
Intermediate Math Circles

February 5, 2020

Contest Prep: Number Theory

Part 1: Prime Factorization

A prime number is an integer greater than 1 whose only positive divisors are 1 and itself.

An integer greater than 1 is composite, if it is not prime.

How do we check if a number n > 1 is prime?
Best test: Check that it does not have any prime divisors between 2 and

√
n inclusive.

Divisibility Tests:

Divisibility by 2:
A number is divisible by 2 if its last digit is even.

Divisibility by 3:
A number is divisible by 3 if the sum of its digits is divisible by 3.

Ex. 1368: 1 + 3 + 6 + 8 = 18

Divisibility by 5:
A number is divisible by 5 if its last digit is 0 or 5.

Divisibility by 11:
A number is divisible by 11 if the alternating sum of its digits is divisible by 11.

(An alternating sum is a sum in which the terms alternate sign.)

Ex. 72831: 7 - 2 + 8 - 3 + 1 = 11

(Although the following divisors are not prime divisors, these tests can be helpful.)

Divisibility by 4:
A number is divisible by 4 if its last two digits are divisible by 4.

Divisibility by 8:
A number is divisible by 8 if its last three digits are divisible by 8.

Divisibility by 9:
A number is divisible by 9 if the sum of its digits is divisible by 9.

615483: 6 + 1 + 5 + 4 + 8 + 3 = 27
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Examples: Are the following numbers prime? If they are composite, express them as a
product.

1. 151
Yes, since no prime divisors ≤ 11.

2. 517
No, since 517 = 11× 47

3. 273
No, since 273 = 3× 91

4. 293
Yes, since no prime divisors ≤ 17

The Fundamental Theorem of Arithmetic: Any integer greater than 1 can be written as
product of prime factors.

Examples: Write each number as a product of prime factors.

1. 517
517 = 11× 47

2. 273
273 = 3× 7× 13

3. 792
792 = 23 × 32 × 11

Example: (2018 Pascal #17) Suppose that p and q are two different prime numbers and that
n = p2q2. What is the number of possible values of n with n < 1000?

n = (pq)2 < 1000

pq <
√

1000 ≈ 31.6

2× 3 = 6
2× 5 = 10
2× 7 = 14
2× 11 = 22
2× 13 = 26
2× 17 = 34

3× 5 = 15
3× 7 = 21
3× 11 = 33

5× 7 = 35

∴ there are 7 possible values of n.
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Example: (2016 Pascal #17) What is the smallest six-digit positive integer that is divisible by
each of 10, 11, 12, 13, 14, and 15?

The answer must be divisible by 2 · 5, 11, 22 · 3, 13, 2 · 7, and 3 · 5, so it must be divisible by
22 · 3 · 5 · 7 · 11 · 13 = 60060.

To get a 6-digit number, multiply 60060 by 2 to get 120120.

Example: (Cayley 1996 #20) Determine the smallest perfect square greater than 4000 that is
divisible by 392.

392 = 2(196)

= 22(98)

= 23(49)

= 23 · 72

Any perfect square that is divisible by 392 must be divisible by 2 · 392 = 784 (so that every
prime factor appears an even number of times).
To find the smallest perfect square greater than 4000 that is divisible by 784 we need to solve

784n2 > 4000

n2 >
4000

784
> 5

The smallest perfect square greater than 5 is 9.
So the smallest perfect square greater than 4000 which is divisible by 784 is 784× 9 = 7056.

Problem Set 1

1. The prime factorizations of four numbers is given:

w = 2129 × 381 × 5128,

x = 2127 × 381 × 5128,

y = 2126 × 382 × 5128, and

z = 2125 × 382 × 5129.

Write w, x, y and z in order from smallest to largest.

Each of w, x, y, and z are divisible by 2125 · 381 · 5128. Let t = 2125 · 381 · 5128. Therefore,
w = 24t = 16t, x = 22t = 4t, y = 2 · 3t = 6t and z = 3 · 5t = 15t. Since t > 0, then
x < y < z < w.

2. The product of 2050 and 5020 is written as an integer in expanded form. What is the
number of zeros at the end of the resulting integer?

2050 = (22 · 5)50 = 2100 · 550 and 5020 = (2 · 52)20 = 220 · 540.
So 2050 · 5020 = 2120 · 590 = (2 · 5)90 · 230 = 1090 · 230

Thus there will be 90 zeros in the product.
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3. The integer 636 405 may be written as the product of three 2-digit positive integers.
What are these three integers?

636405 = 3 · 5 · 7 · 11 · 19 · 19 · 29

We want to rewrite this as the product of three 2-digit numbers.

Since 3 · 5 · 7 = 105 which has three digits, and the product of any three of the six prime
factors of 636 405 is at least as large as this, then we cannot take the product of three of
these prime factors to form a two-digit number.

Thus, we have to combine the six prime factors in pairs.

The prime factor 29 cannot be multiplied by any prime factor larger than 3, since
29 · 3 = 87 which has two digits, but 29 · 5 = 145, which has too many digits.

