
OEIS Math Circles Part 2

In part 2, we will talk about recursive sequence in particular the Fibonacci Numbers! I’d
like to thank Craig Kaplan for a lot of the ideas in this section!

1 Fibonacci Numbers - A000045

1.1 Introduction

We define a recursive sequence of numbers as follows. Start with the numbers 0 and 1
and then every subsequent term is formed by taking the sum of the previous two terms.
So calling the zeroth term 0 and the first term 1 we define the second term by 0 + 1 = 1,
the third term by 1 + 1 = 2 the fourth term as 1 + 2 = 3 and the fifth term by 2 + 3 = 5.
We continue to form the following sequence:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, ...

A Fibonacci Number is one of the numbers in the above sequence. We can precisely
define this mathematically by the following:

fn =

{
n if n = 0 or n = 1

fn−1 + fn−2 if n ≥ 2

we say that fn = fn−1+fn−2 is the recurrence relationship for the recursive sequence
fn. In general, a recursive sequence is one where future values of the sequence depend on
previous ones. For fun, try doing a Google search on ’recursion’ and see if you can find
the hidden Easter Egg joke the Google programmers coded!

Exercise: Which of the Fibonacci numbers above are perfect squares?

These numbers were named after Leonardo di Pisa (later known as Fibonacci) who
introduced the numbers to Western European mathematics in his 1202 book Liber Abaci
(the book of calculation) however the sequence has roots in mathematics as early as 200
BCE in work by an Indian mathematician named Pingala on Sanskrit poetry.

There’s honestly an endless amount we can talk about with the Fibonacci numbers but
we’re going to take this opportunity to talk about how to calculate these large Fibonacci
numbers computationally.

We’re going to do this using the language of Python. The reason for using Python
is that the syntax is very easy to understand and allows for large computations with
integers. If you’re interested in trying this for yourself, you can do so online on the
website: https://replit.com/

1.2 First Attempt - Naive Method

We start off by trying to write a computer program that directly corresponds to the
mathematical definition.

1 def fib1(n):

2 if n <= 1: return n

3 return fib1(n-1) + fib1(n-2)

Just a brief introduction of the syntax:

1

https://replit.com/

• On line 1 above, the keyword def tells Python we wish to define a function. The
name of the function is fib1 and it takes a single parameter n which we think of
as an integer. The colon at the end tells Python we are ready to define what the
function does.

• Very important note! Note that Python is a whitespace language - when lines
are more indented than others, it means they belong to the body of the previous
line. So here lines 2-3 are the body of the function fib1. We will also see this later
when we do looping.

• The second line is an if statement. When the condition that n <= 1 is true, we
do the command after the colon which in this case is to return n. The return

keyword tells the function to stop running and give back the calling function the
value n. This gives the correct value when n is 0 or 1.

• The third line is only executed if the if condition on line 2 evaluates to False

. This occurs whenever n >= 2 (assuming we only pass non-negative integers to
this function). Recalling that in this case we want the sum of the previous two
Fibonacci Numbers, we can make some sense of the third line which returns the
value of fib1(n-1)+ fib1(n-2)

To use the above function, we can add the line print(fib1(5)) for example to see the
fifth Fibonacci Number.

It is a good idea to try this and the other code snippets in a Python interpreter. You
can find one here https://replit.com/ or install it yourself on your home computer
using https://cscircles.cemc.uwaterloo.ca/run-at-home/ for some initial help.

While the above code works it is woefully inefficient. Try calling print(fib1(100)).
How long does it take to compute this value (or worse, does your program crash?) What’s
sad is that if you worked hard, you could probably compute this value by hand without
a calculator if you wanted! The reason for this is related to the number of times we call
certain values. In fact, if we call fib(100), we can count that the number of times we
eventually call fib(1) is equal to the integer value of fib(100) (which is a very large
number!

1.3 Second Attempt - Saving Previous Values

If the problem is that we recompute a lot of computations above, then perhaps we can
save some effort by storing the values in a list and using them. This gives the following:

1 def fib2(n):

2 fibs = [0, 1]

3 for i in range(n-1):

4 fibs.append(fibs[-1] + fibs [-2])

5 return fibs[n]

Run this in Python! Let’s examine what’s going on

• Line 1 is similar to the previous example.

• In line 2, we define a new list and initialize the first two numbers to be 0 and 1.

