Problem Set 3 - Solutions

Intermediate Math Circles Fall 2019

Even More Fun With Inequalities
Nov. 13, 2019

Two Variable Linear Inequalities

Graph the following regions that satisfy the inequalities

1. $x-2 y \geq 3$

Consider when $\mathrm{x}-1$ for $x-2 y \geq 3$.

$$
\begin{aligned}
1-2 y & \geq 3 \\
1-3 & \geq 2 y \\
-2 & \geq 2 y \\
\frac{2 y}{2} & \leq \frac{-2}{2} \\
y & \leq-1
\end{aligned}
$$

2. $x-2 y \geq 3 \cap x-2 y \leq 6$

Consider $\mathrm{x}=-1$ for $x-2 y \leq 6$.

$$
\begin{aligned}
(-1)-2 y & \leq 6 \\
-2 y & \leq 7 \\
\frac{-2 y}{-2} & \geq \frac{7}{-2} \\
y & \geq \frac{-7}{2}
\end{aligned}
$$

Note that we flip the inequality sign when dividing by -2 .
3. $5 x+3 y<12 \cup x-2 y \leq 6$

Consider $\mathrm{x}=2$ for $5 x+3 y<12$.

$$
\begin{aligned}
5(2)+3 y & <12 \\
10+3 y & <12 \\
3 y & <12-10 \\
y & <\frac{2}{3}
\end{aligned}
$$

4. $x-y<5$

5. $x+2 y>6 \cap 2 x-y \leq 4$
2.)

Consider $y=0$ for $x+2 y>6$,

$$
\begin{gathered}
x+2(0)>6 \\
x>6
\end{gathered}
$$

Consider $x=6$ for $2 x-y \leq 4$

$$
\begin{gathered}
2(6)-y \leq 4 \\
12-4 \leq y \\
8 \leq y \\
y \geqslant 8
\end{gathered}
$$

6. $3 x-y \leq 12 \cap x+y<5 \cap x-2 y>4$
3.)

Consider $x=0$ for $3 x-y \leq 12$
$3(0)-y \leq 12$

$$
\begin{gathered}
-12 \leqslant y \\
y \geqslant-12 \\
\text { Consider } \quad \begin{array}{c}
y=0 \text { for } x+y<5 \\
x+0<5 \\
x<5
\end{array}
\end{gathered}
$$

$$
\text { Consicles } x=0 \text { for } x-2 y>4
$$

$$
\begin{aligned}
0-2 y & >4 \\
-4 & >2 y
\end{aligned} \quad>\quad y<-2
$$

More Absolute Values (Review)

Solve each of the following inequalities algebraically and graphically

1. $|x-7|+|x-1|<8$

Where are our "special" points?
$x-7=0$
$x-1=0$
$x=7$
$x=1$

We know for $1<x<7$ that $|x-7|+|x-1|=6$. To make sure $|x-7|+$ $|x-1|<8$ we can't be more than one away from 7 and one away from 1 . Therefore $0<x<8$ satisfy the inequality.

Use your knowledge about absolute values to prove the following properties. Hint: cases are your friend.
2. If a and b are any real numbers and $b \neq 0$, then $\left|\frac{a}{b}\right|=\frac{|a|}{|b|}$

In order to prove this we need to consider 4 cases.

Case $1[a \geq 0, b>0]$
If $a \geq 0, b>0$ and $\frac{a}{b}>0$ we know $\left|\frac{a}{b}\right|=\frac{a}{b}$
Since $a \geq 0$ and $b>0$ we know $|a|=a$ and $|b|=b$
Thus $\left|\frac{a}{b}\right|=\frac{a}{b}=\frac{|a|}{|b|}$
Case $2[a \geq 0, b<0]$
If $a \geq 0, b<0$ then $\frac{a}{b} \leq 0$ and $\left|\frac{a}{b}\right|=-\frac{a}{b}$
Since $a \geq 0$ and $b<0$ we know $|a|=a$ and $|b|=-b$
Thus, $\left|\frac{a}{b}\right|=-\frac{a}{b}=\frac{a}{-b}=\frac{|a|}{|b|}$
Case $3[a<0, b>0]$
If $a<0$ and $b>0$, then $\frac{a}{b}<0$ and $\left|\frac{a}{b}\right|=-\frac{a}{b}$

Since $a<0$ and $b>0$, we know $|a|=-a$ and $|b|=b$

Thus, $\left|\frac{a}{b}\right|=-\frac{a}{b}=\frac{-a}{b}=\frac{|a|}{|b|}$
Case $4[a<0, b<0]$
If $a<0$ and $b<0$, then $\frac{a}{b}>0$ and $\left|\frac{a}{b}\right|=\frac{a}{b}$
Since $a<0$ and $b<0$, we know $|a|=-a$ and $|b|=-b$
Thus, $\left|\frac{a}{b}\right|=\frac{a}{b}=\frac{-a}{-b}=\frac{|a|}{|b|}$
Therefore we know $\left|\frac{a}{b}\right|=\frac{|a|}{|b|}$ when a and b are real numbers and $b \neq 0$
3. If a is a real number and n is an integer, then $\left|a^{n}\right|=|a|^{n}$

To prove $\left|a^{n}\right|=|a|^{n}$ we will consider the cases when $a \geq 0$ and $a<0$ Proof:

Case $1[a \geq 0]$
If $a \geq 0$ then $a^{n} \geq 0$ and $|a|=a$
Thus $\left|a^{n}\right|=a^{n}=|a|^{n}$

Case $2[a<0]$
If $a<0$, then $|a|=-a$
If n is even, then $a^{n}>0$ and $\left|a^{n}\right|=a^{n}$
With n even $(-1)^{n}=1$
Thus $\left|a^{n}\right|=a^{n}=(-1)^{n} a^{n}=(-a)^{n}=|a|^{n}$

If n is odd, then $a^{n}<0$ and $\left|a^{n}\right|=-a^{n}$
With n odd $(-1)^{n}=-1$
Thus $\left|a^{n}\right|=-a^{n}=(-1) a^{n}=(-1)^{n} a^{n}=(-a)^{n}=|a|^{n}$

Therefore we know $\left|a^{n}\right|=|a|^{n}$ when a is a real number and n is an integer

Triangle Inequality

1. A triangle can be formed having side lengths 4,5 and 8 . It is impossible however, to construct a triangle with side lengths 4,5 and 10 . Using the side lengths $2,3,5,7$ and 11 , how many different triangles with exactly two equal sides can be formed?

There are five cases to consider. Let x represent the third side length. Case $1[2,2, \mathrm{x}]$
Triangle inequality says

$$
\begin{aligned}
& x+2>2 \\
& 2+2>x
\end{aligned}
$$

$x+2>2 \Longrightarrow x>0$
$2+2>x \Longrightarrow x<4$
So $0<x<4$.
Since we can only have two equal side lengths $\mathrm{x}=3$ is our only possibility.
Case 2 [3,3,x]
Similarly we can show $0<x<6$.
Thus, the only possibilities for x are 2 and 5 .
Case 3 [5,5,x]
Similarly we can show $0<x<10$.
Thus the only possibilities for x are 2,3 and 7 .
Case 4 [7,7,x]
Similarly we can show $0<x<14$.
Thus the only possibilities for x are $2,3,5$ and 11 .
Case $5[11,11, \mathrm{x}]$
Similarly we can show $0<x<22$.
Thus the only possibilities for x are $2,3,5$ and 7 .
Therefore $1+2+3+4+4=14$ different triangles can be formed under the given conditions.