This gives us 636405 = 87 · 5 · 7 · 11 · 19.

The prime factor 19 can be multiplied by 5 (since 19 · 5 = 95 which has two digits) but
cannot be multiplied by any prime factor larger than 5, since 19 · 7 = 133, which has too
many digits.

This gives us 636405 = 87 · 95 · 7 · 11 = 87 · 95 · 77.

4. What is the smallest positive integer whose digits have a product of 2700?

In order to find N , which is the smallest possible integer whose digits have a fixed
product, we must first find the minimum possible number of digits with this product.
(This is because if the integer a has more digits than the integer b, then a > b.)

Once we have determined the digits that form N , then the integer N itself is formed by
writing the digits in increasing order. (Given a fixed set of digits, the leading digit of N
will contribute to the largest place value, and so should be the smallest digit. The next
largest place value should get the next smallest digit, and so on.)

Note that the digits of N cannot include 0, or else the product of its digits would be 0.

Also, the digits of N cannot include 1, otherwise we could remove the 1s and obtain an
integer with fewer digits (thus, a smaller integer) with the same product of digits.

Since the product of the digits of N is 2700, we find the prime factorization of 2700 to
help us determine what the digits are: 2700 = 33 · 22 · 52

In order for a non-zero digit to have a factor of 5, then the digit must equal 5.

Since 2700 has two factors of 5, then the digits of N includes two 5s.

The remaining digits have a product of 33 · 22 = 108.

Therefore, we must try to find a combination of the smallest number of possible digits
whose product is 108.

We cannot have a single digit with a product of 108. We also cannot have 2 digits with a
product of 108, as the product of 2 digits is at most 9 · 9 = 81.

We can have a product of 3 digits with a product of 108 (for example, 4 · 9 · 3 is a
possibility).
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Therefore, the number N has 5 digits (two 5s and three other digits with a product of
108).

In order for N to be as small as possible, its leading digit (that is, its ten thousands
digit) must be as small as possible. Recall that N cannot include the digit 1.

The next smallest possible leading digit is 2. In this case, 2 must be one of the three
digits whose product is 108. Thus, the remaining two of these three digits have a product
of 108÷ 2 = 54, and so must be 6 and 9.

Therefore, the digits of N must be 2, 6, 9, 5, 5. The smallest possible number formed by
these digits is when the digits are placed in increasing order, and so N = 25569.

5. If x and y are integers and 30!
36x25y

is equal to an integer, what is the maximum possible
value of x + y?

Since
30!

36x25y
=

30!

62x52y
=

30!

22x32x52y
, then we need to determine the largest powers of 2, 3,

and 5 which divide 30!.

The product 30! includes six factors which are divisible by 5: 5, 10, 15, 20, 25, 30. Each of
these contributes one factor of 5 except for 25 which contributes two. So 57 is the largest
power of 5 which divides 30!. So 52y ≤ 57 which implies that 2y ≤ 7. Therefore, y ≤ 3.

The product 30! includes ten factors which are divisible by 3: 3, 6, 9, 12, 15, 18, 21, 24,
27, 30. Seven of these contributes one factor of 3. Two of them contribute two factors of
3 (9, 18) and one of them contributes three factors of 3 (27). So 314 is the largest power
of 3 which divides 30!. So 32x ≤ 314 which implies that 2x ≤ 14. Therefore, x ≤ 7.

30! includes 15 factors which are divisible by 2. There are already more that 14 factors of
2 so the number of factors of 3 is the limitation which determines the largest value of x.
So x + y ≤ 7 + 3 = 10. The maximum possible value of x + y is 10.
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Part 2: Solving Problems Involving Digits

Decimal Expansion

Most often in mathematics we use the decimal system of numbers. The digits of a number
are multiplied by a power of 10 depending on their position. We say that we are using base 10.

For example the decimal expansion of 4327 is 4327 = 4× 103 + 3× 102 + 2× 10 + 7.

In solving some problems that make reference to the digits of numbers we can use a general
decimal expansion.

For example, a three digit number can be represented by a× 102 + b× 10 + c.

Example: Show that the difference between any three-digit number, in which no digits are 0
or equal, and the number formed by reversing the digits is always a multiple of 99.

1 ≤ a, b, c ≤ 9

abc = 100a + 10b + c

cba = 100c + 10b + a

abc− cba = 100a + 10b + c− (100c + 10b + a)

= 100(a− c) + (c− a)

= 100(a− c)− (a− c)

= 99(a− c)

a− c is an integer ∴ the difference is a multiple of 99.

Example: (Pascal 2003) The people of Evenland never use odd digits. Instead of counting 1,
2, 3, 4, 5, 6, an Evenlander counts 2, 4, 6, 8, 20, 22. What is an Evenlander’s version of the
integer 1111?
It’s like they only have 5 digits to use 0, 2, 4, 6, 8.

