2023 Canadian Senior Mathematics Contest

Wednesday, November 15, 2023
(in North America and South America)

Thursday, November 16, 2023
(outside of North America and South America)

Solutions
Part A

1. Since $p + q$ is odd (because 31 is odd) and p and q are integers, then one of p and q is even and the other is odd. (If both were even or both were odd, their sum would be even.)
 Since p and q are both prime numbers and one of them is even, then one of them must be 2, since 2 is the only even prime number.
 Since their sum is 31, the second number must be 29, which is prime.
 Therefore, $pq = 2 \cdot 29 = 58$.

 Answer: 58

2. The integers between 100 to 999, inclusive, are exactly the three-digit positive integers.
 Consider three-digit integers of the form abc where the digit a is even, the digit b is even, and the digit c is odd.
 There are 4 possibilities for a: 2, 4, 6, 8. (We note that a cannot equal 0.)
 There are 5 possibilities for b: 0, 2, 4, 6, 8.
 There are 5 possibilities for c: 1, 3, 5, 7, 9.
 Each choice of digits from these lists gives a distinct integer that satisfies the conditions.
 Therefore, the number of such integers is $4 \cdot 5 \cdot 5 = 100$.

 Answer: 100

3. Solution 1
 Since the distance from $(0, 0)$ to (x, y) is 17, then $x^2 + y^2 = 17^2$.
 Since the distance from $(16, 0)$ to (x, y) is 17, then $(x - 16)^2 + y^2 = 17^2$.
 Subtracting the second of these equations from the first, we obtain $x^2 - (x - 16)^2 = 0$ which gives $x^2 - (x^2 - 32x + 256) = 0$ and so $32x = 256$ or $x = 8$.
 Since $x = 8$ and $x^2 + y^2 = 17^2$, then $64 + y^2 = 289$ which gives $y^2 = 225$, from which we get $y = 15$ or $y = -15$.
 Therefore, the two possible pairs of coordinates for P are $(8, 15)$ and $(8, -15)$.

Solution 2
 The point P is equidistant from O and A since $OP = PA = 17$.
 Suppose that M is the midpoint of OA.
 Since O has coordinates $(0, 0)$ and A has coordinates $(16, 0)$, then M has coordinates $(8, 0)$.
 Since $OP = PA$, then $\triangle OPA$ is isosceles.
 This means that median PM in $\triangle OPA$ is also an altitude; in other words, PM is perpendicular to OA.
 Since OA is horizontal, PM is vertical, and so P lies on the vertical line with equation $x = 8$.
 Since $OM = 8$ and $OP = 17$ and $\triangle POM$ is right-angled at M, then by the Pythagorean Theorem, $PM = \sqrt{OP^2 - OM^2} = \sqrt{17^2 - 8^2} = \sqrt{225} = 15$.
 Since PM is vertical and M is on the x-axis, then P is a distance of 15 units vertically from the x-axis.
 Since P has x-coordinate 8 and is 15 units away from the x-axis, then the two possible pairs of coordinates for P are $(8, 15)$ and $(8, -15)$.

Answer: $(8, 15), (8, -15)$
4. The store sold x shirts for 10 each, y water bottles for 5 each, and z chocolate bars for 1 each.
Since the total revenue was 120, then $10x + 5y + z = 120$.
Since $z = 120 - 10x - 5y$ and each term on the right side is a multiple of 5, then z is a multiple of 5.
Set $z = 5t$ for some integer $t > 0$.
This gives $10x + 5y + 5t = 120$. Dividing by 5, we obtain $2x + y + t = 24$.
Since $x > 0$ and x is an integer, then $x \geq 1$.
Since $y > 0$ and $t > 0$, then $y + t \geq 2$ (since y and t are integers).
This means that $2x = 24 - y - t \leq 22$ and so $x \leq 11$.
If $x = 1$, then $y + t = 22$. There are 21 pairs (y, t) that satisfy this equation, namely the pairs $(y, t) = (1, 21), (2, 20), (3, 19), \ldots, (20, 2), (21, 1)$.
If $x = 2$, then $y + t = 20$. There are 19 pairs (y, t) that satisfy this equation, namely the pairs $(y, t) = (1, 19), (2, 18), (3, 17), \ldots, (18, 2), (19, 1)$.
For each value of x with $1 \leq x \leq 11$, we obtain $y + t = 24 - 2x$.
Since $y \geq 1$, then $t \leq 23 - 2x$.
Since $t \geq 1$, then $y \leq 23 - 2x$.
In other words, $1 \leq y \leq 23 - 2x$ and $1 \leq t \leq 23 - 2x$.
Furthermore, picking any integer y satisfying $1 \leq y \leq 23 - 2x$ gives a positive value of t, and so there are $23 - 2x$ pairs (y, t) that are solutions.
Therefore, as x ranges from 1 to 11, there are

