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The Connection

We’re used to uploading our photos on services like Facebook, Twitter, and
Instagram.

Every photo that goes up on these platforms takes up space on a server
somewhere, and it’s usually not necessary to have your photos be displayed
at the highest resolution that your camera outputs.

Your photos, which are stored as numerical information, are compressed
when they are uploaded.

We will start by discussing how these images are stored on a computer and
then we will move on to how this data is transformed for different purposes.
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The Binary Number System

The number system that we use on a daily basis is known as base 10 or
decimal. However, computers use the binary or base 2 system.

Let’s take for example the number 473. Here’s how we would break this
number down in both systems:

Decimal

473 = 4(100) + 7(10) + 3(1)

473 = 4(102) + 7(101) + 3(100)

473 = (473)10

Binary

473 = 1(256) + 1(128) + 1(64) + 0(32) + 1(16) + 1(8) + 0(4) + 0(2) + 1(1)

473 = 1(28) + 1(27) + 1(26) + 0(25) + 1(24) + 1(23) + 0(22) + 0(21) + 1(20)

473 = (111011001)2

As you can see, binary gives us a string of 1’s and 0’s.
Try converting 255 to binary! Make sure you start by finding the largest
power of 2 that is less than 255.
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The Colour Scales

Every colour that you see on your screen has a distinct keycode.

The simplest colour scale is greyscale. Technically, this is a shade scale that
ranges from pure black to pure white. Black is 0 and white is 255.

Now you can see why it was important to find out 255 in binary (it was
11111111)! Using this largest colour value, we consider every keycode to be
eight digits long. This means that black is 00000000.

Image source: http://www.whydomath.org/node/wavlets/images/grayrange.gif
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The Colour Scales

When we rewatch our favourite Harry Potter movie, we watch it in full
colour!

Whereas greyscale is based on one coordinate (a single number),
the full colour spectrum is based on three coordinates: red, green, and blue.

Image source: https://www.medialooks.com/mformats/docs/images/CK color cube.png
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The Colour Scales

For example, the University of Waterloo’s official gold colour is
(255, 213, 79):

Try it out:

1 What is the binary coordinate representation of Waterloo Gold?

2 What would black (on the RGB scale) be in decimal?

3 What would black (on the RGB scale) be in binary?
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Storing Information: Pixels and Bits

All digital images are made up of tiny pixels. Your screen is lit up with these
tiny squares, each with different colour values.

The more pixels per inch (PPI) there are (for the same image size in
different resolutions), the higher quality your image is. Your image looks
less grainy, as you are able to encode more detailed colours with your
smaller pixels in the same area.

Take a look at two examples of PPI below:

Image source: http://s01.shiftdelete.net/img/content/16-10/04/ppi karsilastirmasi.jpg
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Storing Information: Pixels and Bits

We now have crisp colours in High Definition (HD) 1080p format, and the
more recently introduced Ultra HD (UHD) 4K 2160p format.

These displays pack 1080 pixels and 2160 pixels respectively in the vertical
direction of the display.

Image source: http://graphics.secondipity.com/gr/images/nw/2013X900A1.jpg
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Storing Information: Pixels and Bits

High quality images do come at a cost: large file size.

Every pixel stores one colour using the RGB scale discussed in the previous
section.

These colour keycodes are stored in binary format, meaning each coordinate
is eight digits long.

Each digit in a binary sequence is considered to be one bit. One bit is the
base unit of storage on a computer.

Eight bits make up one byte, and 210 = 1024 bytes make up one kilobyte
(KB).

Furthermore, (210)2 = 10242 = 1048576 bytes make up one megabyte
(MB). The megabyte, along with the gigabyte (GB) are probably the most
familiar storage units.
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Storing Information: Pixels and Bits

Try it out:
1 How many bits are in one black and white (greyscale) pixel?

2 How many bits are in one colour (RGB) pixel?

3 How many bits are in the HD colour image pictured above?

4 How many bits are in the 4K colour image pictured above?

5 What is the file size of the HD image in MB?

6 What is the file size of the 4K image in MB?

7 What percentage of the size of the HD file is the size of the 4K file?

8 How many bytes do you think there are in 1 GB?
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A Component of Compression: Huffman Coding

When we upload our pictures onto social media, they get compressed so
they take up less space on the social media company’s servers.

This is why the quality of your photos decreases when you upload them!

One simplistic method of data compression that is occasionally utilized:
Huffman Coding.
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A Component of Compression: Huffman Coding

This method can be computerized to deal with large amounts of data, but
for workability, we will go back to greyscale images.

