Problem Set 2 Solutions

Intermediate Math Circles Fall 2019

More Fun With Inequalities

Rational Inequalities

1. $\frac{1}{x} \leq-7, x \neq 0$

Solution:

Case $1[x>0]$
$\frac{1}{x} \leq-7$
$1 \leq-7 x$
$\frac{1}{-7} \geq \frac{-7 x}{-7}$
$x \leq \frac{-1}{7}$
But $x>0$ and $x \leq \frac{-1}{7}$ isn't possible.

Case $2[x<0]$
$\frac{1}{x} \leq-7$
$1 \geq-7 x$
$\frac{1}{-7} \leq \frac{-7 x}{-7}$
$x \geq \frac{-1}{7}$
Thus $\frac{-1}{7} \leq x<0$

Thus this case is impossible.
2. $\frac{3}{x-2} \geq \frac{1}{4}, x \neq 2$

Solution:

Case $1[(x-2)>0]$
$\frac{3}{x-2} \geq \frac{1}{4}$
$12 \geq x-2$
$12+2 \geq x$
$x \leq 14$

If $x-2>0$, we know $x>2$ as well as $x \leq 14$

Thus, $2<x \leq 14$
3. $\frac{x-3}{x+1}<2, x \neq-1$

Solution:

Case $1[(x+1)>0]$
$\frac{x-3}{x+1}<2$
$x-3<2(x+1)$
$x-3<2 x+2$
$-3-2<2 x-x$
$-5<x$

If $x+1>0$, then $x>-1$ must also hold. Luckily if $x>-1$, then $x>-5$.

Thus, for this case $x>-1$

Case $2[(x-2)<0]$
$\frac{3}{x-2} \geq \frac{1}{4}$
$12 \leq x-2$
$12+2 \leq x$
$x \geq 14$

If $x-2<0$, then $x<2$. But there is no x such that $x<2$ and $x \geq 14$.

This case is impossible

Case $2[(x+1)<0]$
$\frac{x-3}{x+1}<2$
$x-3>2(x+1)$
$x-3>2 x+2$
$-3-2>2 x-x$
$-5>x$

If $x+1<0$, then $x<-1$ must also hold. Luckily if $x<-5$, then $x<-1$.

Thus, for this case $x<-5$

Therefore, when $x>-1$ or when $x<-5$ the inequality is satisfied.

Absolute Values

Solve each of the following algebraically. Check your answer graphically.
(a) $|x+6|=5$

Solution: Case 1:[(x+6) $\geq 0]$

$$
\begin{aligned}
|x+6| & =5 \\
(x+6) & =5 \\
x & =5-6 \\
x & =-1
\end{aligned}
$$

Case 2: $[(x+6)<0]$

$$
\begin{aligned}
|x+6| & =5 \\
-(x+6) & =5 \\
-x-6 & =5 \\
-x & =11 \\
x & =-11
\end{aligned}
$$

Therefore $\mathrm{x}=-1$ and $\mathrm{x}=-11$ satisfy the equation.
Check
Where is the special point?

$$
\begin{aligned}
x+6 & =0 \\
x & =-6
\end{aligned}
$$

(b) $|x-4| \geq 1$

Solution: Case 1: $[(x-4) \geq 0]$

$$
\begin{aligned}
|x-4| & \geq 1 \\
(x-4) & \geq 1 \\
x-4 & \geq 1 \\
x & \geq 5
\end{aligned}
$$

Case 2: $[(x-4)<0]$

$$
\begin{aligned}
|x-4| & \geq 1 \\
-(x-4) & \geq 1 \\
-x+4 & \geq 1 \\
4-1 & \geq x \\
3 & \geq x \\
x & \leq 3
\end{aligned}
$$

Therefore when $x \geq 5$ or when $x \leq 3$ the inequality is satisfied.
Check
Where is the "special" point?