$$21 + 19 + 17 + 15 + 13 + 11 + 9 + 7 + 5 + 3 + 1$$

pairs (y, t), which means that there are this number of triples (x, y, z).
This sum can be re-written as

$$21 + (19 + 1) + (17 + 3) + (15 + 5) + (13 + 7) + (11 + 9)$$

or $21 + 5 \cdot 20$, which means that the number of triples is 121.

Answer: 121

5. We consider $r^2 - r(p + 6) + p^2 + 5p + 6 = 0$ to be a quadratic equation in r with two coefficients that depend on the variable p.
For this quadratic equation to have real numbers r that are solutions, its discriminant, Δ, must be greater than or equal to 0. A non-negative discriminant does not guarantee integer solutions, but may help us narrow the search.
By definition,

$$\Delta = (-p - 6)^2 - 4 \cdot 1 \cdot (p^2 + 5p + 6)$$

$$= p^2 + 12p + 36 - 4p^2 - 20p - 24$$

$$= -3p^2 - 8p + 12$$

Thus, we would like to find all integer values of p for which $-3p^2 - 8p + 12 \geq 0$. The set of integers p that satisfy this inequality are the only possible values of p which could be part of a solution pair (r, p) of integers. We can visualize the left side of this inequality as a parabola opening downwards, so there will be a finite range of values of p for which this is true.
By the quadratic formula, the solutions to the equation $-3p^2 - 8p + 12 = 0$ are

$$p = \frac{8 \pm \sqrt{8^2 - 4(-3)(12)}}{2(-3)} = \frac{8 \pm \sqrt{208}}{-6} \approx 1.07, -3.74$$
Since the roots of the equation \(-3p^2 - 8p + 12 = 0\) are approximately 1.07 and -3.74, then the integers \(p\) for which \(-3p^2 - 8p + 12 \geq 0\) are \(p = -3, -2, -1, 0, 1\). (These values of \(p\) are the only integers between the real solutions 1.07 and -3.74.)

It is these values of \(p\) for which there are possibly integer values of \(r\) that work.

We try them one by one:

- When \(p = 1\), the original equation becomes \(r^2 - 7r + 12 = 0\), which gives \((r - 3)(r - 4) = 0\), and so \(r = 3\) or \(r = 4\).
- When \(p = 0\), the original equation becomes \(r^2 - 6r + 6 = 0\). Using the quadratic formula, we can check that this equation does not have integer solutions.
- When \(p = -1\), the original equation becomes \(r^2 - 5r + 2 = 0\). Using the quadratic formula, we can check that this equation does not have integer solutions.
- When \(p = -2\), the original equation becomes \(r^2 - 4r = 0\), which factors as \(r(r - 4) = 0\), and so \(r = 0\) or \(r = 4\).
- When \(p = -3\), the original equation becomes \(r^2 - 3r = 0\), which factors as \(r(r - 3) = 0\), and so \(r = 0\) or \(r = 3\).

Therefore, the pairs of integers that solve the equation are

\[(r, p) = (3, 1), (4, 1), (0, -2), (4, -2), (0, -3), (3, -3)\]

Answer: \((3, 1), (4, 1), (0, -2), (4, -2), (0, -3), (3, -3)\)
6. We start by determining the heights above the bottom of the cube of the points of intersection of the edges of the pyramids.
For example, consider square $AFGB$ and edges AG and FP. We call their point of intersection X.
We assign coordinates to the various points using the fact that the edge length of the cube is 6:
$F(0,0)$, $G(6,0)$, $B(6,6)$, $A(0,6)$, $P(6,3)$ (P is the midpoint of BG).

