Modeling the Climate

System: an Introduction
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(Goals:

1. To learn about one existing example of
modern, man-made climate change
involving the sea.

2. To learn about climate change on the
ice-age scale (last 20K years).

3. To give examples of scales of motion in
the ocean and atmosphere.

4. To give an example of climate issues in
urban settings on the global stage.



In pretty much everything I am going to show you mathematics will be

in the background.

It will be used to analyze models, make pictures from satellite data, and

sometimes even formulate equations that govern climate processes.

There are a lot of mathematical moving parts (vector calculus, numerical

linear algebra).

Moreover the point of view on math is very different from the classroom

math you are used to.

Classroom math generally assumes you’re going to do the math because
you are told to, and not worry too much about what it is for.

The math I use is driven by answering questions and how easy or hard it

is depends on the question, not on a quest for more math.

At the end of the day very, very few people get paid to do math contest

puzzles. However, many people use math every day...
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Part 1:
A climactic horror
Story
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While the media sometimes treats climate change as “controversial” scientists have no
doubt that humans actively modify climate.

Indeed we have done so for thousands of years, ever since we have begun to practice
agriculture in large numbers.

In more recent times we modify local climate by building cities, paving roads and
using water, as the tragic picture of the Aral Sea on the last slide shows.

The Aral sea was once the jewel of central Asia, but due to poor decisions (growing
cotton in a desert and using the rivers that flow into the sea to irrigate the fields) has

shrunk to a tiny percentage of its original size.

The left over salt and fertilizers have created a depressing, dystopian landscape like
something out of a (particularly dark) movie.
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By I, Baburkhan, CC BY 2.5, https://

commons.wikimedia.org/w/index.php?curid=2424235
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The Amu Darya
(Oxus) in recent
B times

Historical Account of Alexander the Great crossing
the Oxus (Amu Darya): Bessus had tried to prevent
the crossing of the Oxus by burning all available
ships. However, the Macedonians made rafts. They
stuffed animal skins and tents with hay, and five days
later, the army was on the other bank in the southeast
of what 1s now called Turkmenistan.
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The left over salt and fertilizers have created a depressing, dystopian landscape like
something out of a (particularly dark) movie.

The loss of the Aral sea has enhanced seasonality by 2-6 degrees Centigrade and wiped
out many ecosystems.

Greatly enhanced airborne dust has caused a massive increase in respiratory diseases
and the dried up lake bed contains high concentrations of various toxic chemicals (e.g.
PCBs) that can now be readily moved into the atmosphere via dust storms.

The region 1s an active location for research and some moderately successful
restoration efforts are under way:

The internal seiche field in the changing South Aral Sea (2006-2013)

Elena Roget', Elizaveta Khimchenko?, Francesc Forcat!, and Peter Zavialov>

1Department of Physics, University of Girona, Girona, Catalonia, Spain
?Laboratory of land—ocean interactions and the anthropogenic impact,
Shirshov Institute of Oceanology — RAS, Moscow, Russia
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Restoration efforts North Aral Sea:

By Sibom - Own work, canmxu NASA {1l,{2], CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=23301635
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Part 2:
Natural climate
change



NOLA GOES 11

110802

1800 UIC

NASA GSFC GOES Project
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http://geoinfo.amu.edu.pl/wpk/geos/geo_6/GEO_PLATE_C-24.HTML

Of course climate 1s older than human civilization, and indeed older than human life
on Earth.

Even in more recent times climate has fluctuated wildly due to the fine balance
between the solar radiation that comes in from the Sun, and the amazing material water
that makes life possible but also makes it difficult when 1n its frozen form.

18,000 years ago, at what 1s called the Last Glacial Maximum, all of Canada and
sizable chunks of the USA were covered by ice. This ice was called the Laurentide ice
sheet and 1n places was several kilometers thick.

Other parts of the world had smaller, but still large, 1ce sheets.
All that ice means that the ocean levels were considerably lower as well (a much
bigger change than what 1s predicted in this century due to carbon dioxide emission

caused climate change).

