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Polar Coordinates

The Cartesian Coordinate System is the most familiar system that we use to represent points in
the plane. Today, we will learn about a different system, the Polar Coordinate System. In a few
weeks, we will learn how to graph interesting curves like the two above. Equations for graphs like
these are often very complicated using Cartesian coordinates, but can be much simpler using polar
coordinates.

We will be using radians in this activity. If you have never measured angles in radians before, then
check out this lesson from the CEMC courseware.

Warm-up: Radians

When we first learn about angles, we write their measures (that is, their “sizes”) using degrees. For
example, a complete circular angle measures 360◦, a straight angle measures 180◦, and a right angle
measures 90◦. Angles like 30◦, 45◦, and 60◦ are also familiar.

A second way of measuring angles is in radians. In this case, a complete circular angle measures 2π.
What connection can you see between 2π and the unit circle? The circumference of the unit circle is

2π. Radians are defined so that an angle of measure x◦ measures
πx

180
radians.

The value
πx

180
is actually the arc length of a sector of the unit circle defined by the angle with measure

x◦ so radians are in some sense measuring the arc length corresponding to the angle, which is one
way of measuring the angle itself.

Questions:

(a) Convert the angles with the following measures from degrees to radians: 180◦, 90◦, 60◦, 45◦,
30◦, 48◦.

(b) Convert the angles with the following measures from radians to degrees:
π

5
,

5π

6
,

3π

2
,

7π

4
.

(c) Complete the chart below. The angles are given in radians.

θ 0 π
6

π
4

π
3

π
2

sin θ
cos θ

https://courseware.cemc.uwaterloo.ca/8/36/assignments/91/0


Polar Coordinates

In Cartesian coordinates, a point P in the plane is given as P (x, y), where x and y are real numbers.

Remind yourself of exactly what the values x and y represent here.

The point P can also be described using polar coordinates (r, θ). Here, r is the distance between the
point P and the origin O. Also, θ is the angle (in radians) measured from the x-axis. (Like when we
look at the unit circle, positive angles are measured counter-clockwise from the positive x-axis.) In
polar coordinates, we call the positive x-axis the polar axis.

O

P (r, θ)

x

y

r

θ

Suppose that P is in the first quadrant. Consider the
right-angled triangle formed by the point P , the origin
O, and the vertical line from P to the x-axis. This
triangle has base x, height y and hypotenuse r.

By the Pythagorean Theorem, r2 = x2 + y2.

We have cos θ =
x

r
and sin θ =

y

r
from the definitions

of sine and cosine in right-angled triangles.

Manipulating these equations, we obtain the three equations below that help us to relate the polar
and Cartesian coordinates of the point P .

x = r cos θ y = r sin θ r =
√
x2 + y2

Example

Consider the Cartesian point Q(1, 1). Since x = 1 and y = 1, then r =
√

12 + 12 =
√

2. Also, the
line segment joining the origin O to Q makes an angle of π

4
with the positive x-axis. This means that

polar coordinates for Q are (
√

2, π
4
).

Try drawing a picture and clearly labelling x, y, r, and θ. Make sure you understand why these values
of r and θ are correct.

Question 1

Plot the points with Cartesian coordinates A(8
√

3, 8) and B(5
4
, 5
√
3

4
) and then convert them to polar

coordinates.

Question 2

Plot the points with Cartesian coordinates C(8,−8
√

3) and D(−5
√
3

4
,−5

4
) and then convert them to

polar coordinates.

Example

Consider the point with polar coordinates
(
4, 3π

2

)
. Since r = 4 and θ = 3π

2
, we have that

x = r cos θ = 4 cos

(
3π

2

)
= 4(0) = 0

y = r sin θ = 4 sin

(
3π

2

)
= 4(−1) = −4

This means that the Cartesian coordinates of the point are (0,−4).

Can you see why these must be the correct Cartesian coordinates by visualizing the point?



Note: Before completing the following activity, check this introductory video to complement the
previous reading.

Activity
Consider the polar coordinates (r, θ), with 0 ≤ θ < 2π, of each of the 12 points plotted in the
graph below. Exactly one of these points satisfies each of the following properties, and each
point is labelled with a different letter. Determine which point best matches each property and
use this information to complete the phrase below.

1. This point has polar coordinates (4, 0).

2. This point has polar coordinates (4, 3π
2

).

3. This point has polar coordinates (4, 3π
4

).

4. This point could also be described using
polar coordinates (2, 11π

4
).

5. This point’s first coordinate, r, satisfies r2 =2.

6. This point has the largest first coordinate, r,
out of all of the points.

7. This point has the smallest positive second
coordinate, θ, out of all of the points.

8. This point’s second coordinate, θ, satisfies
2 sin θ = 1.

9. This point’s second coordinate, θ, satisfies
cos θ = −1.

10. This point’s first coordinate, r, satisfies r = 3.

11. This point’s coordinates satisfy r = sin θ.
Remember that −1 ≤ sin θ ≤ 1.

12. This point’s coordinates satisfy r = θ.

In a few weeks we will learn how to...

!
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Can we plot points with polar coordinates with negative values of r?

We can extend the definition of polar coordinates to include negative values of r.
How do we interpret the polar coordinates (1, π

2
) versus the polar coordinates (−1, π

2
)?

• The fact that they both have the same angle π
2

tells us that they both describe points that lie
on the line passing through the origin and making an angle of π

2
with the positive x-axis.

• The magnitude of the radii both being 1 tell us that they both describe points that are 1 unit
from the origin.

• The different signs tell us that they describe points on opposite sides of the origin. The negative
means that we move in the direction opposite to the direction defined the ray θ = π

2
. This means

moving in the direction defined by the ray θ = 3π
2

.

https://www.youtube.com/watch?v=tNqmD9MTu0k&feature=youtu.be&ab_channel=CEMC


So the polar coordinates (−1, π
2
) are equivalent to the polar coordinates (1, 3π

2
) and they both repre-

sent the Cartesian point (0,−1). Indeed if we use the usual formulas to convert from polar coordinates
to Cartesian coordinates, we get the following:

Polar coordinates (−1, π
2
)

x = r cos θ = (−1) cos
(
π
2

)
= 0

y = r sin θ = (−1) sin
(
π
2

)
= −1

Polar coordinates (1, 3π
2

)

x = r cos θ = 1 cos
(
3π
2

)
= 0

y = r sin θ = 1 sin
(
3π
2

)
= −1

Question 3

Plot the point with Polar coordinates P (−1, 11π
6

) and then convert it to Cartesian coordinates.