![Image of a cube with points labeled]

Line segment AG has slope -1, and so has equation $y = -x + 6$.
Line segment FP has slope $\frac{3}{6} = \frac{1}{2}$ and so has equation $y = \frac{1}{2}x$.
To find the coordinates of X, we equate expressions in y to obtain $-x + 6 = \frac{1}{2}x$ which gives $\frac{3}{2}x = 6$ or $x = 4$, and so $y = -4 + 6 = 2$.
Therefore, point X is a height of 2 above square $EFGH$.
Using a similar argument, the point of intersection between PH and GC is 2 units above square $EFGH$.
To see why the point of intersection of GD and PE is also 2 units above $EFGH$, we note that rectangle $DEGB$ has a height of 6 (like square $AFGB$) and a width of $6\sqrt{2}$. As a result, we can think of obtaining rectangle $DEGB$ by stretching square $AFGB$ horizontally by a factor of $\sqrt{2}$. This horizontal stretch will not raise or lower the point of intersection between GD and PE and so this point is also two units above $EFGH$.
Now, imagine drawing a plane through the three points of intersection of the edges of the pyramids.
Since each of these points is 2 units above $EFGH$, this plane must be horizontal and will also intersect BG 2 units above G, forming a square. (The points of intersection form a square because every horizontal cross-section of both pyramids is a square.) This square has side length 2 because the x-coordinate of X was 4, which is 2 units from BG in that coordinate system.
This square divides the common three-dimensional region into two square-based pyramids.
One of these pyramids points upwards and has fifth vertex P. This pyramid has a square base with edge length 2 and a height of $3 - 2 = 1$, since P is 3 units above G and the base of the pyramid is 2 units above G.
The other pyramid points downwards and has fifth vertex G. This pyramid has a square base with edge length 2 and a height of 2.
Thus, the volume of the region is $\frac{1}{3} \cdot 2^2 \cdot 1 + \frac{1}{3} \cdot 2^2 \cdot 2 = \frac{4}{3} + \frac{8}{3} = 4$.

Answer: 4
Part B

1. (a) Since AB is parallel to DC and AD is perpendicular to both AB and DC, then the area of trapezoid $ABCD$ is equal to $\frac{1}{2} \cdot AD \cdot (AB + DC)$ or $\frac{1}{2} \cdot 10 \cdot (7 + 17) = 120$.

 Alternatively, we could separate trapezoid $ABCD$ into rectangle $ABFD$ and right-angled triangle $\triangle BFC$.

 We note that $ABFD$ is a rectangle since it has three right angles.

 Rectangle $ABFD$ is 7 by 10 and so has area 70.

 $\triangle BFC$ has BF perpendicular to FC and has $BF = AD = 10$.

 Also, $FC = DC - DF = DC - AB = 17 - 7 = 10$.

 Thus, the area of $\triangle BFC$ is $\frac{1}{2} \cdot FC \cdot BF = \frac{1}{2} \cdot 10 \cdot 10 = 50$.

 This means that the area of trapezoid $ABCD$ is $70 + 50 = 120$.

 (b) Since PQ is parallel to DC, then $\angle BQP = \angle BCF$.

 We note that $ABFD$ is a rectangle since it has three right angles. This means that $BF = AD = 10$ and $DF = AB = 7$.

 In $\triangle BCF$, we have $BF = 10$ and $FC = DC - DF = 17 - 7 = 10$.

 Therefore, $\triangle BCF$ has $BF = FC$, which means that it is right-angled and isosceles. Therefore, $\angle BCF = 45^\circ$ and so $\angle BQP = 45^\circ$.

 (c) Since PQ is parallel to AB and AP and BT are perpendicular to AB, then $ABTP$ is a rectangle.

 Thus, $AP = BT$ and $PT = AB = 7$.

 Since $PT = 7$, then $TQ = PQ - PT = x - 7$.

 Since $\angle BQT = 45^\circ$ and $\angle BTQ = 90^\circ$, then $\triangle BTQ$ is right-angled and isosceles.

 Therefore, $BT = TQ = x - 7$.

 Finally, $AP = BT = x - 7$.

 (d) Suppose that $PQ = x$.

 In this case, trapezoid $ABQP$ has parallel sides $AB = 7$ and $PQ = x$, and height $AP = x - 7$.

