DETOUR
Detour: Mihăilescu’s Theorem

- In 1844 it was conjectured by Catalan that the only perfect powers that differ by one are 8 and 9.
- Last time I mentioned Tijdeman’s Theorem: there are only finitely many perfect powers that differ by one.
- I was unaware that the conjecture of Catalan was solved by the Romanian mathematician Preda Mihăilescu in 2002 in his article “Primary Cyclotomic Units and a Proof of Catalan’s Conjecture”.
- See a popular video about Catalan’s Conjecture: https://www.youtube.com/watch?v=Us-__MukH9I (subscribe to Numberphile!)
- The question about prime powers that differ by 2 is still open!
Detour: Mihăilescu’s Theorem

Figure: Eugéne Charles Catalan (left) and Preda Mihăilescu (right)
We were learning about **algebraic number theory**.

It studies properties of numbers that are roots of polynomial equations, like i, $\frac{-1+\sqrt{-3}}{2}$, $3\sqrt{2}$, and so on.

We learned about Gaussian integers, i.e. numbers of the form $a+bi$, where a, b are integers and i satisfies $i^2 + 1 = 0$.

The set of Gaussian integers is denoted by $\mathbb{Z}[i]$. You can add, subtract and multiply Gaussian integers, and the result will be a Gaussian integer. Therefore $\mathbb{Z}[i]$ is a **ring**.

We saw that every Gaussian integer $a+bi$ has a **norm** $N(a+bi) = a^2 + b^2$ and that the norm is multiplicative:

$$N(\alpha\beta) = N(\alpha)N(\beta).$$
Generalizing Primes

- We generalized the notion of divisibility.
- We learned about **units**: elements of $\mathbb{Z}[i]$ that divide everything. There are four of them: $1, -1, i$ and $-i$. In comparison, the ring of integers \mathbb{Z} has only two units.
- We generalized the notion of primes: a Gaussian integer α is called a **Gaussian prime** if it is not a unit and any factorization $\alpha = \beta \gamma$ in $\mathbb{Z}[i]$ forces β or γ to be a unit.
- We saw that some rational primes p can **split** in $\mathbb{Z}[i]$:

 $$2 = i(1 - i)^2$$
 $$5 = (2 + i)(2 - i)$$
 $$13 = (2 + 3i)(2 - 3i).$$

 We say that 2 **ramifies** in $\mathbb{Z}[i]$ because it is divisible by a square of a Gaussian prime. Other primes are **unramified**.
- Some primes, like 3, 7, 11, 19, are both rational primes and Gaussian primes. Such primes are called **inert**.
Other Theorems in \(\mathbb{Z}[i] \)

- **The Remainder Theorem for Gaussian Integers.** Let \(a, b \) be Gaussian integers. Then there exist Gaussian integers \(q \) and \(r \) such that \(b = aq + r \), where \(N(r) < N(a) \).

- Let \(a \) and \(b \) be Gaussian integers. A Gaussian integer \(g \) such that \(g \mid a \) and \(g \mid b \), with \(N(g) \) the largest, is called the greatest common divisor of \(a \) and \(b \). It is denoted by \(\gcd(a, b) \).

- **The Fundamental Theorem of Arithmetic.** Up to multiplication by a unit, any non-zero Gaussian integer can be written uniquely (up to reordering) as the product of Gaussian primes.

- **Fermat’s Theorem on Sums of Two Squares.** Every rational prime \(p \) of the form \(4k + 1 \) is a sum of two squares.
EXERCISE
The Ring of Eisenstein Integers

- **Exercise 1.** Let
 \[\omega = \frac{-1 + \sqrt{-3}}{2}. \]

 Verify that \(\omega^2 + \omega + 1 = 0. \)

- **Exercise 2.** The set
 \[\mathbb{Z}[\omega] = \{ a + b\omega : a, b \in \mathbb{Z} \} \]

 is called the **ring of Eisenstein integers**. Prove that it is a ring. That is, show that for any Eisenstein integers \(a + b\omega \), \(c + d\omega \) the numbers \((a + b\omega) + (c + d\omega)\), \((a + b\omega) - (c + d\omega)\), \((a + b\omega)(c + d\omega)\) are Eisenstein integers as well.