$$
\begin{array}{r}
x-4=0 \\
x=4
\end{array}
$$

(c) $|2 x+1|<7$

Solution: Case $1[(2 x+1) \geq 0]$:

$$
\begin{aligned}
|2 x+1| & <7 \\
2 x+1 & <7 \\
2 x & <7-1 \\
\frac{2 x}{2} & <\frac{6}{2} \\
x & <3
\end{aligned}
$$

Case $2[(2 \mathrm{x}+1)<0]$:

$$
\begin{aligned}
|2 x+1| & <7 \\
-(2 x+1) & <7 \\
-2 x-1 & <7 \\
-2 x & <8 \\
\frac{-2 x}{-2} & >\frac{8}{2}
\end{aligned}
$$

We flip the inequality here!

$$
x>-4
$$

Therefore the inequality holds for $-4<\mathrm{x}<3$.
Check
Where is our special point?

$$
\begin{aligned}
2 x+1 & =0 \\
x & =\frac{-1}{2}
\end{aligned}
$$

Wait! Why are we only going 3.5 from $\frac{-1}{2}$?
Because the x value is being doubled within this inequality.
In other words, we have 2 x vs x .
(d) $|x-2|+|x+5|=8$

Solution: Case $1[(x-2) \geq 0$ and $(x+5) \geq 0]:$

$$
\begin{aligned}
|x-2|+|x+5| & =8 \\
(x-2)+(x+5) & =8 \\
2 x+3 & =8 \\
2 x & =5 \\
x & =\frac{5}{2}
\end{aligned}
$$

Case $2[(\mathrm{x}-2) \geq 0$ and $(\mathrm{x}+5)<0]$:

$$
\begin{aligned}
|x-2|+|x+5| & =8 \\
x-2+[-(x+5)] & =8 \\
x-2-x-5 & =8 \\
-7 & =8
\end{aligned}
$$

Case is inadmissable.
$\underline{\text { Case } 3[(x-2)<0 \text { and }(x+5) \geq 0] \text { : }}$

$$
\begin{aligned}
|x-2|+|x+5| & =8 \\
-(x-2)+(x+5) & =8-x+2+x+5 \quad=8 \\
7=8 &
\end{aligned}
$$

Case is inadmissable.
$\underline{\text { Case } 4[(x-2)<0 \text { and }(x+5)<0] \text { : }}$

$$
\begin{aligned}
|x-2|+|x+5| & =8 \\
-(x-2)+[-(x+5)] & =8 \\
-x+2+(-x-5) & =8 \\
-x+2-x-5 & =8 \\
-2 x-3 & =8 \\
-2 x & =11 \\
x & =\frac{-11}{2}
\end{aligned}
$$

Therefore $\mathrm{x}=\frac{5}{2}$ and $\mathrm{x}=\frac{-11}{2}$ satisfy the equation.
Check

Where are the special points?

$$
\begin{aligned}
x-2 & =0 \\
x & =-2 \\
x+5 & =0 \\
x & =-5
\end{aligned}
$$

We know that for any x in the range $-5 \leq \mathrm{x} \leq 2$ that $|\mathrm{x}-2|+|\mathrm{x}+5|=7$. To the right of 2 we need to add 1 so $7+1=8$.

Similarly to the left of -5 ,

(e) $|x|+|2-x| \leq 12$

Page 7

Solution: Case $1[x \geq 0$ and $(2-x) \geq 0]:$

$$
\begin{aligned}
|x|+|2-x| & \leq 12 \\
x+2-x & \leq 12 \\
2 & \leq 12
\end{aligned}
$$

While this is true, it doesn't help us find the values that work.
Case $2[\mathrm{x} \geq 0$ and $(2-\mathrm{x})<0]$:

$$
\begin{aligned}
|x|+|2-x| & \leq 12 \\
x+[-(2-x)] & \leq 12 \\
x+(-2+x) & \leq 12 \\
2 x-2 & \leq 12 \\
2 x & \leq 14 \\
x & \leq 7
\end{aligned}
$$

