Math Circles 2021 Complex Numbers, Lesson 2 Fall, 2021

Rich Dlin

Warmup and Review

Here are the key things we discussed last week:

- The numbers 1 and 0 are special, because they are identities (multiplicative and additive, respectively).
- When two numbers combine in an operation to result in the identity for the operation, those numbers are called *inverses*. For example 8 and -8 are additive inverses of each other, while -9 and -¹/₉ are multiplicative inverses of each other.
- Subtraction and division are convenience operations that can just as easily be represented by addition and multiplication using inverses.
- The number represented by the symbol *i* is defined so that $i^2 = -1$.
- Although *i* is not actually the same as √−1, we can usually safely pretend that it is. We just need to be careful.

Warmup and Review

- All numbers are imaginary, but some are ℝeal, and some are Imaginary. If a ∈ ℝ, then ai ∈ I.
- If we find ourselves in a situation where it would be nice to add a Real number to an Imaginary number, we can do so, and the result is called a Complex number, which in standard (aka rectangular) form looks like z = a + bi.
- For z = a + bi, $a, b \in \mathbb{R}$. a is called the real part of z, and b is called the imaginary part of z. We write a = Re(z), and b = Im(z).
- We define a useful property of complex numbers as the *modulus* (or magnitude). The formula is $|z| = \sqrt{a^2 + b^2}$, which is not coincidentally reminiscent of Pythagorean Theorem.

Warmup and Review

Warmup Questions

- **1** Evaluate (2 + i)(3 5i)
- 2 Evaluate $(3-2i)^2$
- Evaluate $(1+3i)^4$

• Determine |z| if we know that $z^2 - 2z + 8 = 0$.

Pause the video and try these questions on your own...

Complex Conjugates and Multiplicative Inverses

Complex conjugates

Given a Complex number z = a + bi, we define the *conjugate* of z as $\overline{z} = a - bi$.

Let's prove a few of these properties now

Complex Conjugates and Multiplicative Inverses (cont'd)

• Complex conjugates have the property that when multiplied together, we always get a Real number, and a useful one at that:

$$(z)(\overline{z}) = (a+bi)(a-bi) = a^2 - (bi)^2 = a^2 - b^2 i^2 = a^2 - b^2(-1) = a^2 + b^2 = |z|^2 (\in \mathbb{R})$$

Note that:

• \therefore the multiplicative inverse of $z \in \mathbb{C}, z \neq 0$ is $z^{-1} = \frac{1}{|z|^2}\overline{z}$.

Complex Conjugates and Multiplicative Inverses (cont'd)

Example - Demonstration of Multiplicative Inverse Given z = 3 + 5i, we get $\overline{z} = 3 - 5i$, so

$$zz^{-1} = z\left(\frac{1}{|z|^2}\overline{z}\right)$$

= $(3+5i)\left[\frac{1}{3^2+5^2}(3-5i)\right]$
= $(3+5i)\left(\frac{3}{34}-\frac{5}{34}i\right)$
= $\frac{9}{34}-\frac{15}{34}i+\frac{15}{34}i-\frac{25}{34}i^2$
= $\frac{9}{34}+\frac{25}{34}$
= $\frac{34}{34}$
= 1

Complex Conjugates and Multiplicative Inverses (cont'd)

- Just like an additive inverse gives us a way to subtract, a multiplicative inverse gives us a way to "divide".
- Technically there is no division with Complex numbers, though we often see and accept "lazy" notation.

• So z^{-1} is often written as $\frac{\overline{z}}{|z|^2}$

Multiplicative Inverses (cont'd)

Example 2 - Demonstration of "Division"

Given x = 7 - 3i and y = 5 + 4i, $x \div y$, or $\frac{x}{y}$, is technically not defined, but essentially means the same thing as xy^{-1} .

$$\frac{x}{y} = xy^{-1}$$

$$= \frac{x\overline{y}}{|y|^2} \quad \leftarrow \text{ a more convenient way to express the above}$$

$$= \frac{7-3i}{5+4i} \times \frac{5-4i}{5-4i} \quad \leftarrow \text{ a more convenient way to think of the calculation}$$

$$= \frac{35-28i-15i+12i^2}{5^2+4^2}$$

$$= \frac{1}{41}(23-43i)$$

For convenience, this result may be written as $\frac{23-43i}{41}$

Rich Dlin

Practice

Try these examples

Pause the video and work on these ...

Exponents

To think about exponents, we need some definitions. Let $z \in \mathbb{C}$. We define:

- $z^0 = 1$
- $z^1 = z$
- $z^{k+1} = z^k z$, $k \in \mathbb{N}$
- Note that this definition does not help us for non-natural exponents. We'll get to that.

Exponents

Example

Find a $\mathbb{R}\text{eal}$ solution to

$$6z^{3} + \left(1 + 3\sqrt{2}i\right)z^{2} - \left(11 - 2\sqrt{2}i\right)z - 6 = 0$$

This looks much harder than it is!

Powers of *i*

Consider the following progression:

n	in	Result
0	;0	1
U	1	1
1	i 1	i
2	i ²	-1
3	$i^3 = i^2 \cdot i$	-i
4	$i^4 = i^3 \cdot i$	1
5	$i^5 = i^4 \cdot i$	i
6	$i^6 = i^5 \cdot i$	-1
•	•	•
•		•
[0] in ℤ₄	i ^{4k}	1
[1] in \mathbb{Z}_4	i^{1+4k}	i
[2] in \mathbb{Z}_4	i^{2+4k}	-1
[3] in \mathbb{Z}_4	i^{3+4k}	— <i>i</i>

Cool! The powers of i repeat in cycles of 4, so that for any $n \in \mathbb{N}$, $i^n \in \{1, i, -1, -i\}$.

Rich Dlin

Negative Integer Exponents

- What about negative integer exponents?
- We want i^{-1} to be the multiplicative inverse of *i*.
- If the pattern we see held for negative integer exponents, then i^{-1} would be -i.
- How fortunate for us then that $i(-i) = -i^2 = 1!$
- Therefore we can happily conclude that $i^{-1} = -i$.
- Good news!
 - It means the cycle we saw just before actually goes backwards as well, and
 - We can convert any negative integer power of i to an expression with a positive exponent, as follows.

Negative Integer Exponents (cont'd)

Let x > 0, where $x \in \mathbb{Z}$. Then

$$i^{-x} = (i^{-1})^{x}$$

= $(-i)^{x}$ (since $i^{-1} = -i$)
= $(-1 \times i)^{x}$
= $(-1)^{x} i^{x}$

- We have so far only considered integer values for x, but
- this result actually holds for any \mathbb{R} eal value of x, although
- when x is not an integer things do get more ... interesting.
- Very handy!

Example

$$i^{-18} = (-1)^{18}i^{18}$$

= (1)(-1)
= -1

Practice

Work on questions 1 - 4 in section 4.11.