Problem Set 2 Solutions

Intermediate Math Circles Fall 2019 More Fun With Inequalities

Rational Inequalities

$$1. \quad \frac{1}{x} \le -7, x \ne 0$$

Solution:

Case 1 [x > 0] $\frac{1}{x} \le -7$ $\frac{1}{x} \le -7$ $1 \le -7x$ $\frac{1}{-7} \ge \frac{-7x}{-7}$ $x \le \frac{-1}{7}$ But x > 0 and $x \le \frac{-1}{7}$ isn't possible. Case 2 [x < 0] $\frac{1}{x} \le -7$ $1 \ge -7x$ $\frac{1}{-7} \le \frac{-7x}{-7}$ $x \ge \frac{-1}{7}$ Thus $\frac{-1}{7} \le x < 0$

Thus this case is impossible.

2.
$$\frac{3}{x-2} \ge \frac{1}{4}, x \ne 2$$

Solution:

Case 1 [(x-2) > 0]Case 2 [(x-2) < 0] $\frac{3}{x-2} \ge \frac{1}{4}$ $\frac{3}{r-2} \ge \frac{1}{4}$ $12 \ge x - 2$ $12 \le x - 2$ $12 + 2 \ge x$ $12 + 2 \le x$ $x \leq 14$ $x \ge 14$

If x - 2 > 0, we know x > 2 as well as $x \leq 14$

Thus, $2 < x \le 14$

3.
$$\frac{x-3}{x+1} < 2, x \neq -1$$

Solution:

Case 2 [(x+1) < 0]Case 1 [(x+1) > 0] $\frac{x-3}{x+1} < 2$ $\frac{x-3}{x+1} < 2$ x - 3 < 2(x + 1)x - 3 > 2(x + 1)x - 3 < 2x + 2x - 3 > 2x + 2-3 - 2 < 2x - x-3 - 2 > 2x - x-5 < x-5 > x

If x + 1 > 0, then x > -1 must also hold. Luckily if x > -1, then x > -5.

Thus, for this case x > -1

If x - 2 < 0, then x < 2. But there is no x such that x < 2 and $x \ge 14$.

This case is impossible

If x + 1 < 0, then x < -1 must also hold. Luckily if x < -5, then x < -1.

Thus, for this case x < -5

Therefore, when x > -1 or when x < -5 the inequality is satisfied.

Absolute Values

Solve each of the following algebraically. Check your answer graphically.

(a) |x+6| = 5

Solution: Case 1: $[(x+6) \ge 0]$

$$|x+6| = 5$$
$$(x+6) = 5$$
$$x = 5 - 6$$
$$x = -1$$

Case 2: [(x+6) < 0]

$$|x+6| = 5$$
$$-(x+6) = 5$$
$$-x-6 = 5$$
$$-x = 11$$
$$x = -11$$

Therefore x = -1 and x = -11 satisfy the equation.

Check

Where is the special point?

$$x + 6 = 0$$

$$x = -6$$

$$5$$

$$5$$

$$5$$

$$-1$$

(b) $|x-4| \ge 1$

Solution: Case 1: $[(x-4) \ge 0]$

$$|x-4| \ge 1$$
$$(x-4) \ge 1$$
$$x-4 \ge 1$$
$$x \ge 5$$

Case 2: [(x-4) < 0]

$$|x - 4| \ge 1$$
$$-(x - 4) \ge 1$$
$$-x + 4 \ge 1$$
$$4 - 1 \ge x$$
$$3 \ge x$$
$$x \le 3$$

Therefore when $x \ge 5$ or when $x \le 3$ the inequality is satisfied.

Check

Where is the "special" point?

(c) |2x+1| < 7

Solution: Case 1 $[(2x+1)\geq 0]$:

$$|2x+1| < 7$$

$$2x+1 < 7$$

$$2x < 7-1$$

$$\frac{2x}{2} < \frac{6}{2}$$

$$x < 3$$

Case 2 [(2x+1)<0]:

$$|2x + 1| < 7$$

-(2x + 1) < 7
-2x - 1 < 7
-2x < 8
$$\frac{-2x}{-2} > \frac{8}{2}$$

We flip the inequality here!

x > -4

Therefore the inequality holds for -4<x<3. <u>Check</u> Where is our special point?

Wait! Why are we only going 3.5 from $\frac{-1}{2}$? Because the x value is being doubled within this inequality. In other words, we have 2x vs x.

(d) |x-2| + |x+5| = 8

Solution: Case 1 [(x-2) ≥ 0 and (x+5) ≥ 0]:

$$|x-2| + |x+5| = 8$$
$$(x-2) + (x+5) = 8$$
$$2x + 3 = 8$$
$$2x = 5$$
$$x = \frac{5}{2}$$

<u>Case 2 [(x-2) ≥ 0 and (x+5) < 0]:</u>

$$|x - 2| + |x + 5| = 8$$

$$x - 2 + [-(x + 5)] = 8$$

$$x - 2 - x - 5 = 8$$

$$-7 = 8$$

Case is inadmissable.

Case 3 [(x-2) < 0 and (x+5) ≥ 0]:

$$|x - 2| + |x + 5| = 8$$

-(x - 2) + (x + 5) = 8 - x + 2 + x + 5 = 8
7 = 8

Case is inadmissable.