2

https://replit.com/
https://cscircles.cemc.uwaterloo.ca/run-at-home/

• In lines 3 and 4 we set up a loop. Our loop here runs for every number i in range(

n-1). This range consists of all numbers from 0 up to but not including n-1 (so we
stop at n-2). Of course if n is 0 or 1, the loop is skipped since there are no valid
numbers in this range.

• Line 4 says to append at the end of the list the value fibs[-1] + fibs[-2]. We
can index lists in Python by negative numbers where -1 is the last element and -2

is the second last element. This corresponds to the n− 1 and n− 2 in the recursive
definition above.

• Line 5 we return fibs[n] which is either one of the first two values if n ≤ 1 or the
very last element if n ≥ 2.

This definitely works better. If you now ask for print(fib2(100)) you will be able to
do it very quickly. However, for very large numbers we still have some issues. Not to
mention we have to store a lot of information which is mostly unnecessary...

1.4 Third Attempt - Using Less Space

We can make a quick improvement by noting we only need to save the previous two
values.

1 def fib3(n):

2 cur , prev = 1, 0

3 for i in range(n):

4 cur , prev = cur + prev , cur

5 return prev

Give this a go in Python! Let’s examine what’s going on

• Line 1 is similar to the previous example.

• In line 2, we set two variables cur and prev to be 1 and 0 respectively. These will
(eventually) correspond to the current Fibonacci Number we are considering and
the previous one.

• We set up our loop on line 3 this time to go up to range(n)

• ...and on line 4, we change cur to be cur + prev and prev to be cur. This moves
the numbers along the sequence of Fibonacci numbers. We make use of the fact
that prev begins at 0 so after one iteration, we get that cur is 1 and prev is also 1.

• We return the value in prev which stores the final answer.

This definitely works better storage wise since we only need to store two numbers. However
it doesn’t make a huge difference in terms of how much time we need to compute the
answer.

1.5 Fourth Attempt - Fractions!

Let’s play around with the Fibonacci numbers a bit. Suppose we let an = fn/fn−1 for
each n ≥ 1. Then notice that

1 + 1/an = 1 + fn−1/fn = (fn + fn−1)/fn = fn+1/fn = an+1

Thus, the numerator of these an give the next Fibonacci number! Let’s code this

3

1 from fractions import Fraction

2 def fib4(n):

3 if n <= 1: return n

4 a = Fraction(1, 1)

5 for i in range(n - 2):

6 a = 1 + 1/a

7 return a.numerator

Try this out in Python! For an explanation:

• In line 1, we import a tool to help us deal with fractions better in Python. This
information is stored in the fractions package.

• Lines 2 and 3 we’ve seen before

• Line 4 we start our fraction with the term 1/1 = f2/f1.

• Then on lines 5 and 6 for each number from 0 to n − 3 inclusive, we compute the
next term in the an sequence, namely that an+1 = 1 + 1/an. Since we only need the
previous term to get the next term, we reuse the variable a to store this new value.

• Lastly, once the loop ends, we execute line 7 which returns the numerator of this
recursive sequence an.

Neat but this still struggles on large values. (But see Binet’s Formula for a neat alternative
for using this idea to get a closed form formula!)

1.6 Fifth Attempt - Wizardry!

The Fibonacci numbers actually have a surprising amount of hidden identities - some
of which you’ll discover in the exercises below. Let’s examine two now that will help us
compute these values!

Exercise: What is the value of f7? What is the value of f 2
3 + f 2

4 ? (Note this is the
same as (f3)

2 + (f4)
2).

Exercise: What is the value of f9? What is the value of f 2
4 + f 2

5 ?

Exercise: Can you extrapolate the above? Suppose that n = 2k + 1, that is, suppose
n is odd. What does f2k+1 equal to in terms of smaller values (that depend on k)?

Exercise: What is the value of f6? What is the value of f3(2f4 − f3)?

Exercise: What is the value of f8? What is the value of f4(2f5 − f4)?

Exercise: Can you extrapolate the above? Suppose that n = 2k, that is, suppose n
is even. What does f2k equal to in terms of smaller values (that depend on k)?

The summary of the above is the following two identities:

• If n is odd, then fn = f 2
(n−1)/2 + f 2

((n−1)/2)+1.