 The areas of trapezoid $ABQP$ and trapezoid $PQCD$ are equal exactly when the area of trapezoid $ABQP$ is equal to half of the area of trapezoid $ABCD$.

 Thus, the areas of $ABQP$ and $PQCD$ are equal exactly when $\frac{1}{2} (x - 7)(x + 7) = \frac{1}{2} \cdot 120$,

 which gives $x^2 - 49 = 120$ or $x^2 = 169$.

 Since $x > 0$, then $PQ = x = 13$.

 Alternatively, we could note that trapezoid $PQCD$ has parallel sides $PQ = x$ and $DC = 17$, and height $PD = AD - AP = 10 - (x - 7) = 17 - x$.

 Thus, the area of trapezoid $ABQP$ and the area of trapezoid $PQCD$ are equal exactly when $\frac{1}{2} (x - 7)(x + 7) = \frac{1}{2} (17 - x)(x + 17)$, which gives $x^2 - 49 = 17^2 - x^2$ or $x^2 - 49 = 289 - x^2$

 and so $2x^2 = 338$ or $x^2 = 169$.

 Since $x > 0$, then $PQ = x = 13$.
2. (a) The lattice points inside the region A are precisely those lattice points whose coordinates (r, s) satisfy $1 \leq r \leq 99$ and $1 \leq s \leq 99$.

Each point on the line with equation $y = 2x + 5$ is of the form $(a, 2a + 5)$ and so each lattice point on the line with equation $y = 2x + 5$ is of the form $(a, 2a + 5)$ for some integer a.

For such a lattice point to lie in region A, we need $1 \leq a \leq 99$ and $1 \leq 2a + 5 \leq 99$.

The second pair of inequalities is equivalent to $-4 \leq 2a \leq 94$ and thus to $-2 \leq a \leq 47$.

Since we need both $1 \leq a \leq 99$ and $-2 \leq a \leq 47$ to be true, we have $1 \leq a \leq 47$.

Since there are 47 integers a in this range, then there are 47 lattice points in the region A and on the line with equation $y = 2x + 5$.

These are the points $(1, 7), (2, 9), (3, 11), \ldots, (47, 99)$.

(b) Consider a lattice point (r, s) that lies on the line with equation $y = \frac{5}{3}x + b$.

In this case, we must have $s = \frac{5}{3}r + b$ and so $\frac{5}{3}r = s - b$.

Since s and b are both integers, then $\frac{5}{3}r$ is an integer.

Since r is an integer and $\frac{5}{3}r$ is an integer, then r is a multiple of 3.

We write $r = 3t$ for some integer t which means that $s = \frac{5}{3} \cdot 3t + b = 5t + b$.

Thus, the lattice point (r, s) can be re-written as $(3t, 5t + b)$.

For $(3t, 5t + b)$ to lie within A, we need $1 \leq 3t \leq 99$.

Since t is an integer, this means that $1 \leq t \leq 33$.

When $b = 0$, these points are the points of the form $(3t, 5t)$; these lie within A when $1 \leq t \leq 19$. In other words, there are 19 points in A when $b = 0$, which means that the greatest possible value of b is at least 0.

We note that $5t + b$ is increasing as t increases.

When $b \geq 0$ and $t \geq 1$, we have $5t + b \geq 5$ and so if any points lie within A, then the point with $t = 1$ must lie within A. This means that for at least 15 of the points $(3t, 5t + b)$ to lie within A, the points corresponding to $t = 1, 2, \ldots, 14, 15$ must all lie within A.

Since $5t + b$ is increasing, the largest value of b should correspond to the largest value of $5(15) + b$ that does not exceed 99.

When $b = 24$, we note that the points for $t = 1, 2, \ldots, 14, 15$ are

$$(r, s) = (3, 29), (6, 34), \ldots, (42, 94), (45, 99)$$

which means that exactly 15 points lie within A.

We note that if $b \geq 25$ and $t \geq 15$, then $5t + b \geq 100$ and so the point $(3t, 5t + b)$ is not within A; in other words, if $b \geq 25$, there are fewer than 15 points on the line that lie within A.