0→ 0

1→ 2

2→ 4

3→ 6

4→ 8

5→ 20

6→ 22

7→ 24

8→ 26

9→ 28
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We need to use powers of 5:

50 = 1

51 = 5

52 = 25

53 = 125

54 = 625

55 = 3125

1111 = × 54 + × 53 + × 52 + × 51 + × 50

1111− 1(625) = 486

486− 3(125) = 111

111− 4(25) = 11

11− 2(5) = 1

∴ 1111 = 1× 54 + 3× 53 + 4× 52 + 2× 51 + 1× 50

∴ 1111 is represented by 26842

Example: The five-digit number 9T67U, where T and U are single digits, is divisible by 36.
Determine all possible values of T and U .

36 = 22 · 32, so the number must be divisible by 4 and 9.

If divisible by 4, then 7U is divisible by 4 =⇒ U = 2 or U = 6

If divisible by 9, then sum of the digits is divisible by 9.

When U = 2 : 9 + T + 6 + 7 + 2 = 24 + T

So T = 3 and (T, U) = (3, 2)

When U = 6 : 9 + T + 6 + 7 + 6 = 28 + T

So T = 8 and (T, U) = (8, 6)
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Problem Set 2

1. In the multiplication shown, each of P , Q, R, S, and T is a digit.

P Q R S T 4
× 4

4 P Q R S T

What is the value of P + Q + R + S + T ?

Solution 1
We start with the ones digits.
Since 4× 4 = 16, then T = 6 and we carry 1 to the tens column.
Looking at the tens column, since 4× 6 + 1 = 25, then S = 5 and we carry 2 to the
hundreds column.
Looking at the hundreds column, since 4× 5 + 2 = 22, then R = 2 and we carry 2 to the
thousands column.
Looking at the thousands column, since 4× 2 + 2 = 10, then Q = 0 and we carry 1 to the
ten thousands column.
Looking at the ten thousands column, since 4× 0 + 1 = 1, then P = 1 and we carry 0 to
the hundred thousands column.
Looking at the hundred thousands column, 4× 1 + 0 = 4, as expected.
This gives the following completed multiplication:

1 0 2 5 6 4
× 4

4 1 0 2 5 6

Finally, P + Q + R + S + T = 1 + 0 + 2 + 5 + 6 = 14.

Solution 2
Let x be the five-digit integer with digits PQRST .
This means that PQRST0 = 10x and so PQRST4 = 10x + 4.
Also, 4PQRST = 400 000 + PQRST = 400 0000 + x.
From the given multiplication, 4(10x + 4) = 400 000 + x which gives
40x + 16 = 400 000 + x or 39x = 399 984.

Thus, x =
399 984

39
= 10 256.

Since PQRST = 10 256, then P + Q + R + S + T = 1 + 0 + 2 + 5 + 6 = 14.

2. How many two-digit positive integers are increased by 11 when the order of the digits is
reversed?

Let the two-digit integer be of the form ab, where a and b are single digits.

Then the number can be written as 10a+ b and if the digits are reversed we have 10b+ a.

We are looking for values of a and b such that 10b + a− (10 + b) = 11.

Collecting like terms this equation becomes −9a + 9b = 11.

If we solve for b we get b = a +
11

9
.

But this equation has no solution since a and b are integers. Thus there are no two-digit
positive integers that are increased by 11 when the order of their digits is reversed.
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3. The three-digit number 2A4 is added to 329 and gives 5B3. If 5B3 is divisible by 3, then
what is the largest possible value of A?

Since 5B3 is divisible by 3, thus 5 + B + 3 = 8 + B must be divisible by 3. Thus the
possible values of B are 1, 4 and 7.

2 A 4
+ 3 2 9

5 B 3

Since there is a 1 to carry we get that A + 3 = B from the second column. Since nothing
is carried into the third column and since we want to maximize A, the largest value of A
is 4 and occurs when B = 7.

4. A four-digit number which is a perfect square is created by writing Anne’s age in years
followed by Tom’s age in years. Similarly, in 31 years, their ages in the same order will
again form a four-digit perfect square. Determine the present ages of Anne and Tom.

Their ages must be two-digit numbers, for if either is one-digit then the other must be
three digits, and when 31 is added to the one-digit age the result is a two-digit number.
So the adjusted sum would be five digits.

Let a be Anne’s age and let t be Tom’s age, where a and t are two-digit numbers.

So 100a + t is a perfect square, which means that we can write 100a + t = k2 for some
integer k > 0.

Similarly in 31 years from now their ages must be the two-digit numbers a + 31 and
t + 31 and we have that 100(a + 31) + t + 31 = m2 for some integer m > 0.

Simplifying we obtain that 100a + t + 3131 = m2.

We can substitute k2 = 100a + t to obtain k2 + 3131 = m2.

Thus 3131 = m2 − k2 = (m− k)(m + k) using the difference of squares formula.

The prime factorization of 3131 is 31 · 101. Therefore the factors must be m− k = 31 and
m + k = 101.

If we add these two equations together we get 2m = 132 and so m = 66. Therefore
k = 101− 66 = 35.

352 = 1225 and so Anne’s age is 12 and Tom’s age is 25.
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