Intermediate Math Circles FGH Problem Set Solutions

Problem 1 Solution

(a) Solution (We will use the hint given in the preamble.)

Expressing $\frac{1}{5}$ and $\frac{1}{4}$ with a common denominator of 40 , we get $\frac{1}{5}=\frac{8}{40}$ and $\frac{1}{4}=\frac{10}{40}$.
We require that $\frac{n}{40}>\frac{8}{48}$ and $\frac{n}{40}<\frac{10}{40}$, thus $n>8$ and $n<10$.
The only integer n that satisfies both of these inequalities is $n=9$
b) Solution

Expressing $\frac{m}{8}$ and $\frac{1}{3}$ with a common denominator of 24 , we require $\frac{3 m}{24}>\frac{8}{24}$ and so $3 m>8$ or $m>\frac{8}{3}$. Since $\frac{8}{3}=2 \frac{2}{3}$ and m is an integer, then $m \geq 3$.
Expressing $\frac{m+1}{8}$ and $\frac{2}{3}$ with a common denominator of 24 , we require $\frac{3(m+1)}{24}<\frac{16}{24}$ or $3 m+3<16$ or $3 m<13$, and so $m>\frac{13}{3}$.
Since $\frac{13}{3}=4 \frac{2}{3}$ and m is an integer, then $m \leq 4$.
The integer values of m which satisfy $m \geq 3$ and $m \leq 4$ are $m=3$ and $m=4$.
(c) Solution(We will use some of the process we used in (b).)

At the start of the weekend, Fiona has played 30 games and has w wins, so her win ratio is $\frac{w}{30}$.
Fiona's win ratio at the start of the weekend is greater than $0.5=\frac{1}{2}$, and so $\frac{w}{30}>\frac{1}{2}$.
Since $\frac{1}{2}=\frac{15}{30}$, then we get $\frac{w}{30}<\frac{15}{30}$, and so $w>15$.
During the weekend Fiona plays five games giving her a total of $30+5=35$ games played.
Since she wins three of these games, she now has $w+3$ wins, and so her win ratio is $\frac{w+3}{35}$.
Fiona's win ratio at the end of the weekend is less than $0.7=\frac{7}{10}$, and so $\frac{w+3}{35}<\frac{7}{10}$.
Rewriting this inequality with a common denominator of 70 , we get $\frac{2(w+3)}{35}<\frac{49}{70}$ or $2(w=3)<49$ or $2 w+6<49$ or $2 w<43$ and so $w<\frac{43}{2}$.
Since $\frac{43}{2}=21 \frac{1}{2}$ and w is an integer, then $w \leq 21$.
The integer values of w which satisfes $w>15$ and $w \leq 21$ are $w=16,17,18,19,20,21$.

Problem 2 Solution

(a) There are three solutions. (The third solution shows a fact that we can use in future questions!!)

Solution 1

In $\triangle A B C, A D$ is a median and so D is the midpoint of $B C$.
Since $B C=12$ and D is the midpoint of $B C$, then $C D=\frac{12}{2}=6$.
In $\triangle A C D$, base $C D$ has length 6 , and corresponding height $A B$ has length 4. (Since $\angle A B C=90^{\circ}$, $A B$ is the height of $\triangle A C D$ even though $A B$ is outside $\triangle A C D$.)
Thus, $\triangle A C D$ has area $\frac{1}{2}(6)(4)=12$.

Solution 2

In $\triangle A B C, A D$ is a median and so D is the midpoint of $B C$.
Since $B C=12$ and D is the midpoint of $B C$, then $C D=D B=6$.

In $\triangle A B D, A B=4, D B=6$, and $\angle A B D=90^{\circ}$, and so $\triangle A B D$ has area $\frac{1}{2}(6)(4)=12$.
Similarly, $\triangle A B C$ has area $\frac{1}{2}(12)(4)=24$, and so the area of $\triangle A C D$ is the area of $\triangle A B C$ minus the area of $\triangle A B D$, or 24-12 $=12$.

Solution 3 (A median of $\triangle A B C$ divides the the triangle into two equal areas.)
In $\triangle A B C, A B=4, B C=12$, and $\triangle A B C=90^{\circ}$, so $\triangle A B C$ has area $\frac{1}{2}(12)(4)=24$.
A median of $\triangle A B C$ divides the the triangle into two equal areas.
Let's see why.
In $\triangle A B C, A D$ is a median and so D is the midpoint of $B C$.
Therefore, $\triangle A C D$ and $\triangle A B D$ have equal bases $(C D=B D)$.
Further, the height of $\triangle A B D$ is equal to the height of $\triangle A C D$ (both are $A B$).
Thus, $\triangle A C D$ and $\triangle A B D$ have equal bases and equal heights.
Since the area of each triangle equals one-half times the base times the height, then $\triangle A C D$ and $\triangle A B D$ have equal areas and so the median $A D$ divides $\triangle A B C$ into equal areas.
Since $\triangle A B C$ has area 24, then $\triangle A C D$ has area $\frac{12}{2}=12$.
(b) There are two solutions!!