Therefore, $b = 24$ is indeed the largest possible value of b that satisfies the given requirements.
(c) Consider a line with equation \(y = mx + 1 \) for some value of \(m \).
Regardless of the value of \(m \), the point \((0, 1)\) lies on this line. This point is not in the
region \(A \), but is right next to it.
Consider the line with equation \(y = \frac{3}{7}x + 1 \) (that is, \(m = \frac{3}{7} \)).
The point \((7, 4)\) is a lattice point in \(A \) that lies on this line.
This means that \(m = \frac{3}{7} \) cannot be in the final range of values, and so \(n \) cannot be greater
than \(\frac{3}{7} \).
Consider the points on the line with equation \(y = mx + 1 \) with \(x \)-coordinates from 1 to
99, inclusive. These are the points
\[(1, m + 1), (2, 2m + 1), (3, 3m + 1), \ldots, (98, 98m + 1), (99, 99m + 1)\]
Since \(m < n \leq \frac{3}{7} \), then \(99m + 1 < 99 \cdot \frac{3}{7} + 1 < 99 \) and so each of these 99 points are in the
region \(A \).
This means that we need to ensure that none of \(m + 1, 2m + 1, 3m + 1, \ldots, 98m + 1, 99m + 1 \)
is an integer.
In other words, we want to determine the greatest possible real number \(n \) for which none
of \(m + 1, 2m + 1, 3m + 1, \ldots, 98m + 1, 99m + 1 \) is an integer whenever \(\frac{2}{7} < m < n \).
Since real numbers \(s \) and \(s + 1 \) are either both integers or both not integers, then we want to
determine the greatest possible real number \(n \) for which none of \(m, 2m, 3m, \ldots, 98m, 99m \)
is an integer whenever \(\frac{2}{7} < m < n \).
The fact that none of \(m, 2m, 3m, \ldots, 98m, 99m \) can be an integer is equivalent to saying
that \(m \) is not equal to a rational number of the form \(\frac{c}{d} \) where \(c \) is an integer and \(d \)
is equal to one of \(1, 2, 3, \ldots, 98, 99 \).
This means that the value of \(n \) that we want is the largest real number \(n \) with the property
that there are no rational numbers \(m = \frac{c}{d} \) with \(c \) and \(d \) integers and \(1 \leq d \leq 99 \) in the
interval \(\frac{2}{7} < m < n \).
Let \(s \) be the smallest rational number of the form \(\frac{c}{d} \) with \(c \) and \(d \) integers and \(1 \leq d \leq 99 \)
that is greater than \(\frac{2}{7} \).
Then it must be the case that \(n = s \).
To see why this is true, we note that \(s \) has the property that there are no rational numbers
\(m \) with the above restrictions between \(\frac{2}{7} \) and \(s \) by the definition of \(s \), and also that any
number larger than \(s \) does not have this property because \(s \) would be between it and \(\frac{2}{7} \).
Therefore, \(n = s \).
This means that we need to determine the smallest rational number of the form \(\frac{c}{d} \) with \(c \)
and \(d \) integers and \(1 \leq d \leq 99 \) that is greater than \(\frac{2}{7} \).
To do this, we minimize the value of \(\frac{c}{d} - \frac{2}{7} = \frac{7c - 2d}{7d} \) subject to the conditions that \(c \)
and \(d \) are positive integers with \(1 \leq d \leq 99 \) and that \(\frac{c}{d} - \frac{2}{7} = \frac{7c - 2d}{7d} > 0 \), which also
means that \(7c - 2d > 0 \).
When \(d = 99 \), we are minimizing \(\frac{7c - 198}{693} \) which is the smallest possible when \(c = 29 \),
giving a difference of \(\frac{5}{693} \).
When \(d = 98 \), we are minimizing \(\frac{7c - 196}{686} \) which is the smallest possible when \(c = 29 \),
giving a difference of $\frac{7}{686}$.

When $d = 97$, we are minimizing $\frac{7c - 194}{679}$ which is the smallest possible when $c = 28$, giving a difference of $\frac{2}{679}$.

When $d = 96$, we are minimizing $\frac{7c - 192}{672}$ which is the smallest possible when $c = 28$, giving a difference of $\frac{4}{672}$.

