Problem of the Week
Problem D and Solution
Three Polygons

Problem
In the diagram below, the area of $\triangle ACD$ is twice the area of square $BCDE$. AC and AD meet BE at K and L respectively.

If the side length of the square is 12 cm, determine the area of trapezoid $KCDL$.

Solution
To find the area of a trapezoid, multiply the sum of the lengths of the two parallel sides, KL and CD, by the height, BC, and divide the product by 2. To solve this problem we need to find the length of KL. Let x represent the length of KL.

Draw APQ perpendicular to KL and CD. It follows that AP is an altitude of $\triangle AKL$ and AQ is an altitude of $\triangle ACD$.

\[
\text{Area of square } BCDE = 12 \times 12 = 144 \text{ cm}^2
\]
\[
\text{Area } \triangle ACD = 2 \times \text{Area of Square } BCDE = 288 \text{ cm}^2
\]

But Area $\triangle ACD = CD \times AQ \div 2$
\[
\therefore 288 = 12 \times AQ \div 2
\]
\[
288 = 6(AQ)
\]
\[
AQ = 48 \text{ cm}
\]

Since $AQ = 48$ and $PQ = BC = 12$, then $AP = AQ - PQ = 48 - 12 = 36$ cm.

\[
\text{Area of trapezoid } KCDL + \text{Area of } \triangle AKL = \text{Area } \triangle ACD
\]
\[
(KL + CD) \times BC \div 2 + KL \times AP \div 2 = 288
\]
\[
(x + 12)(12) \div 2 + x(36) \div 2 = 288
\]
\[
6(x + 12) + 18x = 288
\]
\[
6x + 72 + 18x = 288
\]
\[
24x = 216
\]
\[
x = 9 \text{ cm}
\]

\[
\text{Area of trapezoid } KCDL = \frac{(KL + CD) \times PQ}{2}
\]
\[
= \frac{(9 + 12)(12)}{2}
\]
\[
= 126 \text{ cm}^2
\]

Therefore the area of trapezoid $KCDL$ is 126 cm^2.
Notes:

1. In order to find the length of KL, we could establish that $\triangle ACD \sim \triangle AKL$. From this we can use the fact that the ratio of the altitudes of the two triangles equals the ratio of the corresponding sides in the two similar triangles. The reader may wish to justify this “fact”.

\[
\begin{align*}
\frac{AP}{AQ} &= \frac{KL}{CD} \\
\frac{36}{48} &= \frac{x}{12} \\
\frac{3}{4} &= \frac{x}{12} \\
\therefore x &= 9 \text{ cm}
\end{align*}
\]

2. Instead of using the formula to determine the area of the trapezoid, we could find the area by subtracting the area of $\triangle AKL$ from the area of $\triangle ACD$.

\[
\text{Area of trapezoid } KCDL = \text{Area } \triangle ACD - \text{Area of } \triangle AKL
\]

\[
= 288 - \frac{(KL)(AP)}{2}
\]

\[
= 288 - \frac{9 \times 36}{2}
\]

\[
= 288 - 162
\]

\[
= 126 \text{ cm}^2
\]