4

• If n is even, then fn = fn/2(2f(n/2)+1 − fn/2)

we can use these to generate the Fibonacci numbers very quickly!

1 def fib5(n):

2 def pairs_fibs(n):

3 if n == 0: return [0, 1]

4 fnhalf , fnhalfplus1 = pairs_fibs(n // 2)

5 fn , fnplus1 = fnhalf *(2* fnhalfplus1 - fnhalf), fnhalf **2

+ fnhalfplus1 **2

6 if n % 2 == 0: return [fn , fnplus1]

7 return [fnplus1 , fn + fnplus1]

8 return pairs_fibs(n)[0]

Definitely try this out in Python! An explanation of the code:

• Line 1 is as before

• On line 2 we define what is called a local helper function which just means it is an-
other function we need to get our result. This function returns the pair of Fibonacci
numbers fn and fn+1 which we can use to get subsequent values.

• Line 3 is our base case; The starting values we need to make this work.

• Line 4 sets the variables fnhalf and fnhalfplusone to be fbn/2c and fbn/2c+1 re-
spectively where bn/2c means we take n divide by 2 and round down.

• Line 5 computes the values using the identities.

• Line 6 states that if n is even (that is, when the remainder when I divide n by 2 is
0, we just return the values computed on line 5.

• Line 7 only runs when n is odd. but when n is odd we need fn+1 and fn+2 so we
compute that using the values of fn and fn+1 and the recurrence relationship.

• Line 8 calls the local helper function and returns the first element (which is fn).

Notice that above, the code can very quickly compute print(fib5(1000000))!!!

1.7 Other Methods

There are actually lots of other different ways to compute the Fibonacci numbers -
one can use matrices, binary expansions, Pascal’s triangle, Analysis (Binet’s Formula)
and others. We’ll look at some of these in the exercises. The techniques used here can
also be applied to other recurrence sequences which we’ll also see in the exercises.

In these two lessons we saw two extremely important sequences of numbers, namely
the prime numbers (and fun subsequences of the primes) and the Fibonacci Numbers.
It can be a lot of fun to check out other OEIS sequences and see what other interesting
sequences you can find!

5

2 Exercises

2.1 Fibonacci Questions

(i) What follows are two lists of identities. By trying some numbers for n see if you
can match the values on the left hand side with the values on the right hand side.
Note that values on the left hand side might match with multiple values on the right
hand side.

1. f2n

2. f3n

3. f 2
n+1

4. (−1)n

a) fn−1fn+1 − f 2
n

b) f 2
n+1 − f 2

n−1

c) f 3
n+1 + f 3

n − f 3
n−1

d) fn(fn+1 + fn−1)

e) 4fnfn−1 + f 2
n−2

f) fn(fn + 2fn−1)

(ii) In this question we explore some other ways to compute Fibonacci Numbers.

1. Here, we compute Fibonacci numbers using matrices. A matrix for us will be a

two by two array of numbers of the form

[
a b
c d

]
where a, b, c, d are all integers.

We can multiply two matrices in the following (albeit strange) way:[
a b
c d

] [
e f
f h

]
=

[
ae + bg af + bh
ce + dg cf + dh

]

Perform the multiplication

[
fn fn−1
fn−1 fn−2

] [
1 1
1 0

]
. Can you explain why this

equals

[
fn+1 fn
fn fn−1

]
? Warning - the next explanation is a bit

challenging feel free to skip to the next warning comment!

Now we can reason using mathematical induction which we’ll explain infor-
mally. First, we have that[

