Problem of the Week
Problem C and Solution
Top Triangle

Problem
The area of $\triangle ACD$ is twice the area of square $BCDE$. AC and AD meet BE at K and L respectively such that $KL = 6$ cm.

If the side length of the square is 8 cm, determine the area of the top triangle, $\triangle AKL$.

Solution
Solution 1
In the first solution we will find the area of square $BCDE$, the area of $\triangle ACD$, the area of trapezoid $KCDL$, and then the area of $\triangle AKL$.

To find the area of a square, multiply the length times the width. To find the area of a trapezoid, multiply the sum of the lengths of the two parallel sides by the height and divide the product by 2.

\[
\text{Area of square } BCDE = 8 \times 8 = 64 \text{ cm}^2
\]
\[
\text{Area } \triangle ACD = 2 \times \text{Area of Square } BCDE = 2 \times 64 = 128 \text{ cm}^2
\]

In trapezoid $KCDL$, the two parallel sides are KL and CD, and the height is the width of square $BCDE$, namely BC.

\[
\text{Area of trapezoid } KCDL = (KL + CD) \times BC \div 2 = (6 + 8) \times 8 \div 2 = 14 \times 8 \div 2 = 56 \text{ cm}^2
\]
\[
\text{Area } \triangle AKL = \text{Area } \triangle ACD - \text{Area of trapezoid } KCDL = 128 - 56 = 72 \text{ cm}^2
\]

Therefore, the area of $\triangle AKL$ is 72 cm2.
Solution 2

Construct the altitude of \(\triangle ACD \) intersecting \(BE \) at \(P \) and \(CD \) at \(Q \). In this solution we will find the height of \(\triangle AKL \) and then use the formula for the area of a triangle to find the required area.

To find the area of a square, multiply the length times the width. To find the area of a triangle, multiply the length of the base times the height and divide the product by 2.

\[
\text{Area of square } BCDE = 8 \times 8
\]
\[
= 64 \text{ cm}^2
\]
\[
\text{Area } \triangle ACD = 2 \times \text{Area of Square } BCDE
\]
\[
= 2 \times 64
\]
\[
= 128 \text{ cm}^2
\]

But Area \(\triangle ACD = CD \times AQ \div 2 \)
\[
128 = 8 \times AQ \div 2
\]
\[
128 = 4 \times AQ
\]
\[
\therefore AQ = 32 \text{ cm}
\]

We know that \(AQ = AP + PQ \), \(AQ = 32 \text{ cm} \) and \(PQ = 8 \text{ cm} \), the side length of the square. It follows that \(AP = AQ - PQ = 32 - 8 = 24 \text{ cm} \).

\[
\therefore \text{Area } \triangle AKL = KL \times AP \div 2
\]
\[
= 6 \times 24 \div 2
\]
\[
= 72 \text{ cm}^2
\]

Therefore, the area of \(\triangle AKL \) is 72 cm\(^2\).