
OEIS Math Circles Part 1

In this two part series, we’re going to look at a few of my favourite sequences in great
depth. Our goals of this learning activity are the following:

(i) An exploration into prime numbers and some interesting sequences relating to prime
numbers

(ii) An exploration into recursive sequences, namely the Fibonacci Numbers, Lucas
Numbers and others

(iii) Explore www.oeis.org and find some new sequences!

Relating to the last point, we will frequently make references to www.oeis.org and
periodically we will use the numbering scheme used there to refer to sequences. As an
example, go to the above website and type in A000001 for the first sequence in the
database.

Let’s first discuss what is arguably the most important sequence in all of Number
Theory and possible all of mathematics as a whole and that’s of prime numbers.

1 Prime Numbers - A000040

1.1 Introduction

A prime number is a positive integer larger than 1 whose only positive divisors are
1 and the number itself. An integer larger than 1 that is not prime is called composite.
Note that 1 itself is neither prime nor composite (sometimes it is called a unit). The
prime numbers begin with

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, ...

and so on (see https://oeis.org/A000040 for more information). Some of you might
have already seen these numbers but there’s perhaps lots of interesting variations on this
sequence that you might not have encountered in the past.

Let’s first start with some simple observations and questions

(i) How many prime numbers are even? Why?

Solution

There is only one even prime number and that is 2. Notice that all even
numbers larger than 2 must be divisible by to and so must be composite.

(ii) How many prime numbers can you make using some or all of the digits 1, 3, 8?

Solution

3, 13, 31, 83. Notice that 381 and 183 are divisible by 3. Interesting any
number where the sum of the digits is divisible by 3 is also divisible by 3!

(iii) Suppose p is a prime number. How many positive divisors does p3 have?
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Solution

It has 4 positive divisors, namely 1, p, p2 and p3.

(iv) Excluding 2 and 5, what numbers must prime numbers end in?

Solution

Prime numbers must end with an odd number and not 5 (numbers that end
in 5 are divisible by 5!). This means they must end with the digits 1, 3, 7 or
9. See these sequences:

• https://oeis.org/A030430

• https://oeis.org/A030431

• https://oeis.org/A030432

• https://oeis.org/A030433

(v) Do you think there are finitely many prime numbers or infinitely many prime num-
bers? Can you prove your answer?

Solution

There are infinitely many prime numbers! The idea uses this fact:

Fundamental Theorem of Arithmetic Every integer larger than 1 is either
prime or is expressible as a product of primes uniquely up to reordering of the
factors.

The above result is fairly easy to understand - if a number isn’t prime, then
it can be written as a product of two numbers rs with neither r nor s being
1. Then either r and s are prime or we repeat the process until they are.
Since the numbers we get are strictly decreasing and bounded below by 1,
this process must stop. There is still the question of uniqueness but we’ll save
that for another day. You can formally prove this by using induction but we
forgo that for now.

Suppose we started to make a list of prime numbers, say p1, p2, ..., pk. Con-
struct the number N = p1p2...pk + 1. Now this number is the product of
primes by the above result and it isn’t divisible by one of the primes we al-
ready had (because if say pj divides N then since pj divides p1p2...pk, it must
divide their difference which is 1. This is not possible so indeed the prime
factors of N cannot be one of the k we already listed). In this way we can
create a new prime number given any finite list and so there must be infinitely
many prime numbers.

(vi) Combining the two previous answers, do you think that excluding 2 and 5, there
are infinitely many prime numbers that end with the same digit? What can you
find by doing an internet search on this result?
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Solution

An incredibly interesting theorem is Dirichlet’s Theorem on Primes in Arith-
metic Progressions. It states that numbers of the form 10k + 1 or 10k + 3
or 10k + 7 or 10k + 9 must each include infinitely many prime numbers (and
in general numbers of the form ak + b must contain infinitely many prime
numbers so long as a and b don’t share a prime factor!)