When $d = 95$, we are minimizing $\frac{7c - 190}{665}$ which is the smallest possible when $c = 28$, giving a difference of $\frac{6}{665}$.

When $d = 94$, we are minimizing $\frac{7c - 188}{658}$ which is the smallest possible when $c = 27$, giving a difference of $\frac{1}{658}$.

We can check that $\frac{1}{658}$ is smaller than any of $\frac{5}{693}, \frac{7}{686}, \frac{2}{679}, \frac{4}{672}, \frac{6}{665}$.

Furthermore, if $d < 94$, then since $\frac{7c - 2d}{7d} \geq \frac{1}{7d} > \frac{1}{658}$ (noting that $7c - 2d \geq 1$) and so every other difference will be greater than $\frac{1}{658}$.

This means that $\frac{27}{94}$ is the smallest of this set of rational numbers, which means that $n = \frac{27}{94}$.

3. (a) Working with x in degrees

We know that $\sin \theta = 1$ exactly when $\theta = 90^\circ + 360^\circ k$ for some integer k.

Therefore, $\sin \left(\frac{x}{5}\right) = 1$ exactly when $\frac{x}{5} = 90^\circ + 360^\circ k_1$ for some integer k_1 which gives $x = 450^\circ + 1800^\circ k_1$.

Also, $\sin \left(\frac{x}{9}\right) = 1$ exactly when $\frac{x}{9} = 90^\circ + 360^\circ k_2$ for some integer k_2 which gives $x = 810^\circ + 3240^\circ k_2$.

Equating expressions for x, we obtain

$$450^\circ + 1800^\circ k_1 = 810^\circ + 3240^\circ k_2$$

$$1800k_1 - 3240k_2 = 360$$

$$5k_1 - 9k_2 = 1$$

One solution to this equation is $k_1 = 2$ and $k_2 = 1$.

These give $x = 4050^\circ$. We note that $\frac{x}{5} = 810^\circ$ and $\frac{x}{9} = 450^\circ$; both of these angles have a sine of 1.

Working with x in radians

We know that $\sin \theta = 1$ exactly when $\theta = \frac{\pi}{2} + 2\pi k$ for some integer k.

Therefore, $\sin \left(\frac{x}{5}\right) = 1$ exactly when $\frac{x}{5} = \frac{\pi}{2} + 2\pi k_1$ for some integer k_1 which gives $x = \frac{5\pi}{2} + 10\pi k_1$.
Also, \(\sin \left(\frac{x}{9} \right) = 1 \) exactly when \(\frac{x}{9} = \frac{\pi}{2} + 2\pi k_2 \) for some integer \(k_2 \) which gives \(x = \frac{9\pi}{2} + 18\pi k_2 \).

Equating expressions for \(x \), we obtain

\[
\frac{5\pi}{2} + 10\pi k_1 = \frac{9\pi}{2} + 18\pi k_2 \\
10\pi k_1 - 18\pi k_2 = 2\pi \\
5k_1 - 9k_2 = 1
\]

One solution to this equation is \(k_1 = 2 \) and \(k_2 = 1 \).

These give \(x = \frac{45\pi}{2} \). We note that \(\frac{x}{5} = \frac{9\pi}{2} \) and \(\frac{x}{9} = \frac{5\pi}{2} \); both of these angles have a sine of 1.

Therefore, one solution is \(x = 4050^\circ \) (in degrees) or \(x = \frac{45\pi}{2} \) (in radians).

(b) Suppose that \(M \) and \(N \) are positive integers.

We work towards determining conditions on \(M \) and \(N \) for which there is or is not an angle \(x \) with \(\sin \left(\frac{x}{M} \right) + \sin \left(\frac{x}{N} \right) = 2 \).

Since \(-1 \leq \sin \theta \leq 1\) for all angles \(\theta \), then the equation \(\sin \left(\frac{x}{M} \right) + \sin \left(\frac{x}{N} \right) = 2 \) is equivalent to the pair of equations \(\sin \left(\frac{x}{M} \right) = \sin \left(\frac{x}{N} \right) = 1 \). (Putting this another way, there must be an angle \(x \) which makes both sines 1 simultaneously.)