Also the weight of the ice pushes down the land, and when the ice 1s gone the land
rebounds, like the raised beaches on the last slide.
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* Climate variability was quite large during the ice age (left side

of top left plov).

* The deglaciation did not happen all at once, and indeed there
were prominent reversals.
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Let’s take a step back and think about some of the amazing scientific 1deas
that the last few slides covered.

First of all, humans had to accept that climate changes: https://

history.aip.org/climate/rapid.htm

To find ways to get information about old (paleo) climates we used
various sources, like bubbles trapped 1n ancient ice.

We then had to use imagination to extrapolate information from single
measurements to global values.

Often this has been done with the help of climate models called GCMs
(global climate models).

The process improves all the time and like most of science isn’t (and
shouldn’t be) static.
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https://history.aip.org/climate/rapid.htm
https://history.aip.org/climate/rapid.htm

NOLA GOES 1) 110802 15600 UIC NASA GSFC GOES Project

Of course floating in space above

the Pacific you might point out &S5
to me that my focus on land and
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The ocean stores much more heat than the atmosphere and
without oceans Earth would not be habitable

Difference from 1993-2017 average (gigajoules/m’)

[ . N
-4 0 4

Global map showing where 2017 heat content in the top 700 meters (2,300 feet)
of the ocean was higher (orange) or lower (blue) than the 1993-20177 average.
NOAA Climate.gov map, adapted from State of the Climate in 2017.
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Stommel Two-box model

Net E,
Precipitation |

Net
Evaporation

- “  The North Atlantic is modeled as two communicating boxes where the net forcing
increases (decreases) salinity in the southern (northern) box and varies on many different 2

(e timescales >

% The communication between boxes is “modeled” (i.e. nonlinear ODESs, often with a %

bistable potential)
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Bistable potential
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Two stable states or holes (the deeper one 1s called “globally stable™)
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Forcing can lead to transitions from one state to the other

The recipe would say “roll down hill unless pushed in the opposite
direction &
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Pushing Back and Forth
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Small pushes mean little
wiggles, larger pushes
mean go between the
two holes.

Physicists call this
multiple equilibria and 1t
means today’s world of
warm European winters
could somehow be

disrupted with a big

push.
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Noisy Pushes

An example of “Stochastic Resonance”™
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Imagine starting with small

back and forth pushes

Now add “noise” or random

kicks

If you pick the size of the
noise just right you go back
and forth between the two

holes even for small pushes!
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Part 3:
The scales of the
ocean and the
atmosphere



Scales of Environmental Flows

———————————————————————————————————-
| m |0 m [-10 km | 10-100 km >1000 km

Gulf Stream .
Turbulence Ocean Waves Clouds Hurricane

Eddies



Scales of Environmental Flows

e ————————————————————>
|0 m I-IOka |0-100 km >1000 km

Two of the above are photos one could take, one is a photo
from space, and the two remaining are heavily processed, or
mathematized images, one from space, the other from a lab.



Solar Insolation map and link to a modern atmosphere simulation
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Super high resolution simulation of the ocean showing the
dominance of eddies




£ As the video from the last page shows the ocean is full of swirling motions
called eddies, which modulate the slow circulations called gyres (similar
to the cartoon circulation shown earlier)

£ Prior to the advent of space-based instrumentation oceanographers
believed gyres were how the oceans moved.

£ The omni-presence of eddies is a paradigm shift in terms of the |
description of the oceans and requires different mathematical 1deas.

warm water

rotation

phytoplankton | isotherms




The large scale motions in the atmosphere and oceans exhibit a
great deal of order.

Some of this has been known for thousands of years (e.g. the trade
winds), and some is quite new.

For latitudes away from the equator by about 10 degrees or more,
the Earth’s rotation plays a fundamental role in the dynamics.

Because the vertical length scale of the atmosphere and ocean is
measured in kilometers while their horizontal extent is measured
in thousands of kilometers, large scale motions can be treated in a
simplified, nearly two dimensional manner.

In the next few (blue) slides I give you an introduction to this
theory using the so called shallow water equations.



