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Problem Set Solutions

1. Each cell in the pascal triangle actually gives us the number of possible paths there are
that lead to the cell. We can look at the triangle and add the bottom row up to get
21 + 35 + 35 + 21 = 112 different paths.
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2. Just like questions 1, we can use the concept of Pascal’s triangle. However, since there
are no extra paths to get to the edge of the board, those entries stay the same as the spot
before it. 28 + 34 + 21 + 6 = 89.
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3. Filling in this portion of the triangle, we have

1287 _____ _____

3003 3432

_____ 6435

1716 1716
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12870
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∴ x = 1287, y = 3003, and z = 12870
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4. From the diagram, we can see that the number of paths is 1123.
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5. The two shortest sticks are 1 and 2 units of length. The next shortest stick that would
make it impossible to form a triangle is 1 + 2 = 3 units of length. The next length that
would make it impossible to form a triangle would be 2 + 3 = 5. Continuing this pattern,
we have

3 + 5 = 8

5 + 8 = 13

8 + 13 = 21

∴ The shortest length of the longest stick is 21 units of length.

6. F (1) = 1, F (2) = 1 + 2, F (3) = 1 + 2 + 3. In general,

F (n) = 1 + 2 + 3 + ... + n

2 × F (n) = 2(1 + 2 + 3 + ... + n)

= (1 + 2 + 3 + ... + n) + (1 + 2 + 3 + ... + n)

= [1 + n] + [2 + (n− 1)] + [3 + (n− 2)]... + [n + 1]

= [1 + n] + [1 + n] + ... + [1 + n]

2 × F (n) = n× (1 + n)

F (n) =
n(n + 1)

2

7. From question 6, we know that 2 + 3 + ... + 297 + 298 = F (298) − 1

F (298) − 1 =
298(298 + 1)

2
− 1

=
298(299)

2
− 1

= 44550
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8. Let x be the square root of the number we’re looking for. Then we have

x2 + (x2)2 + x = x(x + x3 + 1)

Breaking 276 into a product of its factors, we have

276 = 4 × 69

= 4(4 + 64 + 1)

= 4(4 + 43 + 1) ∴ x = 4

The number we are looking for is 16.

9. By making a table, we can see that there are 3 super primes less than 15

n 2 3 5 7 11 13
2n− 1 3 5 9 13 21 25

10. The three smallest primes are 2, 3, and 5, so the smallest perfect square with three distinct
prime factors is

(2 × 3 × 5)2 = 302

= 900

11. The prime numbers between 12 and 25 are: 13, 17, 19, and 23. By multiplying any two
of these numbers, we get

13 17 19 23
13 N/A 221 247 299
17 221 N/A 323 391
19 247 323 N/A 437
23 299 391 437 N/A

Obviously, the numbers whose product is greater than 350 aren’t the factors of the number
we’re looking for. For the numbers less than 300, we could see if multiplying by 2 could
result in a number between 300 and 350. None of the numbers work, so the only answer
is 323, whose factors are 17 and 19.

12. To maximize the number of cages, we need to minimize the number of birds in each cage.
The first cage can contain one bird, and the second cage two birds, etc. until the 12th

cage. by the 12th cage, we would have 1 + 2 + 3 + ... + 12 = 78. If we put 13 birds in
the next cage, there will only be 9 birds left, which would be impossible not to repeat
numbers. Thus, 13 + 9 = 22 need to go into the 13th cage. The maximum number of
cages is 13.

13. Let the number be ABC. B must be either 4 or 8 since it is 4 times of C. B must also
be greater than 7, because A is 7 less than B. From these two clues, B must be 8, so the
number is 182.
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14. To get a 3-digit number, A and C could be 5 and 6, or 4 and 6. If the
pair is 5 and 6, then B and D won’t add to more than 7, so E and F are
both 1, which breaks the rule. Therefore, A and C must be 4 and 6. B
and D won’t add up to more than 8, so E is 1 and F is 0. This leaves
us with 2, 3, and 5, where one of these numbers is the sum of the other
two. It is clear that 2 + 3 = 5. The number we are looking for is 5. ?

A B
C D

E F