In the next two sections, we present some interesting subsets of the prime numbers which
have fascinated mathematicians for a very long time. We then conclude with some exer-
cises and other fun sequences of numbers related to primes.

1.2 Mersenne Primes- A000668

There are lots of interesting subsequences of prime numbers but in the interest of
time we’ll present only a few particularly interesting ones. The first of which is sequence
A000668 Mersenne Primes (see https://primes.utm.edu/mersenne/ or https://oeis.
org/A000668 for more information).

A Mersenne prime is a prime number of the form 2p− 1 for some prime p. The list
begins with:

3, 7, 31, 127, 8191, 131071, 524287, 2147483647, 2305843009213693951, ...

and the largest known as of 2021 was discovered in 2018 by the GIMPS project (Great
Internet Mersenne Prime Search) to be 282,589,933 − 1.

The history of these numbers is quite interesting. It was widely believed that numbers
of the form 2n − 1 were always prime for prime numbers n. This was first shown false in
1536 by Hudalricus Regius when they showed that 211 − 1 = 2047 was not prime.

Exercise: Factor 2047 into a product of prime numbers.

Solution

Note that 2047 = 23 · 89

By 1603, another mathematician named Pietro Cataldi showed that 217−1 and 219−1
were both prime. However, Pietro then incorrectly stated that all of 223−1, 229−1, 231−1
and 237 − 1 were also prime.

Exercise: It turns out that only one of 223 − 1, 229 − 1, 231 − 1 or 237 − 1 is prime.
Which is it? Who proved it was prime first? Using a computer try to factor the other
numbers.

Solution

• 223 − 1 = 47 · 178481 as shown by Fermat in 1640.

• 229 − 1 = 233 · 1103 · 2089 as shown by Euler in 1738.

• 231 − 1 is prime and was first proven to be prime by Euler in 1772.

• 237 − 1 = 223 · 616318177 as shown by Fermat in 1640.
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Finally, we see the entrance of the French Monk Marin Mersenne after whom the
numbers were named. Mersenne stated in the preface to his Cogitata Physica-Mathematica
(1644) that the numbers 2n − 1 were prime for

n = 2, 3, 5, 7, 13, 17, 19, 31, 67, 127 and 257

and were composite for all other positive integers n < 257. Again this claim was also false
(see https://oeis.org/A000043 for the correct list).

Exercise: Mersenne was wrong about two numbers included in the list above. Using
OEIS, determine which two numbers Mersenne thought were prime but are not.

Solution

The numbers 267 − 1 and 2257 − 1 are not prime.

Exercise: Mersenne was wrong about three numbers not included in the list above.
Using OEIS, determine which three prime numbers Mersenne missed.

Solution

The numbers 261 − 1, 289 − 1 and 2107 − 1 are all Mersenne primes.

Exercise: In the above list for n, the n values share a common property. What is it?

Solution

All the numbers are prime!

In fact, this is not a coincidence:

Claim: If 2p − 1 is a Mersenne prime, then p must itself be a prime number.

Solution: Note: If you have not yet learned how to multiply a polynomial by a
polynomial, you can learn more about it here: https://courseware.cemc.uwaterloo.

ca/41/133/assignments/1083/0!
Suppose 2n − 1 is a prime number for some integer n. Let’s write n = rs for two

numbers r and s with r < s. Then if think about polynomials, we can write xrs − 1 as

xrs − 1 = (xr − 1)(xs(r−1) + xs(r−2) + ... + 1)

(This is like how we factor x2− 1 as (x− 1)(x+ 1) or x3− 1 as (x− 1)(x2 + x+ 1). Now,
setting 2, we see that

2n − 1 = 2rs − 1 = (2r − 1)(2s(r−1) + 2s(r−2) + ... + 1)

In other words, we have that 2r− 1 is a factor of 2n− 1 strictly smaller than 2n− 1 (since
we know that r < s ≤ n. Since 2n − 1 is prime, it must be that 2r − 1 = 1 which shows
that r = 1. Hence, the number n cannot be expressed as the factor of two numbers where
one is not 1. Thus, n is a prime number. �

Exercise: Using the above idea, show that if an − 1 is a prime number, then a must
be 2 and n must be prime. As a hint notice that 34 − 1 = (3 − 1)(33 + 32 + 31 + 1) and
53 − 1 = (5− 1)(52 + 51 + 1). Can you generalize this pattern?
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Solution

Notice that a− 1 must divide an − 1 since (a− 1)(an−1 + an−2 + ... + 1) = an − 1.
Thus, since a−1 would be a proper divisor, a number of the form an−1 could only
be prime if a − 1 = 1 or in other words a = 2. The proof that n must be prime is
thus above. �

1.3 Sophie Germain Primes - A005384

Another interesting subsequence of the primes are the Sophie Germain primes,
primes p where 2p + 1 is also prime (see https://oeis.org/A005384). These include:

2, 3, 5, 11, 23, 29, 41, 53, 83, 89, 113, 131, 173, 179, 191, 233, 239, 251, 281, 293, 359, ...

Exercise: The associated prime 2p + 1 is called a safe prime (see https://oeis.org/

A005385). What are the first 5 safe primes?

Solution

2(2) + 1 = 5, 2(3) + 1 =7, 2(5)+1 = 11, 2(11) + 1 = 23, 2(23) + 1 = 47

These primes first came up in the study of Fermat’s Last Theorem, the result that the
equation xn + yn = zn has no integer solutions assuming xyz 6= 0 and n > 3. Sophie was
the first to prove that this theorem holds whenever n is a Sophie Gernain prime.

Exercise: What is the largest known Sophie Germain prime to date?

Solution

The largest is 2618163402417 · 21290000 − 1 discovered in 2016.

Sophie Germain was born in Paris on April 1st, 1776 and spent most if not all of
her life in France. She was the daughter of Ambroise-François and Marie-Madeleine
Germain. Her father was a wealthy silk merchant and from his wealth had amassed a
sizeable library. Germain began her interest in mathematics around 1789 (the heart of the
French Revolution) when she was 13 reading books in her father’s library. She read a story
about the death of Archimedes in Montucla’ Histoire des mathématiques inspiring her to
study mathematics. Guglielmo Libri Carucci dalla Sommaja (one of her biographers)
writes that Germain would wake up in the middle of the night to do mathematics. Her
parents removed her fire, clothes and candles from her room. Undeterred, she awoke under
dim lamp light to do mathematics (even with a frozen ink well!) The French Revolution
forced her to stay home and as a consequence she spent much time in her father’s library
reading and studying mathematics.

For Interest: Look up the French Revolution. What were some of the causes of the
revolution? How did this influence Sophie Germain’s life?
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2 Exercises

2.1 Prime Questions

(i) A twin prime is a prime p where p + 2 is also prime (see https://oeis.org/

A001359). How many twin primes are there less than 100? What are they? Can
you find one above 100?

Solution

Twin primes less than 100 are:

3, 5, 11, 17, 29, 41, 59, 71

Corresponding the the primes p + 2:

5, 7, 13, 19, 31, 43, 61, 73

Note that 101 and 103 are both prime so 101 is a twin prime larger than 100.

(ii) Goldbach’s Conjecture states that every even number larger than 2 can be ex-
pressed as the sum of two primes. For example, 4 = 2 + 4, 6 = 3 + 3 and 8 = 3 + 5
(see https://oeis.org/A002372). Write the number 30 as the sum of two prime
numbers. How many ways can you do this? (Assume rearranging the terms in the
sum counts as the same way).

Solution

Note that
30 = 7 + 23 = 11 + 19 = 13 + 17

and these are the only ways to write 30 as the sum of two prime numbers up
to reordering. Thus there are 3 such ways.

(iii) A perfect number is a number that is equal to the sum of its positive proper
divisors (the divisors not equal to the number itself). For example 6 is perfect since
6 = 1 + 2 + 3 and 6 is a perfect number.