As in (a), the equation \(\sin \left(\frac{x}{M} \right) = 1 \) is equivalent to the statement that \(\frac{x}{M} = 90^\circ + 360^\circ r \) or \(\frac{x}{M} = \frac{\pi}{2} + 2\pi r \) for some integer \(r \). (We will carry equations in degrees and in radians simultaneously for a time.)

These equations are equivalent to saying \(x = 90^\circ M + 360^\circ r M \) or \(x = \frac{M\pi}{2} + 2\pi r M \) for some integer \(r \).

Similarly, the equation \(\sin \left(\frac{x}{N} \right) = 1 \) is equivalent to saying \(x = 90^\circ N + 360^\circ s N \) or \(x = \frac{N\pi}{2} + 2\pi s N \) for some integer \(s \).

Since \(x \) is common, then we can equate values of \(x \) to say that if such an \(x \) exists, then \(90^\circ M + 360^\circ r M = 90^\circ N + 360^\circ s N \) or \(\frac{M\pi}{2} + 2\pi r M = \frac{N\pi}{2} + 2\pi s N \).

It is also true that if these equations are true, then the existence of an angle \(x \) that satisfies, say, \(x = 90^\circ M + 360^\circ r M \) then guarantees the fact that the same angle \(x \) satisfies \(x = 90^\circ N + 360^\circ s N \).

In other words, the existence of an angle \(x \) is equivalent to the existence of integers \(r \) and \(s \) for which \(90^\circ M + 360^\circ r M = 90^\circ N + 360^\circ s N \) or \(\frac{M\pi}{2} + 2\pi r M = \frac{N\pi}{2} + 2\pi s N \).

Dividing the first equation throughout by \(90^\circ \) and the second equation throughout by \(\frac{\pi}{2} \) gives us the same resulting equation, namely \(M + 4r M = N + 4s N \). Thus, we can not concern ourselves with using degrees or radians for the rest of this part.

At this stage, we know that there is an angle \(x \) with the desired property precisely when there are integers \(r \) and \(s \) for which \(M + 4r M = N + 4s N \).
Suppose that $M = 2^a c$ and $N = 2^b d$ for some integers a, b, c, d with $a \geq 0$, $b \geq 0$, c odd, and d odd. Here, we are writing M and N as the product of a power of 2 and their “odd part”.

Suppose that $a \neq b$; without loss of generality, assume that $a > b$. Then, the following equations are equivalent:

\[
M + 4rM = N + 4sN \\
2^a c + 4r \cdot 2^a c = 2^b d + 4s \cdot 2^b d \\
2^{a-b} c + 2^{2+a-b} rc = d + 4sd \\
2^{a-b} c + 2^{2+a-b} rc - 4sd = d
\]

Since the right side of this equation is an odd integer and the left side is an even integer regardless of the choice of r and s, there are no integers r and s for which this is true.

Thus, if M and N do not contain the same number of factors of 2, there is no angle x that satisfies the initial equation.

To see this in another way, we return to the equation $M + 4rM = N + 4sN$, factor both sides to obtain $M(1 + 4r) = N(1 + 4s)$ which gives the equivalent equation $\frac{M}{N} = \frac{1 + 4s}{1 + 4r}$.

If integers r and s exist that satisfy this equation, then $\frac{M}{N}$ can be written as a ratio of odd integers and so M and N must contain the same number of factors of 2.

Putting this another way, if M and N do not contain the same number of factors of 2, then integers r and s do not exist and so the initial equation has no solutions.

To complete (b), we need to demonstrate the existence of a sequence $n_1, n_2, \ldots, n_{100}$ of positive integers for which $\sin \left(\frac{x}{n_i} \right) + \sin \left(\frac{x}{n_j} \right) \neq 2$ for all angles x and for all pairs $1 \leq i < j \leq 100$.

Suppose that $n_i = 2^i$ for $1 \leq i \leq 100$.

In other words, the sequence $n_1, n_2, \ldots, n_{100}$ is the sequence $2^1, 2^2, \ldots, 2^{100}$.

No pair of numbers from the sequence $n_1, n_2, \ldots, n_{100}$ contains the same number of factors of 2, and so there is no angle x that makes $\sin \left(\frac{x}{n_i} \right) + \sin \left(\frac{x}{n_j} \right) = 2$ for any i and j with $1 \leq i < j \leq 100$.

