Math Circles 2021
 Complex Numbers, Lesson 2
 Fall, 2021

Rich Dlin

Warmup and Review

Here are the key things we discussed last week:

- The numbers 1 and 0 are special, because they are identities (multiplicative and additive, respectively).
- When two numbers combine in an operation to result in the identity for the operation, those numbers are called inverses. For example 8 and -8 are additive inverses of each other, while -9 and $-\frac{1}{9}$ are multiplicative inverses of each other.
- Subtraction and division are convenience operations that can just as easily be represented by addition and multiplication using inverses.
- The number represented by the symbol i is defined so that $i^{2}=-1$.
- Although i is not actually the same as $\sqrt{-1}$, we can usually safely pretend that it is. We just need to be careful.

Warmup and Review

- All numbers are imaginary, but some are $\mathbb{R e a l}$, and some are \mathbb{I} maginary. If $a \in \mathbb{R}$, then $a i \in \mathbb{I}$.
- If we find ourselves in a situation where it would be nice to add a $\mathbb{R e a l}$ number to an $\mathbb{I m}$ maginary number, we can do so, and the result is called a Complex number, which in standard (aka rectangular) form looks like $z=a+b i$.
- For $z=a+b i, a, b \in \mathbb{R}$. a is called the real part of z, and b is called the imaginary part of z. We write $a=\operatorname{Re}(z)$, and $b=\operatorname{Im}(z)$.
- We define a useful property of complex numbers as the modulus (or magnitude). The formula is $|z|=\sqrt{a^{2}+b^{2}}$, which is not coincidentally reminiscent of Pythagorean Theorem.

Warmup and Review

Warmup Questions

(1) Evaluate $(2+i)(3-5 i)$
(2) Evaluate $(3-2 i)^{2}$
(3) Evaluate $(1+3 i)^{4}$
(9) Determine $|z|$ if we know that $z^{2}-2 z+8=0$.

Pause the video and try these questions on your own...

Complex Conjugates and Multiplicative Inverses

Complex conjugates

Given a Complex number $z=a+b i$, we define the conjugate of z as $\bar{z}=a-b i$.

Properties of Conjugates

If $z, w \in \mathbb{C}$ then

1. $\overline{z+w}=\bar{z}+\bar{w}$
2. $\overline{z w}=\bar{z} \bar{w}$
3. $\overline{\bar{z}}=z$
4. $z+\bar{z}=2(\operatorname{Re}(z)) \in \mathbb{R}$
5. $z-\bar{z}=2 i(\operatorname{lm}(z)) \in \mathbb{I}$

Let's prove a few of these properties now...

Complex Conjugates and Multiplicative Inverses (cont'd)

- Complex conjugates have the property that when multiplied together, we always get a $\mathbb{R e a l}$ number, and a useful one at that:

$$
\begin{aligned}
(z)(\bar{z}) & =(a+b i)(a-b i) \\
& =a^{2}-(b i)^{2} \\
& =a^{2}-b^{2} i^{2} \\
& =a^{2}-b^{2}(-1) \\
& =a^{2}+b^{2} \\
& =|z|^{2} \quad(\in \mathbb{R})
\end{aligned}
$$

- Note that:
- If $z \neq 0$ then $|z|^{2} \neq 0$.
- Since $|z|^{2} \in \mathbb{R}$, then for $z \neq 0$,
$z\left(\frac{1}{|z|^{2}} \bar{z}\right)=z \bar{z} \div|z|^{2}=1$, which is the multiplicative identity in \mathbb{C}.
- \therefore the multiplicative inverse of $z \in \mathbb{C}, z \neq 0$ is $z^{-1}=\frac{1}{|z|^{2}} \bar{z}$.

Complex Conjugates and Multiplicative Inverses (cont'd)

Example - Demonstration of Multiplicative Inverse
Given $z=3+5 i$, we get $\bar{z}=3-5 i$, so

$$
\begin{aligned}
z z^{-1} & =z\left(\frac{1}{|z|^{2}} \bar{z}\right) \\
& =(3+5 i)\left[\frac{1}{3^{2}+5^{2}}(3-5 i)\right] \\
& =(3+5 i)\left(\frac{3}{34}-\frac{5}{34} i\right) \\
& =\frac{9}{34}-\frac{15}{34} i+\frac{15}{34} i-\frac{25}{34} i^{2} \\
& =\frac{9}{34}+\frac{25}{34} \\
& =\frac{34}{34} \\
& =1
\end{aligned}
$$

