

Grade 9/10 Math Circles November 17, 2021 Complex Numbers Lesson 1 - Solutions

Solutions

- 1. (Referenced as Section 2.5 (1 7) in lesson) Solve each equation for $x \in \mathbb{I}$.
 - (a) $x^2 = -1$ (b) $x^2 = -81$ (c) $x^2 = -10$ (d) $x^2 + 4 = 0$ (e) $-x^2 - 9 = 0$ (f) $\frac{x^2 + 5}{4} = -11$ (g) $x^2 - 6x + 13 = 0$

Solution:

(a)
$$x = \pm i$$

(b) $x = \pm 9i$
(c) $x = \pm i\sqrt{10}$
(d) $x = \pm 2i$
(e) $x = \pm 3i$
(f) $x = \pm 7i$
(g) $x = 3 \pm 2i$

- 2. (Referenced as Section 3.3 (1 7) in lesson) Solve each equation for $x \in \mathbb{C}$. Simplify your answer as much as possible.
 - (a) $x^2 + 7 = 0$ (b) $x^2 + 5x + 15 = 0$
 - (c) $x^2 + x 5 = 0$
 - (d) $x^2 = 3x 4$

- (e) $2x^2 3x + 7 = 0$
- (f) $7x^2 4x + 2 = 0$
- (g) $-2x^2 5x 10 = 0$

Solution:

(a)
$$x^2 + 7 = 0$$

 $x^2 = -7$ $x = \pm i\sqrt{7}$

(b) $x^2 + 5x + 15 = 0$

Using quadratic formula, a = 1, b = 5, c = 15. So

$$x = \frac{-5 \pm \sqrt{5^2 - 4(1)(15)}}{2(1)}$$
$$= \frac{-5 \pm \sqrt{-35}}{2}$$

which has negative discriminant, so

$$x = \frac{5 \pm i\sqrt{35}}{2}$$

(c) $x^2 + x - 5 = 0$

Using quadratic formula, a = 1, b = 1, c = -5. So

$$x = \frac{-1 \pm \sqrt{1^2 - 4(1)(-5)}}{2(1)}$$
$$= \frac{-1 \pm \sqrt{21}}{2}$$

(d) $x^2 = 3x - 4$

Rearrange:

 $x^2 - 3x + 4 = 0$

Using quadratic formula, a = 1, b = -3, c = 4. So

$$x = \frac{3 \pm \sqrt{(-3)^2 - 4(1)(4)}}{2(1)}$$
$$= \frac{3 \pm \sqrt{-7}}{2}$$

which has negative discriminant, so

$$x = \frac{3 \pm i\sqrt{7}}{2}$$

(e) $2x^2 - 3x + 7 = 0$

Using quadratic formula, a = 2, b = -3, c = 7. So

$$x = \frac{3 \pm \sqrt{(-3)^2 - 4(2)(7)}}{2(2)}$$
$$= \frac{3 \pm \sqrt{-47}}{4}$$

which has negative discriminant, so

$$x = \frac{3 \pm i\sqrt{47}}{4}$$

(f) $7x^2 - 4x + 2 = 0$

Using quadratic formula, a = 7, b = -4, c = 2. So

$$x = \frac{4 \pm \sqrt{(-4)^2 - 4(7)(2)}}{2(7)}$$
$$= \frac{4 \pm \sqrt{-40}}{14}$$

which has negative discriminant, so

$$x = \frac{4 \pm i\sqrt{40}}{14}$$
$$= \frac{4 \pm 2i\sqrt{10}}{14}$$
$$= \frac{2 \pm i\sqrt{10}}{7}$$

(g) $-2x^2 - 5x - 10 = 0$

Using quadratic formula, a = -2, b = -5, c = -10. So

$$x = \frac{5 \pm \sqrt{(-5)^2 - 4(-2)(-10)}}{2(-2)}$$
$$= \frac{5 \pm \sqrt{-55}}{-4}$$

which has negative discriminant, so

$$x = \frac{5 \pm i\sqrt{55}}{-4}$$
$$= \frac{-5 \pm i\sqrt{55}}{4}$$