Examine the section of pixels captured below, along with its numeric
greyscale values:

51 155 132 86

132 51 196 51

216 86 132 51

To start our Huffman Coding, we need to create a frequency table:

Value Frequency Relative Frequency
51 4 4/12 = 0.33

132 3 3/12 = 0.25
86 2 2/12 = 0.17

155 1 1/12 = 0.08
196 1 1/12 = 0.08
216 1 1/12 = 0.08
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A Component of Compression: Huffman Coding

Next, we sort the values by relative frequency (smallest to largest):

216
(0.08)

51
(0.33)

132
(0.25)

86
(0.17)

155
(0.08)

196
(0.08)

Now, add the relative frequences of the two leftmost nodes and create a
new node with two children:

51
(0.33)

132
(0.25)

86
(0.17)

155
(0.08)

(0.16)

196
(0.08)

216
(0.08)
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A Component of Compression: Huffman Coding

51
(0.33)

132
(0.25)

86
(0.17)

155
(0.08)

(0.16)

196
(0.08)

216
(0.08)

Repeat the previous step:

51
(0.33)

132
(0.25)

86
(0.17)

(0.24)

(0.16)

196
(0.08)

216
(0.08)

155
(0.08)
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A Component of Compression: Huffman Coding

Keep repeating until there is a single node of frequency 1 at the top:

(0.99 ≈ 1)

51
(0.33)

(0.66)

(0.41)

(0.24)

(0.16)

196
(0.08)

216
(0.08)

155
(0.08)

86
(0.17)

132
(0.25)
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A Component of Compression: Huffman Coding

Lastly, label the branches connecting nodes. Left branches get a 0, right
branches get a 1.

(0.99 ≈ 1)

51
(0.33)

(0.66)

(0.41)

(0.24)

(0.16)

196
(0.08)

216
(0.08)

155
(0.08)

86
(0.17)

132
(0.25)

0

0

0

0

0

1

1

1

1

1
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A Component of Compression: Huffman Coding

Originally, the value of 132 was 10000100. From our Huffman Coding, the
new value of 132 is 01 (see the path highlighted in red below). We have
saved 6 bits for every occurence of 132.

(0.99 ≈ 1)

51
(0.33)

(0.66)

(0.41)

(0.24)

(0.16)

196
(0.08)

216
(0.08)

155
(0.08)

86
(0.17)

132
(0.25)

0

0

0

0

0

1

1

1

1

1
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A Component of Compression: Huffman Coding

51 155 132 86
132 51 196 51
216 86 132 51

(0.99 ≈ 1)

51
(0.33)

(0.66)

(0.41)

(0.24)

(0.16)

196
(0.08)

216
(0.08)

155
(0.08)

86
(0.17)

132
(0.25)

0

0

0

0

0

1

1

1

1

1

Try it out:
1 How many bits were originally used to

store the section of greyscale pixels?

2 Create a table listing the original pixel
values (in decimal) and their new Huffman
values.

3 How many bits are used to store the
Huffman coded section of pixels?

4 What percentage of the size of the original
file is the size of the Huffman file?

5 What made Huffman Coding so effective
with this specific section of pixels? In what
situation would Huffman Coding not be as
effective?

6 Create the Huffman tree for the frequency
table below and list the new Huffman
values.

Value Frequency Relative Frequency
115 5 5/10 = 0.5
97 3 3/10 = 0.3

102 1 1/10 = 0.1
114 1 1/10 = 0.1
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Transforming Images with Functions

We manipulate digital images in different ways. Sometimes we want to flip
or rotate our image, other times we want to brighten it up.

We’re going to take a look at a basic transformation method involving
function notation.

Once again, let’s examine a section of pixels:
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Transforming Images with Functions

Now, we’re going to label the pixels with coordinates as follows:

1

1

0

0

2

2 3

f(x, y)

We can use function notation to represent our grid of pixels. The function
f (x , y) calls on the pixel located at (x , y) and gives us the RGB colour code
for that pixel.

For example, f (0, 1) = (0, 0, 0) which we know is black. We can use this
notation to manipulate the pixels.
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Transforming Images with Functions

Let’s flip/mirror the section of pixels horizontally. We will call the function
that represents our new section of pixels h(x , y).
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2 3

f(x, y)

1

1

0

0

2

2 3

h(x, y)

Choosing a few points as examples, we see that h(0, 0) = f (3, 0),
h(1, 2) = f (2, 2), and h(3, 2) = f (0, 2).

From these sample points, we can see that the horizontally flipped image is
h(x , y) = f (3 − x , y).
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Transforming Images with Functions

1

1

0

0

2

2 3

f(x, y)

Try it out:
1 What function v(x, y) flips/mirrors the

original section of pixels f (x, y) vertically?

2 What function r(x, y) rotates f (x, y)
180◦? (Hint: Don’t think of it as a
rotation.)

3 The 11 × 9 grid of pixels a(x, y) is shown
to the left. Draw b(x, y) = a(2x, 2y) with
the restrictions x ≤ 4, y ≤ 5. (Hint 1:
b(x, y) should be a 6 × 5 grid. Hint 2:
You can immediately eliminate the 69
squares that don’t show up in b(x, y) if
you think about what is happening with
the function.)
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Thank You!

Visit cemc.uwaterloo.ca for great mathematics resources!
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