Solution 1

In $\triangle F S G, F S=18, S G=24$, and $\angle F S G=90^{\circ}$.
Thus, by the Pythagorean Theorem, $F G=\sqrt{18^{2}+24^{2}}=\sqrt{324+576}=\sqrt{900}=30($ since $F G>0)$.
Since, S is on $F H$ so that $F S=18$ and $S H=32$, then $F H=F S+S H=18+32=50$.
In $\triangle F G H, F H=50, F G=30$, and $\angle F G H=90^{\circ}$. Thus, by the Pythagorean Theorem, $G H=\sqrt{50^{2}-30^{2}}=\sqrt{2500-900}=\sqrt{1600}=40($ since $G H>0)$.
In $\triangle F G H, F T$ is a median and so T is the midpoint of $G H$.
In $\triangle F H T$, has $H T=\frac{40}{2}=20$, and height $F G=30$. (Since $\angle F G H=90^{\circ}, F G$ is the height of $\triangle F H T$ even though $F G$ is outside $\triangle F H T$.)

Thus, $\triangle F H T$ has area $\frac{1}{2}(20)(30)=300$.

Solution 2 (Uses the fact we found in (a) Solution 3.)
Since, S is on $F H$ so that $F S=18$ and $S H=32$, then $F H=F S+S H=18+32=50$.
In $\triangle F G H$, base $F H=50$ and height $S G=24$ (since $S G$ is perpendicular to $F H, S G$ is a height of $\triangle F G H)$.
Thus, $\triangle F G H$ has an area $\frac{1}{2}(50)(24)=600$.
The median of a triangle divides the area of the triangle in half. (Solution 3 of part (a) shows an example of why a median divides a triangle's area in half.)
Since $F T$ is a median of $\triangle F G H$, then the area of $\triangle F T H=\frac{600}{2}=300$.
(c) Solution (Uses the fact we found in (a) Solution 3 and some more.)

We will use the notation $|\triangle K L M|$ to represent the area of $\triangle K L M,|K P M Q|$ to represent the area of $K P M Q$, and so on.
In $\triangle K L M, K P$ is a median and so $2|\triangle K P M|=|\triangle K L M|$.
(Solution 3 of part a shows an example of why a median divides a triangle's area in half.)
In $\triangle K M N, K Q$ is a median and so $2|K M Q|=|\triangle K M N|$.

Therefore,
$|K L M N|=|\triangle K L M|+|\triangle K M N|=2|\triangle K P M|+2|\triangle K M Q|$ and $|K P M Q|=|\triangle K P M|+|\triangle K M Q|$ which tells us $|K L M N|=2|K P M Q|$
Since $|K P M Q|=63$, then $|K L M N|=2|K P M Q|=2(63)=126$.
Now $|K L M N|=|\triangle K R L|+|\triangle L R M|+|\triangle K R N|+|\triangle N R M|$.
Each of these four triangles are right-angled.
Since $K R=x$ and $L R=6$, then $|\triangle K R L|=\frac{1}{2} x(6)=3 x$.
Since $L R=6$ and $R M=2 x+2$, then $|\triangle L R M|=\frac{1}{2}(6)(2 x+2)=6 x+6$.
Since $K R=x$ and $R N=12$, then $|\triangle K R N|=\frac{1}{2} x(12)=6 x$.
Since $R N=12$ and $R M=2 x+2$, then $|\triangle N R M|=\frac{1}{2}(12)(2 x+2)=12 x+2$.
Therefore,

$$
\begin{aligned}
|K L M N| & =|\triangle K R L|+|\triangle L R M|+|\triangle K R N|+|\triangle N R M| \\
126 & =3 x+(6 x+6)+6 x+(12 x+12) \\
126 & =27 x+18 \\
27 x & =108 \\
x & =4
\end{aligned}
$$

Therefore, $x=4$.