f1+1 f1
f1 f1−1

]
=

[
f2 f1
f1 f0

]
=

[
1 1
1 0

]1
=

[
1 1
1 0

]
Which gives us that [

fn+1 fn
fn fn−1

]
=

[
1 1
1 0

]n
when n is 1. Now, when n is 2, we see that[

1 1
1 0

]2
=

[
1 1
1 0

] [
1 1
1 0

]
=

[
f2 f1
f1 f0

] [
1 1
1 0

]
Then, since above we have shown that our special identity:[

fn fn−1
fn−1 fn−2

] [
1 1
1 0

]
=

[
fn+1 fn
fn fn−1

]
6

We can substitute n = 2 into this equation to get that[
f2 f1
f1 f0

] [
1 1
1 0

]
=

[
f3 f2
f2 f1

]
and so [

1 1
1 0

]2
=

[
1 1
1 0

] [
1 1
1 0

]
=

[
f2 f1
f1 f0

] [
1 1
1 0

]
=

[
f3 f2
f2 f1

]
We can actually keep this pattern going! If we assume that[

fn fn−1
fn−1 fn−2

]
=

[
1 1
1 0

]n−1
Then using the special identity replacing n, we can see that:[

fn+1 fn
fn fn−1

]
=

[
fn fn−1
fn−1 fn−2

] [
1 1
1 0

]
=

[
1 1
1 0

] [
1 1
1 0

]n−1
=

[
1 1
1 0

]n
Thus, by Mathematical Induction, we have for all values of n greater than or
equal to 1, we have [

fn+1 fn
fn fn−1

]
=

[
1 1
1 0

]n
End of Warning

The math above might have been tricky to follow but computationally, all we
care about is that smart people way before us have determined that[

fn+1 fn
fn fn−1

]
=

[
1 1
1 0

]n
and we can write a program using it!

1 def mul(M, N):

2 a, b, c, d = M

3 e, f, g, h = N

4 return [a*e+b*g, a*f+b*h, c*e+d*g, c*f+d*h]

5 def fib6(n):

6 M = [1, 1, 1, 0]

7 A = [1, 0, 0, 1]

8 for i in range(n):

9 A = mul(M, A)

10 return A[1]

Note above that any matrix multiplied by

[
1 0
0 1

]
gives the original matrix

back.

2. Let’s do one better than the above. To compute large powers of numbers,
there’s an algorithm known as the square and multiply algorithm. It works
based on the following:

an =

{
a(a2)(n−1)/2 if n is odd

(a2)n/2 if n is even

Exercise: Use the above to compute 37 without a calculator!

Exercise (Challenging!) Use the above to write code that computes the nth
Fibonacci Number.

7

2.2 Lucas Numbers

The Lucas Numbers (see https://oeis.org/A000032) is a related recurrence se-
quence to the Fibonacci Numbers. The recurrence relationship is the same however we
begin with L0 = 2 and L1 = 1 and then Ln = Ln−1 + Ln−2 for all n ≥ 2.

(i) Write the first 10 terms in the Lucas Number Sequence

(ii) Recalling that we use fn to denote the nth Fibonacci Number, match the identities
on the left with the terms on the right

1. 4(−1)n

2. fn

3. fn+1

4. f2n

5. f 2
n

a) fnLn

b) 1
5
(L2n − 2(−1)n)

c) 1
2
(fn + Ln)

d) 1
5
(Ln−1 + Ln+1)

e) L2
n − 5f 2

n

(iii) Using the above ideas (like was done with the Fibonacci Numbers), write code that
computes the nth Lucas number. How fast can you make your code?

2.3 For the Live Session

One of the things we will do if we have time in the Live session is to share your
favourite sequence. Find a sequence on OEIS, figure out how to compute the sequence,
whether or not your sequence is recursive or not and be prepared to share one or two
interesting facts about the sequence! I’ll share some examples below but feel free to go
off the list and find your own interesting sequence!

• Euler’s Totient Function (https://oeis.org/A000010)

• Tribonacci Numbers (https://oeis.org/A000073)

• Catalan Numbers (https://oeis.org/A000108)

• Triangular Numbers (https://oeis.org/A000217)

• Fermat Numbers (https://oeis.org/A0001215)

• Abundant Numbers (https://oeis.org/A005101)

• Look and Say Sequence (https://oeis.org/A005150)

• Recamán’s Sequence (https://oeis.org/A005132)

• Thue-Morse Sequence (https://oeis.org/A010060)

8

https://oeis.org/A000032
https://oeis.org/A000010
https://oeis.org/A000073
https://oeis.org/A000108
https://oeis.org/A000217
https://oeis.org/A0001215
https://oeis.org/A005101
https://oeis.org/A005150
https://oeis.org/A005132
https://oeis.org/A010060

	Fibonacci Numbers - A000045
	Introduction
	First Attempt - Naive Method
	Second Attempt - Saving Previous Values
	Third Attempt - Using Less Space
	Fourth Attempt - Fractions!
	Fifth Attempt - Wizardry!
	Other Methods

	Exercises
	Fibonacci Questions
	Lucas Numbers
	For the Live Session

