Problem of the Week
Problem E and Solution
What’s Left?

Problem

$BCDE$ is a square with sides of length 20 cm. BE is extended to A such that the area of $\triangle ABC$ is twice the area of the square. The figure $ABCD$ is enclosed in a circle with diameter AC and point B on the circumference of the circle. See the diagram to the right. Determine the area inside the circle but outside figure $ABCDF$.

Solution

To find the area of the unshaded region, we need to find the area of the circle and subtract the area of the shaded figure $ABCDF$. To find the area of the circle we need the radius, which is half the length of diameter AC. To find the area of the shaded figure, we need to find the areas of square $BCDE$ and $\triangle AEF$. We will need to find the length of EF.

Area of Square $BCDE = 20 \times 20 = 400$ cm2

Area of $\triangle ABC = 2 \times $ Area of Square $BCDE = 800$ cm2

But Area of $\triangle ABC = (BC)(AB) \div 2$

$\therefore 800 = (20)(AB) \div 2$

$AB = 80$ cm

Then $AE = AB - BE = 80 - 20 = 60$ cm.

Since $\angle AEF = \angle ABC = 90^o$ and $\angle FAE = \angle CAB$, then $\triangle AEF \sim \triangle ABC$.

$\therefore \frac{AE}{AB} = \frac{EF}{BC}$

$\frac{60}{80} = \frac{EF}{20}$

$EF = 15$ cm

Since $\triangle ABC$ is right angled, $AC^2 = BC^2 + AB^2$

$= 20^2 + 80^2$

$= 6800$

$AC = 20\sqrt{17}$ cm

But AC is the diameter of the circle so the radius is $10\sqrt{17}$.

Unshaded Area = Area of Circle – Area of $ABCDF$

= Area of Circle – (Area of Square $BCDE$ + Area of $\triangle AEF$)

= $\pi(10\sqrt{17})^2 - [(20 \times 20) + (15 \times 60 \div 2)]$

= $1700\pi - 400 - 450$

= $(1700\pi - 850)$ cm2

The area inside the circle but outside the shaded figure is $(1700\pi - 850)$ cm2 or approximately 4491 cm2.