Exercise 1.
(1) If a, b are coprime positive integers and $ab = c^2$ for some integer c, show that $a = t^2$ and $b = s^2$ for some integers t and s.
(2) Show that for any integer x the numbers x and $x^2 + 1$ are coprime.
(3) Numbers $0, 1, 2^2 = 4, 3^2 = 9, \ldots$ are called squares. Show that the distance between k^2 and $(k + 1)^2$ is equal to $2k + 1$. When is this distance equal to 1?
(4) Use the previous results to conclude that the equation $y^2 = x^3 + x$ has no solutions in positive integers x and y.

1. Gaussian Integers

Exercise 2. Let $a + bi, c + di$ be Gaussian integers. Prove the following:
(1) Every rational integer is a Gaussian integer;
(2) $(a + bi) + (c + di)$ is a Gaussian integer;
(3) $(a + bi) - (c + di)$ is a Gaussian integer;
(4) $(a + bi)(c + di)$ is a Gaussian integer.

Exercise 3. Prove that $1 + 2i$ divides 5 but does not divide 7.

Exercise 4. Let α, β be Gaussian integers. Prove the following:
(1) $N(\alpha\beta) = N(\alpha)N(\beta)$; Show that $N(\alpha) \geq 0$ for all Gaussian integers and $N(\alpha) = 0$ if and only if $\alpha = 0$. Thus the norm is non-negative.

Exercise 5.
(1) Show that if α is a Gaussian unit then $N(\alpha) = 1$.
(2) Prove that the units of $\mathbb{Z}[i]$ are 1, -1, i and $-i$.

Exercise 6. Find Gaussian primes among the integers 2, 3, 5, 7.
2. Sums of Two Squares

In this exercise we will investigate which numbers \(n \) can be written as the sum of two squares. That is, \(n = a^2 + b^2 \) for some integers \(a \) and \(b \).

Exercise. Compute first 10 numbers that are sums of two squares.

Step 1. Let \(m \) and \(n \) be positive integers that are sums of two squares. Prove that \(mn \) is also a sum of two squares. **Hint:** use the fact that the norm \(N \) is multiplicative.

Step 2. Prove that every integer that is a sum of two squares is of the form \(4k, 4k + 1 \) or \(4k + 2 \) for some integer \(k \). Conclude that every rational prime \(p \) of the form \(4k + 3 \) is not a sum of two squares, and so it is a Gaussian prime.

Step 3. Let \(p \) be a rational prime of the form \(4k + 1 \). In this exercise, we will use the fact that there always exists an integer \(x \) such that \(p \mid x^2 + 1 \).

1. Show that \(p \) does not divide neither \(x + i \) nor \(x - i \). Conclude that it is not prime, so \(p = \alpha \beta \) for some Gaussian integers \(\alpha, \beta \).
2. Prove that neither \(\alpha \) nor \(\beta \) are units. Conclude that \(N(\alpha) = p \), so \(p \) is a sum of two squares.

Step 4. Show that 2 is a sum of 2 squares. Conclude that every number of the form

\[
2^t p_1^{e_1} \cdots p_k^{e_k} q_1^{2f_1} \cdots q_l^{2f_l}
\]

is a sum of two squares, where \(p_i \) are primes of the form \(4k + 1 \) and \(q_i \) are primes of the form \(4k + 3 \).