1. Recall that 7 = 23 − 1 is a Mersenne prime. Show that 22(23 − 1) = 28 is a
perfect number.

Solution

Note that the positive proper divisors of 28 are

1, 2, 4, 7, 14

and the sum is 1 + 2 + 4 + 7 + 14 = 28 so 28 is perfect.

2. (Challenging!) More generally, show that if 2p − 1 is a Mersenne prime then
2p−1(2p− 1) is a perfect number. It might help to use the fact that 1 + 2 + ...+
2p−1 = 2p − 1
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Solution

Let q = 2p−1 for simplicity. The positive proper divisors of this number
are are:

1, q, 2, 2q, 22, 22q, ...2p−2, 2p−2q, 2p−1

We split these up into numbers that have a factor of q and those that
don’t and add these up:

(1 + 2+22 + ... + 2p−2 + 2p−1) + q(1 + 2 + 22 + ... + 2p−2)

= (2p − 1) + (2p − 1)(2p−1 − 1)

= (2p − 1)(1 + 2p−1 − 1)

= 2p−1(2p − 1)

proving the number is perfect.

3. (Very Challenging!) Conversely, show that every even perfect number is of the
form 2p−1(2p − 1) where 2p − 1 is a Mersenne prime. (Hint: Write the even
perfect number as 2kn where n is odd).

Solution

Let N be an even perfect number and write it as 2m−1n where n is odd
and m is the number such that m+ 1 is the number of factors of 2 of N .
Then let d1, ...dk be the odd factors of n with dk = n being the largest
factor so that 2m−1dk = N . Then the sum of all the factors is

N = 2m−1n =
k∑

i=1

di + 2
k−1∑
i=1

di + 22

k−1∑
i=1

di + ... + 2m−1

k−1∑
i=1

di − 2m−1n

= (1 + 2 + ... + 2m−1)
k∑

i=1

di − 2m−1n

= (2m − 1)
k∑

i=1

di − 2m−1n

(Notice that the second sum above is missing 2dk since 2dk = n). Rear-
ranging gives

2mn = (2m − 1)
k∑

i=1

di

So now, 2m − 1 divides n and we can write n = (2m − 1)M for some
integer M (so rearranging gives n+m = 2mM). Substituting this in and
simplifying gives

2mM =
k∑

i=1

di

Now, the right hand side is the sum of all odd divisors of n (and n is
odd) and we have that M is such an odd divisor and of course n is and
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so

2mM =
k∑

i=1

di ≥ n + M = 2mM

and so the only divisors of n are n and M < n (so M is 1). Hence,
n = 2m − 1 and indeed must be prime since there are only two divisors.
Thus, N = 2m−1n = 2m−1(2m − 1) with 2m − 1 prime as required.

(iv) Sophie Germain also has an identity named after her, namely

x4 + 4y4 = (x2 + 2xy + 2y2)(x2 − 2xy + 2y2)

Prove that 344 + 429 is composite using the identity.

Solution

Note that

344+429 = (311)4+4(47)4 = (322+2(311)(47)+2(414))(322−2(311)(47)+2(414))

and both the factors are larger than 1 hence the number is composite.

2.2 Slime Numbers (With thanks to Henri Picciotto) - A166504

Cite: www.MathEducationPage.org

Define a slicing as a number as collections of slices of consecutive digits where each
digit belongs to one and only one such slice. For example, we can slice a number like 123
in many ways:

{123}, {1, 23}, {12, 3}, {1, 2, 3}
Further, we say that a number is slime if one of the above slices consists only of primes.
So above 123 is not slime since all such slices contain a non-prime but a number like 1705
is slime since the slice {17, 05} (we drop the leading 0) consists only of prime numbers.
Note that every prime number is a slime number by taking the slice with the number
itself in it.

(i) Slice the numbers 1234 and 56789 in all possible ways.