- **Exercise 3.** For any Eisenstein integer \(a + b\omega \) define the **norm**
 \[N(a + b\omega) = a^2 - ab + b^2. \]

 Prove that the norm is multiplicative: \(N(\alpha\beta) = N(\alpha)N(\beta) \).

 Verify that it is non-negative; that is, \(N(\alpha) \geq 0 \) and \(N(\alpha) = 0 \) if and only if \(\alpha = 0 \).
The Ring of Eisenstein Integers

- **Exercise 4.** We say that γ is an **Eisenstein unit** if $\gamma | 1$. Prove that if γ is an Eisenstein unit then its norm is equal to one.

- **Exercise 5.** Find all Eisenstein integers of norm one (there are six of them) and show that all of them are Eisenstein units.

- **Exercise 6.** An Eisenstein integer γ is **prime** if it is not a unit and every factorization $\gamma = \alpha \beta$ with $\alpha, \beta \in \mathbb{Z}[\omega]$ forces one of α or β to be a unit. Find Eisenstein primes among rational primes

 $$2, 3, 5, 7, 11, 13.$$

- **Homework.** Think for which positive integers n the Diophantine equation

 $$n = x^2 - xy + y^2$$

 has a solution (start by showing that if m and n are of the above form then so is mn).
Remember Euler’s “almost” correct idea to solve the Diophantine equation $y^2 = x^3 - 2$: factor

$$(y + \sqrt{-2})(y - \sqrt{-2}) = x^3,$$

and show that $y + \sqrt{-2}$ and $y - \sqrt{-2}$ are coprime in $\mathbb{Z}[\sqrt{-2}]$ for $y \neq 0$. Then

$$y + \sqrt{-2} = (a + b\sqrt{-2})^3 \text{ and } y - \sqrt{-2} = (c + d\sqrt{-2})^3$$

for some $a, b, c, d \in \mathbb{Z}$.

His idea would not work for the equation $y^2 = x^3 - 5$, because the Fundamental Theorem of Arithmetic does not hold in $\mathbb{Z}[\sqrt{-5}]$.
Failure of Unique Factorization

▶ Exercise 1. Consider the ring

\[\mathbb{Z}[\sqrt{-5}] = \left\{ a + b\sqrt{-5} : a, b \in \mathbb{Z} \right\} \]

along with the norm map \(N(a + b\sqrt{-5}) = a^2 + 5b^2 \), which is known to be multiplicative. Prove that ±1 are the only units in \(\mathbb{Z}[\sqrt{-5}] \).

▶ Exercise 2. Prove that the numbers 2, 3, 1 + \(\sqrt{-5} \), 1 − \(\sqrt{-5} \) are prime in \(\mathbb{Z}[\sqrt{-5}] \).

▶ Exercise 3. Using Exercise 2 prove that the unique factorization fails in \(\mathbb{Z}[\sqrt{-5}] \).

▶ The rings where unique factorization holds are called Unique Factorization Domains (UFD’s).

▶ In 1966, Alan Baker classified all rings of the form \(\mathbb{Z}[\sqrt{-d}] \) and \(\mathbb{Z} \left[\frac{1 + \sqrt{-d}}{2} \right] \) that are UFD’s. There are only 13 of them, for example \(\mathbb{Z}[i], \mathbb{Z}[\omega], \mathbb{Z}[\sqrt{-2}], \mathbb{Z} \left[\frac{1 + \sqrt{-163}}{2} \right] \).
Euclidean Domains

- The rings which possess some procedure resembling the Euclidean algorithm for finding the greatest common divisors are called Euclidean domains.
- We saw that both \(\mathbb{Z} \) and \(\mathbb{Z}[i] \) are Euclidean domains. So is \(\mathbb{Z}[\omega] \).
- Every Euclidean domain is a UFD, but the converse is not true. An example of a UFD that is not a Euclidean domain is

\[
\mathbb{Z} \left[\frac{1 + \sqrt{-19}}{2} \right].
\]
As it turns out, the rings of the form \(\mathbb{Z}[\sqrt{d}] \), \(\mathbb{Z}[\frac{1+\sqrt{d}}{2}] \) behave very differently when \(d \) is positive or negative.