Rotation frequency about axis is 22

(0,2 cos@,0)

‘

(0,0,2Qsin )

)

In local Cartesian coordinates the rotation

vector has two nonzero components: (O, f* f )



Vortices in the late 1400s and the early 2000s
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Vorticity

Nasty tensor stuft

ViU = e;; + 1y from physics

In continuum mechanics we learned that the gradient of velocity can be decomposed
into the rate of strain tensor plus the rate of rotation tensor. The non-zero entries of
the rotation tensor are the entries of the vorticity vector which is given more simply as

the curl of the velocity.

Less nasty vector
=T stuff from vector

calculus
* X B
A ¢

For the upper path the vorticity is
zero while for the lower it is non-zero.

* B A visual way to
A * understand the

same thing
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This is evident without any mathematics in the above




Coastal upwelling from space
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Modern research is probing even smaller scales
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Vertical Structure of the Oceans:
Stratification

less dense

If there is no motion at each depth the
pressure is balanced by the weight of
the overlying fluid

This is called hydrostatic balance

o(z) =1—atanh|(z — zp)/d]

The formula above is a mathematical
representation of how we think density
varies with depth.

It is built out of exponential functions so
has nice mathematical properties and
closed form derivatives.
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et Fig. 15. In-situ NIW observations over Station B (2004 experiment). The figure shows the propagation of the first five NIWs represented in Fig. 9 (corresponding to the strongest NIW packet observed
: during the experiment). It is composed as an overlay of the following recorded series: a) temperature profile (°C), obtained by the thermistors chains; b) 300 kHz ADCP echo intensity (in counts); c)
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Part 4:
Coastal Urban

Centers



We have done an express tour through modern oceanography:.

This is interesting, but it becomes more pressing when one
considers just how much of the world’s population lives on the

coast (634 million within 1om of elevation).

Large urban centers in particular often use the ocean as a place

to dump waste.

In the final section I want to take a quick visual tour of the

effects of some of the motions I have shown on urban centers.

We begin with a local example, namely the Laurentian Great
Lakes.
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@ Plankton populations are seasonal, with prominent
blooms, like the Spring bloom in the shallow Western

Basin of LLake Erie shown above.

@ Blooms typically involve many difterent species.
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Lake Erie is the
shallowest, and most

biologically productive,
but Lake Ontario has
similar blooms
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The implications of
biological activity can
involve nuisances like the

cladophra below.

Or outright danger like
the bacterial
contamination above.
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Urban centers like Toronto that border the Great Lakes have significant
challenges, but they also have significant resources to tackle the problem.

In the developing world the population pressures are just as great, but the
resources that can be brought to bear can be limited.

Manila is the most densely populated city in the world. Around 1§ million
live around Manila Bay:

The tropical climate means that torrential rainfall can occur leading to a
significant garbage influx into Manila Bay:

Along with physical garbage various chemical species as well as sewage are
washed in as well.

Environmental problems include eutrophication, population pressure, loss
of biodiversity and over fishing.
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Awareness of the environmental problem has increased significantly,
however solutions are a fair way off.

Shifts in ocean currents would change the rate, and possibly the manner, in

which a large bay like Manila bay is flushed.

The rate of flushing is a vital variable for any quantitatively based
remediation effort.

Successful numerical modeling efforts would be at the cutting edge of the
research world, and hence possibly beyond the reach of NGOs, or local

governments.

A more basic issue may be politicians who treat environmental problems as
something that can be plausibly denied.

In many ways, the oceans are the ultimate tragedy of the commons...
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Summary I

We saw a rather nasty examples of man induced climate change.

The Aral Sea disaster is muted due to the lack of major cities
nearby:.

We then saw an example of natural climactic changes that

coincided with the rise of civilization.

Is climate stability a pre-requisite for civilization? Perhaps we
can hope that once a civilization is advanced instability can be

mitigated.
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Summary 2

I then catalogued some of the changes in perception on motions

in the ocean that have occurred in the last 50 years.

Natural science flies a bit below the public radar, but in my

opinion this has been on par with scientific revolutions like

quantum mechanics.
I then showed an example of a coastal-urban environmental issue.

A quantitative approach to this issue would require successful

modeling on scales even smaller than the sub-mesoscale.
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