Case $3[x<0$ and $(2-x) \geq 0]$:

$$
\begin{aligned}
|x|+|2-x| & \leq 12 \\
-x+2-x & \leq 12 \\
-2 x+2 & \leq 12 \\
-2 x & \leq 10 \\
\frac{-2 x}{-2} & \geq \frac{10}{-2}
\end{aligned}
$$

We flip the inequality.

$$
x \geq-5
$$

Case $4[\mathrm{x}<0$ and $(2-\mathrm{x})<0]$:

$$
\begin{aligned}
|x|+|2-x| & \leq 12 \\
-x+[-(2-x)] & \leq 12 \\
-x-2+x & \leq 12 \\
-2 & \leq 12
\end{aligned}
$$

Again this is true, but doesn't help.
Therefore the inequality holds for $-5 \leq x \leq 7$.
Check
Where are the special points?

$$
\begin{aligned}
x & =0 \\
2-x & =0 \\
2 & =x \\
x & =2
\end{aligned}
$$

We know for any point in the range $0<\mathrm{x}<2,|\mathrm{x}|+|2-\mathrm{x}|=2$ and $2 \leq 12$.
To the right of 2 we can add 10 so that $2+10=12$.

Similarly to the left of 0 ,

When we consider the last two number lines together, we get the following:

Page 9

(f) $|x| \geq 7$

Solution:

Case $1[x \geq 0]$
Case $2[x<0]$
$|x| \geq 7$

$$
|x| \geq 7
$$

$$
x \geq 7
$$

$$
-x \geq 7
$$

$$
x \leq-7
$$

Therefore, when $x \geq 7$ or when $x \leq-7$ the inequality is satisfied.
(g) $|x-6|<5$

Solution:

Page 10

Case $1[(x-6) \geq 0]$

$$
\text { Case } 2[(x-6)<0]
$$

$|x-6|<5$

$$
|x-6|<5
$$

$x-6<5$

$$
-(x-6)<5
$$

$x<11$

$$
-x+6<5
$$

If $x-6 \geq 0$, then we know $x \geq 6$ as well as $x<11$.

Thus, $6 \leq x<11$.
$6-5<x$
$x>1$

If $x-6<0$, then we know $x<6$ as well as $x>1$.

Thus, $1<x<6$.

Therefore, when we combine the two inequalities we get $1<x<11$
(h) $|x+2| \geq 8$

Solution:

Case $1[(x+2) \geq 0]$
Case $2[(x+2)<0]$
$|x+2| \geq 8$

$$
|x+2| \geq 8
$$

$x+2 \geq 8$
$-(x+2) \geq 8$
$x \geq 6$
$-x-2 \geq 8$
If $(x+2) \geq 0$, then we know
$-2-8 \geq x$
$x \geq-2$. Luckily if $x \geq 6$, then
$x \geq-2$ as well.
$-10 \geq x$
Thus, $x \geq 6$
$x \leq-10$

If $(x+2)<0$, then we know $x<-2$. Again if $x \leq-1$, then $x<-2$ as well.

Thus, $x \leq-10$

Therefore, when $x \geq 6$ or when $x \leq-10$ the inequality is satisfied.
(i) $|3 x|>6$

Solution:

We know our "special" point is at zero with $|3 x|>6$ and we could use the argument we used in Problem Set 1 Question 4. That is, we need points $\frac{1}{3}$ of 6 away from our special point zero because we have $3 x$ instead of x. Or we could use the fact that $|a b|=|a||b|$ discussed in Problem Set 1 Question 3 to show:
$|3 x|>6$
$|3||x|>6$
$3|x|>6$
$|x|>2$

Therefore when $x<-2$ or $x>2$ is the inequality satisfied.
(j) $|x+1|+|x+6| \geq 4$

Solution:

Where are our "special" points?
$x+1=0$

$$
x+6=0
$$

$x=-1$

Since the distance between the special points is 5 , we know for all x on the number line $|x+1|+|x+6| \geq 5$

Since $5 \geq 4$ we know all values of x satisfy the inequality.