Complex Conjugates and Multiplicative Inverses (cont'd)

- Just like an additive inverse gives us a way to subtract, a multiplicative inverse gives us a way to "divide".
- Technically there is no division with Complex numbers, though we often see and accept "lazy" notation.
- So z^{-1} is often written as $\frac{\bar{z}}{|z|^{2}}$

Multiplicative Inverses (cont'd)

Example 2 - Demonstration of "Division"

Given $x=7-3 i$ and $y=5+4 i, x \div y$, or $\frac{x}{y}$, is technically not defined, but essentially means the same thing as $x y^{-1}$.

$$
\begin{aligned}
\frac{x}{y} & =x y^{-1} \\
& =\frac{x \bar{y}}{|y|^{2}} \leftarrow \text { a more convenient way to express the above } \\
& =\frac{7-3 i}{5+4 i} \times \frac{5-4 i}{5-4 i} \leftarrow \text { a more convenient way to think of the calculation } \\
& =\frac{35-28 i-15 i+12 i^{2}}{5^{2}+4^{2}} \\
& =\frac{1}{41}(23-43 i)
\end{aligned}
$$

$$
\frac{23-43 i}{41} .
$$

Practice

Try these examples

(1) Given $z=-4-5 i$, determine z^{-1}.
(2) If $x=3+7 i$ and $y=-2+4 i$, write $\frac{x}{y}$ in standard form.

Pause the video and work on these...

Exponents

To think about exponents, we need some definitions. Let $z \in \mathbb{C}$. We define:

- $z^{0}=1$
- $z^{1}=z$
- $z^{k+1}=z^{k} z, k \in \mathbb{N}$
- Note that this definition does not help us for non-natural exponents. We'll get to that.

Exponents

Example

Find a $\mathbb{R e a l}$ solution to

$$
6 z^{3}+(1+3 \sqrt{2} i) z^{2}-(11-2 \sqrt{2} i) z-6=0
$$

This looks much harder than it is!

Powers of i

Consider the following progression:

n	i^{n}	Result
0	i^{0}	1
1	i^{1}	i
2	i^{2}	-1
3	$i^{3}=i^{2} \cdot i$	$-i$
4	$i^{4}=i^{3} \cdot i$	1
5	$i^{5}=i^{4} \cdot i$	i
6	$i^{6}=i^{5} \cdot i$	-1
\cdot	\cdot	\cdot
\cdot	\cdot	\cdot
\cdot	\cdot	\cdot
$[0]$ in \mathbb{Z}_{4}	$i^{4 k}$	1
$[1]$ in \mathbb{Z}_{4}	$i^{1+4 k}$	i
$[2]$ in \mathbb{Z}_{4}	$i^{2+4 k}$	-1
$[3]$ in \mathbb{Z}_{4}	$i^{3+4 k}$	$-i$

Cool! The powers of i repeat in cycles of 4 , so that for any $n \in \mathbb{N}$, $i^{n} \in\{1, i,-1,-i\}$.

Negative Integer Exponents

- What about negative integer exponents?
- We want i^{-1} to be the multiplicative inverse of i.
- If the pattern we see held for negative integer exponents, then i^{-1} would be $-i$.
- How fortunate for us then that $i(-i)=-i^{2}=1$!
- Therefore we can happily conclude that $i^{-1}=-i$.
- Good news!
- It means the cycle we saw just before actually goes backwards as well, and
- We can convert any negative integer power of i to an expression with a positive exponent, as follows.

Negative Integer Exponents (cont'd)

Let $x>0$, where $x \in \mathbb{Z}$. Then

$$
\begin{aligned}
i^{-x} & =\left(i^{-1}\right)^{x} \\
& =(-i)^{x} \quad\left(\text { since } i^{-1}=-i\right) \\
& =(-1 \times i)^{x} \\
& =(-1)^{x} i^{x}
\end{aligned}
$$

- We have so far only considered integer values for x, but
- this result actually holds for any $\mathbb{R e a l}$ value of x, although
- when x is not an integer things do get more ... interesting.
- Very handy!

Example

$$
\begin{aligned}
i^{-18} & =(-1)^{18} i^{18} \\
& =(1)(-1) \\
& =-1
\end{aligned}
$$

Practice

Work on questions 1-4 in section 4.11.

