Problem of the Week
Problem D and Solution
Spare Change

Problem
Kees emptied his piggy bank of all its 34 coins with a total value of $5.30. The coins are nickels, dimes or quarters only. There are twice as many quarters as dimes. How many of each type of coin does Kees have?

Solution
Let \(n \) be the number of nickels, \(d \) be the number of dimes and \(q \) be the number of quarters.

From the total number of coins we get the equation \(n + d + q = 34 \) \(\text{(1)} \).

From the value of the coins we get the equation \(5n + 10d + 25q = 530 \) \(\text{(2)} \).

We also know that \(q = 2d \) \(\text{(3)} \).

Substituting equation \((3) \) into equation \((1) \) and simplifying

\[
\begin{align*}
n + d + 2d &= 34 \\
n + 3d &= 34 \quad (4)
\end{align*}
\]

Substituting equation \((3) \) into equation \((2) \) and simplifying

\[
\begin{align*}
5n + 10d + 25(2d) &= 530 \\
5n + 60d &= 530 \\
n + 12d &= 106 \quad (5)
\end{align*}
\]

We can isolate \(n \) in equation \((4) \) to get \(n = 34 - 3d \).

We can isolate \(n \) in equation \((5) \) to get \(n = 106 - 12d \).

We equate the two \(n \)'s and solve for \(d \):

\[
\begin{align*}
34 - 3d &= 106 - 12d \\
-3d + 12d &= 106 - 34 \\
9d &= 72 \\
d &= 8
\end{align*}
\]

We now substitute \(d = 8 \) into equation \((4) \) to solve for \(n \):

\[
\begin{align*}
n + 3d &= 34 \\
n + 3(8) &= 34 \\
n + 24 &= 34 \\
n &= 10
\end{align*}
\]

Finally, substitute \(d = 8 \) into equation \((3) \) to find \(q = 2(8) = 16 \).

Therefore, Kees has 10 nickels, 8 dimes and 16 quarters.