For example, the rings

\[
\mathbb{Z}[\sqrt{d}] = \{a + b\sqrt{d} : a, b \in \mathbb{Z}\}
\]

contain infinitely many units.

Exercise 1. Find at least one unit different from \(\pm 1 \) in the rings \(\mathbb{Z}[\sqrt{2}] \) and \(\mathbb{Z}[\sqrt{5}] \). **Hint:** the norm map is \(N(a + b\sqrt{d}) = a^2 - db^2 \) and it is multiplicative. Convince yourself that \(N(a + b\sqrt{d}) = \pm 1 \) and then find one solution to the Diophantine equation you obtained.

Exercise 2. Suppose that you have found a unit \(a + b\sqrt{d} \) for \(d = 2 \) or \(5 \). Prove that for any positive integer \(n \) the number \((a + b\sqrt{d})^n \) is also a unit. Prove that there are infinitely many units.
Rings With Infinitely Many Units

- (Special case of) **Dirichlet’s Unit Theorem.** As it turns out, in \(\mathbb{Z}[\sqrt{d}] \) and \(\mathbb{Z}\left[\frac{1+\sqrt{d}}{2}\right] \) there always exists **exactly one** unit \(x_0 + y_0\sqrt{d} > 1 \) such that any other unit has the form \((x_0 + y_0\sqrt{d})^n\), where \(n \) is a (possibly negative) integer. It is called the **fundamental unit**.

- Here are some examples of fundamental units:

\[
\begin{align*}
\mathbb{Z}[\sqrt{2}] & : 1 + \sqrt{2} \\
\mathbb{Z}[\sqrt{3}] & : 2 + \sqrt{3} \\
\mathbb{Z}\left[\frac{1+\sqrt{5}}{2}\right] & : \frac{1+\sqrt{5}}{2} \\
\mathbb{Z}[\sqrt{31}] & : 1520 + 273\sqrt{31} \\
\mathbb{Z}[\sqrt{94}] & : 2143295 + 221064\sqrt{94}
\end{align*}
\]

- The fundamental unit \(x_0 + y_0\sqrt{1621} \) of \(\mathbb{Z}[\sqrt{1621}] \) is ridiculously big (\(x_0 \) has 76 decimal digits).
Pell’s Equation

- An equation of the form $x^2 - dy^2 = \pm 1$ where $d > 0$ is not a perfect square is called a **Pell’s equation**.
- Around 1766 – 1769 Joseph-Louis Lagrange proved that this equation always has a solution $(x, y) \neq (\pm 1, 0)$ for any integer d that is not a perfect square.
- **Archimedes’ cattle problem.** In 1773, a German philosopher Gotthold Lessing discovered a Greek manuscript containing a poem with the mathematical problem, that gets reduced to the Pell’s equation

 $$x^2 - 609 \cdot 7766 \cdot v^2 = 1.$$

- This problem is attributed to Archimedes and it asks to compute the number of cattle in a herd of the sun given relations between different kinds of bulls and cows in a herd.
- The exact solution was first computed in 1965 at the University of Waterloo by Hugh Williams, Gus German and Robert Zarnke.
Pell’s Equation

Figure: Hugh Williams, Gus German and Robert Zarnke
Next Time

- We will see that it is possible to fix the failure of Unique Factorization.
- We will learn how algebraic number theory allowed Ernst Kummer to make a big breakthrough towards the resolution of Fermat’s Last Theorem.
- We will learn about algebraic numbers and see that not all numbers can be written in such nice forms as $\sqrt{2}$ or $\frac{1+\sqrt{-3}}{2}$.
THANK YOU FOR COMING!