Therefore, the sequence $n_i = 2^i$ for $1 \leq i \leq 100$ has the desired property.

(c) Suppose that M and N are positive integers for which there is an angle x that satisfies the equation $\sin \left(\frac{x}{M} \right) + \sin \left(\frac{x}{N} \right) = 2$.

From (b), we know that M and N must contain the same number of factors of 2.

Again, suppose that $M = 2^a c$ and $N = 2^a d$ for some integers a, c, d with $a \geq 0$, c odd, and d odd.

Then, continuing from earlier work, the following equations are equivalent:

\[
M + 4rM = N + 4sN \\
2^a c + 4r \cdot 2^a c = 2^a d + 4s \cdot 2^a d \\
c + 4rc = d + 4sd \\
c - d = -4rc + 4sd
\]

Since the right side is a multiple of 4, then the left side must also be a multiple of 4 and so c and d have the same remainder when divided by 4.
(Using a more advanced result from number theory, it turns out that if \(c - d \) is divisible by 4, then this equation will always have a solution for the integers \(r \) and \(s \), but we do not need this precise fact.)

Suppose that \(m_1, m_2, \ldots, m_{100} \) is a list of 100 distinct positive integers with the property that, for each integer \(i = 1, 2, \ldots, 99 \), there is an angle \(x_i \) that satisfies the equation

\[
\sin \left(\frac{x_i}{m_i} \right) + \sin \left(\frac{x_i}{m_{i+1}} \right) = 2.
\]

Suppose further that \(m_1 = 6 \).

Since \(m_1 = 2^1 \cdot 3 \) and there is an angle \(x_1 \) with \(\sin \left(\frac{x_1}{m_1} \right) + \sin \left(\frac{x_1}{m_2} \right) = 2 \), then from above, \(m_2 = 2^1 \cdot c_2 \) for some positive integer \(c_2 \) that is 3 more than a multiple of 4 (that is, \(c_2 \) has the same remainder upon division by 4 as 3 does).

Similarly, each integer in the list \(m_1, m_2, \ldots, m_{100} \) can be written as \(m_i = 2c_i \) where \(c_i \) is a positive integer that is 3 more than a multiple of 4.

Define \(t = \frac{3\pi}{2^{100}} \cdot m_1 m_2 \cdots m_{100}. \)

Then

\[
\frac{t}{m_i} = \frac{3\pi}{2 \cdot 2^{99} (2c_i)} (2c_1)(2c_2) \cdots (2c_{100}) = \frac{\pi}{2} \cdot \frac{3c_1 c_2 \cdots c_{100}}{c_i}.
\]

In other words, \(\frac{t}{m_i} \) is equal to \(\frac{\pi}{2} \) times the product of 100 integers each of which is 3 more than a multiple of 4. (Note that the numerator of the last fraction includes 101 such integers and the denominator includes 1.)

The product of two integers each of which is 3 more than a multiple of 4 is equal to an integer that is 1 more than a multiple of 4. This is because if \(y \) and \(z \) are integers, then

\[
(4y + 3)(4z + 3) = 16yz + 12y + 12z + 9 = 4(4yz + 3y + 3z + 2) + 1
\]

Also, the product of two integers each of which is 1 more than a multiple of 4 is equal to an integer that is 1 more than a multiple of 4. This is because if \(y \) and \(z \) are integers, then

\[
(4y + 1)(4z + 1) = 16yz + 4y + 4z + 1 = 4(4yz + y + z) + 1
\]

Thus, the product of 100 integers each of which is 3 more than a multiple of 4 is equal to the product of 50 integers each of which is 1 more than a multiple of 4, which is equal to an integer that is one more than a multiple of 4.

Therefore, \(\frac{t}{m_i} \) is equal to \(\frac{\pi}{2} \) times an integer that is 1 more than a multiple of 4, and so

\[
\sin \left(\frac{t}{m_1} \right) = 1,
\]

and so

\[
\sin \left(\frac{t}{m_1} \right) + \sin \left(\frac{t}{m_2} \right) + \cdots + \sin \left(\frac{t}{m_{100}} \right) = 100
\]

as required.

Therefore, for every such sequence \(m_1, m_2, \ldots, m_{100} \), there does exist an angle \(t \) with the required property.