Problem 3 Solution

(a) Solution

Since 5 is an odd integer, then n must be an odd integer for the sum $n+5$ to be an even integer.
(b) Solution

We first note that the product of an even integer and any other integers, even or odd, is always an even integer.
Let $N=c d(c+d)$.
If c or d is an even integer (or both c and d are even integers), then N is the product of an even integer and some other integers and thus is even.
The only remaining possibility is that both c and d are odd integers.
If c and d are odd integers, then the sum $c+d$ is an even integer.
In this case, N is again the product of an even integer and some other integers and thus is even.
Therefore, for any integers c and $d, c d(c+d)$ is always an even integer.
(c) Solution

Since e and f are positive integers so that $e f=300$, then we may begin by determining the factor pairs of positive integers whose product is 300 .
Written as ordered pairs (x, y) with $x<y$, these are:

$$
(1,300),(2,150),(3,100),(4,75),(5,60),(6,50),(10,30),(12,25),(15,20) .
$$

It is also required that that the sum $e+f$ be odd and so exactly one of e or f must be odd.
Therefore, the factor pairs whose sum is odd is

$$
(1,300),(3,100),(4,75),(5,60),(12,25),(15,20)
$$

Therefore, there are 6 ordered pairs (e, f) satisfying the given conditions.
(d) Solution

Since both m and n are positive integers, then $2 n>1$ and so $2 n+m>m+1$.
Let $a=m+1$ and $b=2 n+m$ or $a=2 n+m$ and $b=m+1$ so that $a b=9000$.
We must first determine all factor pairs (a, b) of positive integers whose product is 9000 .
We begin by considering the parity (whether each is even or odd) of the factors a and b.
Since 2 is even, then $2 n$ is even for all positive integers n.
If m is even then $2 n+m$ is even since the sum of two even integers is even.
However if m is even, then $m+1$ is odd since the sum of an even integer and an odd integer is odd.
That is, if m is even, then a is odd and b is even or a is even and b is odd.
We say that the factors a and b have different parity since one is even and one is odd.
If m is odd then $2 n+m$ is odd. If m is odd then $m+1$ is even. That is, if m is odd, then a is even and b is odd or a is odd and b is even and so the factors a and b have different parity for all possible values of m.

Now we are searching for all factor pairs (a, b) of positive integers whose product is 9000 with a and b having different parity.

Written as a product of its prime factors, $9000=2^{3} \times 3^{2} \times 5^{3}$ and so $a b=2^{3} \times 3^{2} \times 5^{3}$
Since exactly one of a or b is odd, then one of them does not have a factor of 2 and so the other must have all factors of 2 .

That is, either $a=2^{3} r=8 r$ and $b=s$, or $a=r$ and $b=8 s$ for positive integers r and s. In both cases, $a b=8 r s=9000$ and so $r s=\frac{9000}{8}=1125=3^{2} 5^{3}$.

We now determine all factor pairs (r, s) of positive integers whose product is 1125 . These are $(r, s)=$ $(1,1125),(3,375),(5,225),(9,125),(15,75),(25,45)$.

Therefore $(a, b)=(8 r, s)=(8,1125),(24,375),(40,225),(72,125),(120,75),(200,45)$, or $(a, b)=(r, 8 s)=$ $(1,9000),(3,3000),(5,1800),(9,1000),(15,600),(25,360)$.

Since $2 n+m>m+1>1$, then the pair $(1,9000)$ is not possible. This leaves 11 factor pairs (a, b) such that $a b=9000$ with a and b having different parity. Each of these 11 factor pairs (a, b) gives an ordered pair (m, n).

To see this, let $m+1$ equal the smaller of a and b, and let $2 n+m$ equal the larger (since $2 n+m>m+1$).
For example when $(a, b)=(8,1125)$, then $m+1=8$ or $m=7$ and so $2 n+m=2 n+7=1125$ or $2 n=1118$ or $n=559$.

That is, the factor pair $(a, b)=(8,1125)$ corresponds to the ordered pair $(m, n)=(7,559)$ so that $(m+1)(2 n+m)=9000$.

Each of the 11 pairs (a, b) gives an ordered pair (m, n) such that $(m+1)(2 n+m)=9000$. We determine the corresponding ordered pair (m, n) for each (a, b) in the table below (although this work is not necessary since we were only asked for the number of ordered pairs).

(a, b)	$m+1$	$2 n+m$	(m, n)
$(8,1125)$	8	1125	$(7,559)$
$(24,375)$	24	375	$(23,176)$.
$(40,225)$	40	225	$(39,93)$
$(72,125)$	72	125	$(71,27)$
$(120,75)$	75	120	$(74,23)$
$(200,45)$	45	200	$(44,78)$
$(3,3000)$	3	3000	$(2,1499)$
$(5,1800)$	5	1800	$(4,898)$
$(9,1000)$	9	1000	$(8,496)$
$(15,600)$	15	600	$(14,293)$
$(25,360)$	25	360.	$(24,168)$

There are 11 ordered pairs (m, n) of positive integers satisfying $(m+1)(2 n+m)=9000$.

