Problem Set 3 - Solutions

Intermediate Math Circles Fall 2019 Even More Fun With Inequalities

Nov. 13, 2019

Two Variable Linear Inequalities

Graph the following regions that satisfy the inequalities

Consider when x - 1 for $x - 2y \ge 3$.

$$1 - 2y \ge 3$$

$$1 - 3 \ge 2y$$

$$-2 \ge 2y$$

$$\frac{2y}{2} \le \frac{-2}{2}$$

$$y \le -1$$

2. $x - 2y \ge 3 \cap x - 2y \le 6$

Consider x = -1 for $x - 2y \le 6$.

$$(-1) - 2y \le 6$$
$$-2y \le 7$$
$$\frac{-2y}{-2} \ge \frac{7}{-2}$$
$$y \ge \frac{-7}{2}$$

Note that we flip the inequality sign when dividing by -2.

3. $5x + 3y < 12 \cup x - 2y \le 6$

Consider x = 2 for 5x + 3y < 12.

$$5(2) + 3y < 12$$

$$10 + 3y < 12$$

$$3y < 12 - 10$$

$$y < \frac{2}{3}$$

4. x - y < 5

5. $x + 2y > 6 \cap 2x - y \le 4$

6. $3x - y \le 12 \cap x + y < 5 \cap x - 2y > 4$

More Absolute Values (Review)

Solve each of the following inequalities algebraically and graphically

1. |x-7| + |x-1| < 8

Where are our "special" points?

x - 7 = 0	x - 1 = 0
x = 7	x = 1

We know for 1 < x < 7 that |x - 7| + |x - 1| = 6. To make sure |x - 7| + |x - 1| < 8 we can't be more than one away from 7 and one away from 1. Therefore 0 < x < 8 satisfy the inequality.

Use your knowledge about absolute values to prove the following properties. *Hint: cases are your friend.*

2. If a and b are any real numbers and $b \neq 0$, then $\left|\frac{a}{b}\right| = \frac{|a|}{|b|}$

In order to prove this we need to consider 4 cases.

Case 1 $[a \ge 0, b > 0]$

If $a \ge 0, b > 0$ and $\frac{a}{b} > 0$ we know $|\frac{a}{b}| = \frac{a}{b}$

Since $a \ge 0$ and b > 0 we know |a| = a and |b| = b

Thus
$$\left|\frac{a}{b}\right| = \frac{a}{b} = \frac{|a|}{|b|}$$

Case 2 $[a \ge 0, b < 0]$

If $a \ge 0, b < 0$ then $\frac{a}{b} \le 0$ and $|\frac{a}{b}| = -\frac{a}{b}$

Since $a \ge 0$ and b < 0 we know |a| = a and |b| = -b

Thus, $|\frac{a}{b}| = -\frac{a}{b} = \frac{a}{-b} = \frac{|a|}{|b|}$

Case 3 [a < 0, b > 0]

If a < 0 and b > 0, then $\frac{a}{b} < 0$ and $|\frac{a}{b}| = -\frac{a}{b}$

Since a < 0 and b > 0, we know |a| = -a and |b| = b

Thus, $|\frac{a}{b}| = -\frac{a}{b} = \frac{-a}{b} = \frac{|a|}{|b|}$

Case 4 [a < 0, b < 0]

If a < 0 and b < 0, then $\frac{a}{b} > 0$ and $|\frac{a}{b}| = \frac{a}{b}$

Since a < 0 and b < 0, we know |a| = -a and |b| = -b

Thus, $|\frac{a}{b}| = \frac{a}{b} = \frac{-a}{-b} = \frac{|a|}{|b|}$

Therefore we know $|\frac{a}{b}| = \frac{|a|}{|b|}$ when a and b are real numbers and $b \neq 0$

3. If a is a real number and n is an integer, then $|a^n| = |a|^n$ To prove $|a^n| = |a|^n$ we will consider the cases when $a \ge 0$ and a < 0Proof:

 $\begin{array}{l} \textbf{Case 1} \ [a \geq 0] \\ \text{If} \ a \geq 0 \ \text{then} \ a^n \geq 0 \ \text{and} \ |a| = a \\ \text{Thus} \ |a^n| = a^n = |a|^n \end{array}$

Case 2 [a < 0]If a < 0, then |a| = -aIf n is even, then $a^n > 0$ and $|a^n| = a^n$ With n even $(-1)^n = 1$ Thus $|a^n| = a^n = (-1)^n a^n = (-a)^n = |a|^n$

If n is odd, then $a^n < 0$ and $|a^n| = -a^n$ With n odd $(-1)^n = -1$ Thus $|a^n| = -a^n = (-1)a^n = (-1)^n a^n = (-a)^n = |a|^n$

Therefore we know $|a^n| = |a|^n$ when a is a real number and n is an integer

Triangle Inequality

1. A triangle can be formed having side lengths 4, 5 and 8. It is impossible however, to construct a triangle with side lengths 4, 5 and 10. Using the side lengths 2, 3, 5, 7 and 11, how many different triangles with exactly two equal sides can be formed?

There are five cases to consider. Let x represent the third side length. Case 1 [2,2,x]Triangle inequality says

$$\begin{aligned} x+2 &> 2\\ 2+2 &> x \end{aligned}$$

 $x + 2 > 2 \Longrightarrow x > 0$ $2+2 > x \Longrightarrow x < 4$ So 0 < x < 4. Since we can only have <u>two</u> equal side lengths x = 3 is our only possibility. Case 2 [3,3,x] $\overline{\text{Similarly we can show } 0 < x < 6.}$ Thus, the only possibilities for x are 2 and 5. Case 3 [5,5,x]Similarly we can show 0 < x < 10. Thus the only possibilities for x are 2, 3 and 7. Case 4 [7,7,x]Similarly we can show 0 < x < 14. Thus the only possibilities for x are 2, 3, 5 and 11. Case 5 [11,11,x] Similarly we can show 0 < x < 22. Thus the only possibilities for x are 2, 3, 5 and 7. Therefore 1 + 2 + 3 + 4 + 4 = 14 different triangles can be formed under the given conditions.