-

Case 4 [(x-2) < 0 and (x+5) < 0]:

$$|x - 2| + |x + 5| = 8$$

-(x - 2) + [-(x + 5)] = 8
-x + 2 + (-x - 5) = 8
-x + 2 - x - 5 = 8
-2x - 3 = 8
-2x = 11
x = \frac{-11}{2}

Therefore $x = \frac{5}{2}$ and $x = \frac{-11}{2}$ satisfy the equation.

<u>Check</u>

Where are the special points?

$$x - 2 = 0$$

$$x = -2$$

$$x + 5 = 0$$

$$x = -5$$

We know that for any x in the range $-5 \le x \le 2$ that |x-2| + |x+5| = 7. To the right of 2 we need to add 1 so 7 + 1 = 8.

Similarly to the left of -5,

(e)
$$|x| + |2 - x| \le 12$$

Solution: Case 1 [$x \ge 0$ and (2-x) ≥ 0]:

$$|x| + |2 - x| \le 12$$

x + 2 - x \le 12
2 \le 12

While this is true, it doesn't help us find the values that work.

Case 2 [$x \ge 0$ and (2-x) < 0]:

$$|x| + |2 - x| \le 12$$

$$x + [-(2 - x)] \le 12$$

$$x + (-2 + x) \le 12$$

$$2x - 2 \le 12$$

$$2x \le 14$$

$$x \le 7$$

Case 3 [x < 0 and (2-x) \ge 0]:

$$\begin{aligned} x| + |2 - x| &\leq 12 \\ -x + 2 - x &\leq 12 \\ -2x + 2 &\leq 12 \\ -2x &\leq 10 \\ \frac{-2x}{-2} &\geq \frac{10}{-2} \end{aligned}$$

We flip the inequality.

 $x \ge -5$

Case 4 [x < 0 and (2-x) < 0]:

$$|x| + |2 - x| \le 12$$

-x + [-(2 - x)] \le 12
-x - 2 + x \le 12
-2 < 12

Again this is true, but doesn't help. Therefore the inequality holds for -5 \leq x \leq 7.

Check

Where are the special points?

$$x = 0$$
$$2 - x = 0$$
$$2 = x$$
$$x = 2$$

We know for any point in the range 0 < x < 2, |x| + |2-x|=2 and $2 \le 12$. To the right of 2 we can add 10 so that 2 + 10 = 12.

Similarly to the left of 0,

When we consider the last two number lines together, we get the following:

(f) $|x| \ge 7$

Solution:

Case 1 $[x \ge 0]$	Case 2 $[x < 0]$
$ x \ge 7$	$ x \ge 7$
$x \ge 7$	$-x \ge 7$
	$x \leq -7$

Therefore, when $x \ge 7$ or when $x \le -7$ the inequality is satisfied.

(g) |x-6| < 5

Solution:

Case 1 $[(x-6) \ge 0]$	Case 2 $[(x-6) < 0]$
x - 6 < 5	x - 6 < 5
x - 6 < 5	-(x-6) < 5
x < 11	-x + 6 < 5
If $x - 6 \ge 0$, then we know $x \ge 6$ as well as $x < 11$.	6 - 5 < x
Thus, $6 \le x < 11$.	x > 1
	If $x - 6 < 0$, then we know $x < 6$ as well as $x > 1$.

Thus, 1 < x < 6.

Therefore, when we combine the two inequalities we get 1 < x < 11 .

(h) $|x+2| \ge 8$

Solution:

Case 1 $[(x+2) \ge 0]$	Case 2 $[(x+2) < 0]$
$ x+2 \ge 8$	$ x+2 \ge 8$
$x+2 \ge 8$	$-(x+2) \ge 8$
$x \ge 6$	$-x-2 \ge 8$
If $(x + 2) \ge 0$, then we know $x \ge -2$. Luckily if $x \ge 6$, then	$-2-8 \ge x$
$x \ge -2$ as well.	$-10 \ge x$
Thus, $x \ge 6$	$x \le -10$
	If $(x + 2) < 0$, then we know $x < -2$. Again if $x \le -1$, then $x < -2$ as well.
	Thus, $x \leq -10$

Therefore, when $x \ge 6$ or when $x \le -10$ the inequality is satisfied.

(i) |3x| > 6

Solution:

We know our "special" point is at zero with |3x| > 6 and we could use the argument we used in Problem Set 1 Question 4. That is, we need points $\frac{1}{3}$ of 6 away from our special point zero because we have 3x instead of x. Or we could use the fact that |ab| = |a||b| discussed in Problem Set 1 Question 3 to show:

|3x| > 6|3||x| > 63|x| > 6|x| > 2Therefore π

Therefore when x < -2 or x > 2 is the inequality satisfied.

(j)
$$|x+1| + |x+6| \ge 4$$

Solution:

Where are our "special" points?

$$x + 1 = 0
 x = -1
 x + 6 = 0
 x = -6$$

Since the distance between the special points is 5, we know for all x on the number line $|x+1|+|x+6|\geq 5$

Since $5 \ge 4$ we know all values of x satisfy the inequality.