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Introduction to Vectors

Vectors and Scalars

What do you think about when you hear the word “size”? Most likely it’s about how large

or how small an object is. The word size seems to imply how big something is. So which

would you say is “bigger”: 4 km or 18 km? 15 seconds or 15 minutes? The speed of a bike or

the speed of a train? All of these things have a property that we call “size” or “magnitude”.

That is, they are quantifiable: we can assign a number to them and compare that quantity

to other quantifiable things. 15 minutes is longer or “bigger” than 15 seconds, in a sense.

Let’s try something different: which quantity is “bigger”; 5 m to the left or 5 m to the right?

Trick question! They both have the same size, but they are different − they have different

directions.

A vector is a quantity with both a size and a direction, whereas a scalar is a quantity with

only a size. For example, 5 m would be a scalar quantity because it has a size associated

with it − 5 m is 5 m long. On the other hand, 5 m to the right is a vector quantity because

there is both a size and a direction associated with it.

Example: Describe the following quantities using vector or scalar values as appropriate.

1. I need to travel to a bookstore that is East of my house and about a kilometer away.

2. Cindy is driving North, at 50 km/h.

3. Frank waited for an hour before his friend showed up.

4. Alice is hiking through a forest. She’s going directly South-East.

5. The ball fell at 10 m/s.

Video Solution: https:// youtu.be/ 89REZZSX3zY
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https://youtu.be/89REZZSX3zY


Drawing Vectors

Arrows also have a size and direction like vectors do. This is what we’ll use to draw vectors:

• Size is represented by how long the arrow is.

• Direction is represented by which way the arrow is pointing.

Example: Give the size and direction of each vector below. In this case, each square

represents 1 unit of measurement (e.g. the bolded square represents 1 unit of measurement).

Represent the directions as North, East, South, or West.

Video Solution: https:// youtu.be/NcmbbCxkIGQ

Vector Operations: Addition

We can call the initial point of an arrow the tail of a vector, and the arrow head as the head

of a vector.

We can represent the red vector as ~v, and the blue vector as ~u. We draw a little arrow on

top of the letters to show that they represent vectors.

Adding vectors together is as simple as following the arrows. If I want to add two vectors

together, then I need to follow the first vector and then follow the second vector. This means
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https://youtu.be/NcmbbCxkIGQ


we start at the tail of the first vector, follow the vector to its head, then follow from the tail

of the of the second vector, and then follow the vector to its head. Essentially, we attach

the head of the first vector to the tail of the second vector. Adding the above vectors gives:

The result looks like this:

That is, the sum of two vectors is a vector. In this case, the green vector is equal to ~v + ~u.

From the starting point (the tail of ~v), the total “shift” to the end point (the head of ~u),

is represented in green. This vector also has a direction and size. For example, ~v + ~u could

have direction North-East and size equal to 6 cm.

Note: We loosely use the word “shift” since vectors can apply to a variety of things like

velocity, displacement, acceleration, etc.

Remark: Equal vectors are vectors that have the same size and the same direction.

Example: Is ~v + ~u equal to ~u + ~v?

Video Solution: https:// youtu.be/ ZcMz4X1S-J8

Vector Operations: Subtraction

To subtract vectors we use a similar strategy. We follow

vector ~v, then go backwards along vector ~u, by turning

it around. We switch the direction of the vector be-

ing subtracted. If we have vector ~u, then switching its

direction gives −~u.
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https://youtu.be/ZcMz4X1S-J8


Thus to solve ~v − ~u, we switch the direction of ~u and

then attach the head of ~v to the tail of ~u. This gives:

2D Cartesian Coordinate System

Let’s review a familiar coordinate system: the 2D Cartesian coordinate system.

You can see that the 2D cartesian coordinate system uses 2 variables to describe any location

in the 2D space. This coordinate system is defined by two axes, a horizontal axis labeled x,

and a vertical axis labeled y. Coordinate points are represented as (x, y) where x is the x-

coordinate and y is the y-coordinate. We have the following coordinate points above: (2, 3),

(−3, 1), (0, 0), (−1.5,−2.5).
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Vectors and the 2D Coordinate System

We know that in a 2D coordinate system the coordinate (x, y) tells us two things: how far

to go and where. For example, the coordinate (2, 3) tell us to go 2 units along the x-axis,

and 3 units along the y-axis. This is perfect for visualizing vectors! Starting from the tail of

a vector, we want to know how far away the head of a vector is in the horizontal direction,

and how far away it is in the vertical direction. A coordinate gives us size and direction

so we can easily draw and describe vectors.

In a 2D Coordinate system we can represent the vector ~v, as

~v = (x, y)

The (x, y) coordinate point represents the direction of a vector. Starting at the tail

of a vector, the horizontal distance to the head of the vector is the x-value, and the

vertical distance to the head of the vector is the y-value.

A vector drawn in standard form has its tail located at coordinate point (0, 0). This point is

called the origin; it’s the starting point from which all other coordinate points are referenced

from.

Example: Draw the following vectors in standard form: ~u = (2, 5), ~v = (1, 1), ~w = (−4, 2),

and ~z = (−2,−4).

Video Solution: https:// youtu.be/ 5fH jyacFkE

Example: Consider the following two vectors. Are they

equivalent?

Solution: Yes! − Can you think of why? Remember,

vectors have size and direction. In this case, both vec-

tors are pointing in the exact same direction and they

have equal size (we can see this visually as the length of

the arrows). Here ~v is simply drawn in standard form but

it is still equivalent to ~u, where ~v = (2, 2) = ~u.
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https://youtu.be/5fH_jyacFkE


Vector Size from a Graph

As we mentioned earlier, a vector is defined by both it’s size and it’s direction. Using a

graph, how can we calculate the size of a vector? Remember that the size of a vector is

represented by the length of the arrow. In other words, it’s the distance between the tail

and the head of the vector. Consider the following vector, ~v:

Here the size of ~v is the length of the arrow in blue. We can represent the vertical distance

from the tail of ~v to the head of ~v in red, and the horizontal distance from the tail of ~v

to the head of ~v in green.

Question: How many units is the horizontal and vertical distance of ~v?

Answer: In this case, the horizontal distance is 2 units and the vertical distance is 3 units.

Can you see why?

We can calculate the size of a vector ~v = (x, y), using the following equation:

‖~v‖ =
√

(x)2 + (y)2

In this case, x represents the horizontal distance of the vector ~v and y represents

the vertical distance of the vector ~v.

We use two vertical lines on both sides of a vector to represent its size.
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Example: Calculate the size of the following vectors ~u, ~v, and ~w.

Video Solution: https:// youtu.be/ 9d7RjxwBy5c

Note: This formula comes from a special relationship known as the Pythagorean Theo-

rem.

Use the following GeoGebra activity to visualize and create your own vectors: https://www.

geogebra.org/m/f6faacjg
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