Solution

For 1234, we have the slices

{1234}, {1, 234}, {1, 2, 34}, {1, 23, 4}, {1, 2, 3, 4}, {12, 34}, {12, 3, 4}, {123, 4}

for a total of 8 slices. As for 56789:

{56789}, {5, 6789}, {5, 6,789}, {5, 67, 89}, {5, 6, 7, 89},
{5, 678, 9}, {5, 6, 78, 9},{5, 678, 9}, {5, 6, 7, 8, 9},

{56, 789}, {56, 7, 89}, {56, 78, 9}, {56, 7,8, 9}, {567, 89}, {567, 8, 9}, {5678, 9}

for a total of 16 slices. Can you guess how many slices there would be for a 6
digit number?
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(ii) Find the first three examples of composite numbers that are slime.

Solution

22, 25, 27 are the first three composite slime numbers.

(iii) Find the first three even slimes

Solution

2, 22, 32 are the first three even slime numbers.

(iv) Find the first three slime squares

Solution

25, 225, 289 are the first three slime squares.

(v) Find the first three slime cubes

Solution

27, 343, 729 are the first slime cubes.

(vi) Are there any fourth powers that are slime? Find one if there is!

Solution

There is one! 74 = 2401 which is slime since it can be sliced as {2, 401} and
401 is prime!

(vii) Find the first three pairs of slime numbers that are consecutive integers.

Solution

• 2, 3 is a consecutive pair of slime numbers

• 22, 23 is a consecutive pair of slime numbers

• 31, 32 is a consecutive pair of slime numbers.

(viii) Find the first three triples of slime numbers that are consecutive integers.

Solution

• 31, 32, 33 is a consecutive triple of slimes.

• 71, 72, 73 is a consecutive triple of slimes.

• 131, 132, 133 is a consecutive triple of slimes (note that 131 is prime).

Exercise: Why are these the first three?
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(ix) Prove that there are infinitely slime numbers that are not prime.

Solution

Notice that the repdigit number 22222...222 is always slime and not prime
(except for 2 of course!) Hence there are infinitely many non-prime slime
numbers.

(x) Find the smallest number that is slime in more than one way. (In other words, it
can be sliced into two different sequences of primes.)

Solution

Notice that 23 is a prime number and can be sliced as {2, 3} which also shows
the number is slime.

(xi) (Challenging!) A number is a super-slime if you get a sequence of primes no matter
how you slice it. For example, 53 is a super-slime since {53} and {5, 3} are slices
consisting only of primes. Prove that there are only a finite number of super-slimes
and find them all! It might help to use a list of prime numbers to help with larger
ones.

Solution

First, note that 2, 3, 5, 7 are all super-slimes. Then, the numbers 23, 37, 53,
73 are all two-digit super-slimes. To get further super-slimes, we need to take
smaller ones and add a digit to the end (since if you remove the last digit,
the remaining number must still be a super-slime!) The last digit can only be
one of 3 or 7 since if you append either a 1, 2, 4, 5, 6, 8 or 9 then either the
number itself is even or slicing the last number gives you a non-prime number.
So we take the two digit super-slime numbers and try to append each possible
digit. Further, the last two digits cannot be the same since otherwise the last
two digits are divisible by 11 which eliminates the slices 233, 377, 533 and
733.

• 237 is not a super-slime ({237} is not a valid slice since 237 is divisible
by 3)

• 373 is a super-slime (the slices {3, 7, 3}, {373}, {3, 73} and {37, 3} are
all slices of primes)

• 537 is not a super-slime ({537} is not a valid slice since 537 is divisible
by 3)

• 737 is not a super-slime ({737} is not a valid slice since 737 is divisible
by 11)

This leaves one candidate, namely 373. We look at 3737 but clearly this
number is divisible by 37 and so is not a super-slime. Hence the complete list
of super-slimes is

2, 3, 5, 7, 23, 37, 53, 73, 373.

See https://oeis.org/A085823!
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