y=-3 x+19 \Longrightarrow$ $y=-\frac{3}{2} x+\frac{19}{2}$. Therefore the slope is $\frac{-3}{2}$ which gives a direction vector of $[-2,3]$. Therefore the two lines have the same direction
Now sub in the point from a) into b): $3(3)+2(5)-19=19-19=0$. This is a true statement and therefore the point is on the second line. And they are the same line.

