Grade 9/10 Math Circles November 17, 2021

Complex Numbers Lesson 1 - Solutions

Solutions

1. (Referenced as Section $2.5(1-7)$ in lesson) Solve each equation for $x \in \mathbb{I}$.
(a) $x^{2}=-1$
(b) $x^{2}=-81$
(c) $x^{2}=-10$
(d) $x^{2}+4=0$
(e) $-x^{2}-9=0$
(f) $\frac{x^{2}+5}{4}=-11$
(g) $x^{2}-6 x+13=0$

Solution:

(a) $x= \pm i$
(b) $x= \pm 9 i$
(c) $x= \pm i \sqrt{10}$
(d) $x= \pm 2 i$
(e) $x= \pm 3 i$
(f) $x= \pm 7 i$
(g) $x=3 \pm 2 i$
2. (Referenced as Section $3.3(1-7)$ in lesson) Solve each equation for $x \in \mathbb{C}$. Simplify your answer as much as possible.
(a) $x^{2}+7=0$
(b) $x^{2}+5 x+15=0$
(c) $x^{2}+x-5=0$
(d) $x^{2}=3 x-4$
(e) $2 x^{2}-3 x+7=0$
(f) $7 x^{2}-4 x+2=0$
(g) $-2 x^{2}-5 x-10=0$

Solution:
(a) $x^{2}+7=0$

$$
\begin{aligned}
x^{2} & =-7 \\
x & = \pm i \sqrt{7}
\end{aligned}
$$

(b) $x^{2}+5 x+15=0$

Using quadratic formula, $a=1, b=5, c=15$. So

$$
\begin{aligned}
x & =\frac{-5 \pm \sqrt{5^{2}-4(1)(15)}}{2(1)} \\
& =\frac{-5 \pm \sqrt{-35}}{2}
\end{aligned}
$$

which has negative discriminant, so

$$
x=\frac{5 \pm i \sqrt{35}}{2}
$$

(c) $x^{2}+x-5=0$

Using quadratic formula, $a=1, b=1, c=-5$. So

$$
\begin{aligned}
x & =\frac{-1 \pm \sqrt{1^{2}-4(1)(-5)}}{2(1)} \\
& =\frac{-1 \pm \sqrt{21}}{2}
\end{aligned}
$$

(d) $x^{2}=3 x-4$

Rearrange:

$$
x^{2}-3 x+4=0
$$

Using quadratic formula, $a=1, b=-3, c=4$. So

$$
\begin{aligned}
x & =\frac{3 \pm \sqrt{(-3)^{2}-4(1)(4)}}{2(1)} \\
& =\frac{3 \pm \sqrt{-7}}{2}
\end{aligned}
$$

which has negative discriminant, so

$$
x=\frac{3 \pm i \sqrt{7}}{2}
$$

(e) $2 x^{2}-3 x+7=0$

Using quadratic formula, $a=2, b=-3, c=7$. So

$$
\begin{aligned}
x & =\frac{3 \pm \sqrt{(-3)^{2}-4(2)(7)}}{2(2)} \\
& =\frac{3 \pm \sqrt{-47}}{4}
\end{aligned}
$$

which has negative discriminant, so

$$
x=\frac{3 \pm i \sqrt{47}}{4}
$$

(f) $7 x^{2}-4 x+2=0$

Using quadratic formula, $a=7, b=-4, c=2$. So

$$
\begin{aligned}
x & =\frac{4 \pm \sqrt{(-4)^{2}-4(7)(2)}}{2(7)} \\
& =\frac{4 \pm \sqrt{-40}}{14}
\end{aligned}
$$

which has negative discriminant, so

$$
\begin{aligned}
x & =\frac{4 \pm i \sqrt{40}}{14} \\
& =\frac{4 \pm 2 i \sqrt{10}}{14} \\
& =\frac{2 \pm i \sqrt{10}}{7}
\end{aligned}
$$

(g) $-2 x^{2}-5 x-10=0$

Using quadratic formula, $a=-2, b=-5, c=-10$. So

$$
\begin{aligned}
x & =\frac{5 \pm \sqrt{(-5)^{2}-4(-2)(-10)}}{2(-2)} \\
& =\frac{5 \pm \sqrt{-55}}{-4}
\end{aligned}
$$

which has negative discriminant, so

$$
\begin{aligned}
x & =\frac{5 \pm i \sqrt{55}}{-4} \\
& =\frac{-5 \pm i \sqrt{55}}{4}
\end{aligned}
$$

