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Two Variable Linear Inequalities

Graph the following regions that satisfy the inequalities

1. x− 2y ≥ 3

Consider when x - 1 for x− 2y ≥ 3.



1− 2y ≥ 3

1− 3 ≥ 2y

−2 ≥ 2y

2y

2
≤ −2

2
y ≤ −1



2. x− 2y ≥ 3 ∩ x− 2y ≤ 6

Consider x = -1 for x− 2y ≤ 6.

(−1)− 2y ≤ 6

−2y ≤ 7

−2y

−2
≥ 7

−2

y ≥ −7

2

Note that we flip the inequality sign when dividing by -2.

3. 5x + 3y < 12 ∪ x− 2y ≤ 6



Consider x = 2 for 5x + 3y < 12.

5(2) + 3y < 12

10 + 3y < 12

3y < 12− 10

y <
2

3

4. x− y < 5



5. x + 2y > 6 ∩ 2x− y ≤ 4



6. 3x− y ≤ 12 ∩ x + y < 5 ∩ x− 2y > 4





More Absolute Values (Review)

Solve each of the following inequalities algebraically and graphically

1. |x− 7|+ |x− 1| < 8

Where are our ”special” points?

x− 7 = 0
x = 7

x− 1 = 0
x = 1

We know for 1 < x < 7 that |x− 7|+ |x− 1| = 6. To make sure |x− 7|+
|x− 1| < 8 we can’t be more than one away from 7 and one away from 1.
Therefore 0 < x < 8 satisfy the inequality.

Use your knowledge about absolute values to prove the following properties.
Hint: cases are your friend.

2. If a and b are any real numbers and b 6= 0, then
∣∣∣a
b

∣∣∣ =
|a|
|b|

In order to prove this we need to consider 4 cases.

Case 1 [a ≥ 0, b > 0]

If a ≥ 0, b > 0 and
a

b
> 0 we know |a

b
| = a

b

Since a ≥ 0 and b > 0 we know |a| = a and |b| = b

Thus |a
b
| = a

b
=
|a|
|b|

Case 2 [a ≥ 0, b < 0]

If a ≥ 0, b < 0 then
a

b
≤ 0 and |a

b
| = −a

b

Since a ≥ 0 and b < 0 we know |a| = a and |b| = −b

Thus, |a
b
| = −a

b
=

a

−b
=
|a|
|b|

Case 3 [a < 0, b > 0]

If a < 0 and b > 0, then
a

b
< 0 and |a

b
| = −a

b



Since a < 0 and b > 0, we know |a| = −a and |b| = b

Thus, |a
b
| = −a

b
=
−a
b

=
|a|
|b|

Case 4 [a < 0, b < 0]

If a < 0 and b < 0, then
a

b
> 0 and |a

b
| = a

b

Since a < 0 and b < 0, we know |a| = −a and |b| = −b

Thus, |a
b
| = a

b
=
−a
−b

=
|a|
|b|

Therefore we know |a
b
| = |a|
|b|

when a and b are real numbers and

b 6= 0

3. If a is a real number and n is an integer, then |an| = |a|n

To prove |an| = |a|n we will consider the cases when a ≥ 0 and a < 0
Proof:

Case 1 [a ≥ 0]
If a ≥ 0 then an ≥ 0 and |a| = a
Thus |an| = an = |a|n

Case 2 [a < 0]
If a < 0, then |a| = −a
If n is even, then an > 0 and |an| = an

With n even (−1)n = 1
Thus |an| = an = (−1)nan = (−a)n = |a|n

If n is odd, then an < 0 and |an| = −an
With n odd (−1)n = −1
Thus |an| = −an = (−1)an = (−1)nan = (−a)n = |a|n

Therefore we know |an| = |a|n when a is a real number and n is an integer



Triangle Inequality

1. A triangle can be formed having side lengths 4, 5 and 8. It is impossible
however, to construct a triangle with side lengths 4, 5 and 10. Using the
side lengths 2, 3, 5, 7 and 11, how many different triangles with exactly
two equal sides can be formed?

There are five cases to consider. Let x represent the third side length.
Case 1 [2,2,x]
Triangle inequality says

x + 2 > 2

2 + 2 > x

x + 2 > 2 =⇒ x > 0
2 + 2 > x =⇒ x < 4
So 0 < x < 4.
Since we can only have two equal side lengths x = 3 is our only possibility.
Case 2 [3,3,x]
Similarly we can show 0 < x < 6.
Thus, the only possibilities for x are 2 and 5.
Case 3 [5,5,x]
Similarly we can show 0 < x < 10.
Thus the only possibilities for x are 2, 3 and 7.
Case 4 [7,7,x]
Similarly we can show 0 < x < 14.
Thus the only possibilities for x are 2, 3, 5 and 11.
Case 5 [11,11,x]
Similarly we can show 0 < x < 22.
Thus the only possibilities for x are 2, 3, 5 and 7.
Therefore 1 + 2 + 3 + 4 + 4 = 14 different triangles can be formed under
the given conditions.


