Intermediate Math Circles
 Circles and Area Problem Set Solutions

Exercise 1 Solution

We will find the area of the shaded region by subtracting the areas of the smaller circles from the area of the larger circle.
Let R be the radius of the larger circle and r be the radii of the smaller circles.

Since the diameter of each of the smaller circles is the radius of the larger circle, we have $R=\frac{12}{2}=6$ and $r=\frac{6}{2}=3$.
$A_{\text {larger }}=\pi R^{2}=\pi(6)^{2}=36 \pi$
$A_{\text {smaller }}=\pi r^{2}=\pi(3)^{2}=9 \pi$

Therefore, the area of the shaded region is $36 \pi-2(9 \pi)=18 \pi$.

Exercise 2 Solution

To find the area of the shaded region, we will find the area of the sector of the circle with arc $A B$ and subtract the area of $\triangle A O B$. Note that the triangle is a right isosceles triangle and therefore, the base and height are both equal to the radius which is 2 .
$A_{\text {wholeCircle }}=\pi r^{2}=\pi(2)^{2}=4 \pi$
$A_{\text {sector }}=\left(\frac{90}{360}\right) 4 \pi=\pi$
$A_{\text {triangle }}=\frac{b h}{2}=\frac{(2)(2)}{2}=2$
Therefore, the area of the shaded region is $\pi-2$.

Exercise 3 Solution

There are a few different ways to approach this problem. We will outline two approaches. Each of these approaches relies upon the following facts that we will not prove:

1) The two diagonals of the inscribed square intersect at the centre, O, of the circle.
2) The two diagonals of the inscribed square bisect each other and meet at right angles.

Approach 1: Recognize that the shaded region in this problem consists of four identical shaded regions, each having an area that can be calculated by subtracting the area of a triangle from the area of a sector of a the circle (as we saw in Exercise 2).
The final calculation is as follows: Area $=4\left(\frac{\pi(5)^{2}}{4}-\frac{5^{2}}{2}\right)=25 \pi-50$.
Approach 2: Recognize that the area of the shaded region is the area of the circle minus the area of the inscribed square.
The area of the circle $\pi r^{2}=\pi(5)^{2}=25 \pi$.
Let s be the side length of the square as shown in the figures below.
Note that $\triangle B O C$ is a right isosceles triangle. Therefore, its base and height are both equal to the radius which is $r=5$. We can calculate the value of s^{2} as follows:
Using the Pythagorean Theorem on $\triangle B O C$, we get

$$
\begin{aligned}
& s^{2}=r^{2}+r^{2} \\
& s^{2}=(5)^{2}+(5)^{2} \\
& s^{2}=25+25 \\
& s^{2}=50
\end{aligned}
$$

Alternatively, using the Pythagorean Theorem on $\triangle B A D$, with diameter $d=10$, we get

$$
\begin{aligned}
d^{2} & =s^{2}+s^{2} \\
10^{2} & =2 s^{2} \\
100 & =2 s^{2} \\
50 & =s^{2}
\end{aligned}
$$

Each of these calculations tells us that the area of the square is $s^{2}=50$.
Therefore, the area of the shaded region is $25 \pi-50$.

Exercise 4 Solution

Solution 1

Since $O A B C$ is a rhombus it must also be a parallelogram. Therefore $\angle A O C+\angle O A B=180^{\circ}$. Since $\angle A O C=120^{\circ}$ then $\angle O A B=60^{\circ}$.
Similarly, we can show that $\angle O C B=60^{\circ}$.
Construct line segment $O B$.
We will now show $\triangle A O B$ is equilateral.

Note that the $\triangle A O B$ is an isosceles triangle with sides $A O=A B$ Therefore, $\angle A O B=\angle O B A$. We also know that the sum of the angles in a triangle is 180°. Therefore:

$$
\begin{aligned}
\angle A O B+\angle O B A+\angle O A B & =180 \\
\angle A O B+\angle A O B+60 & =180 \\
2 \angle A O B & =120 \\
\angle A O B & =60
\end{aligned}
$$

Therefore, $\angle A O B=\angle O B A=\angle O A B=60^{\circ}$ and $\triangle A O B$ is an equilateral triangle with a side length of 10. Similarly, $\triangle B O C$ is an equilateral triangle with a side length of 10.
(Note: For this specific example, there is another way to show that $\triangle A O B$ is an equilateral triangle. We know that $O B$ is a radius but so is $O A$. Therefore $O B=O A$. Also since they are sides of a rhombus then $O A=A B$. Therefore, $O B=O A=A B$ and hence, $\triangle A O B$ is an equilateral triangle with side length of 10.)

We will look at the shaded region on sector $A O B$. To find the area of this shaded region, we will take the area of the sector and subtract the area of $\triangle A O B$.
$A_{\text {wholeCircle }}=\pi r^{2}=\pi(10)^{2}=100 \pi$
$A_{\text {sector }}=\left(\frac{60}{360}\right) 100 \pi=\frac{50 \pi}{3}$
$A_{\text {equilateraltriangle }}$
$=\frac{\sqrt{3} s^{2}}{4}=\frac{\sqrt{3}(10)^{2}}{4}=25 \sqrt{3}$
Therefore, the area of the shaded region is $\frac{50 \pi}{3}-25 \sqrt{3}$.
similarly, the area of the shady region on sector $B O C$ is also $\frac{50 \pi}{3}-25 \sqrt{3}$.
Total area of the shaded region is $2\left(\frac{50 \pi}{3}-25 \sqrt{3}\right)=\frac{100 \pi}{3}-50 \sqrt{3}$.

Solution 2

We are going to use the following properties of a rhombus: the diagonals of a rhombus bisects each other and meet at a right angle.
To start this solution we will draw in the two diagonals and label the appropriate equal lengths and the right angle. This is shown to the right.

In $\triangle A B D$, we know that $D B=\frac{1}{2} O B$. Since $O B$ is a radius, $D B=\frac{1}{2} O B=\frac{1}{2}(10)=5$. We also know that $A B=10$ and $\angle A D B=90^{\circ}$.

Therefore, using the Pythagorean Theorem,

$$
\begin{aligned}
A D^{2} & =A B^{2}-B D^{2} \\
& =(10)^{2}-(5)^{2} \\
& =100-25 \\
A D^{2} & =75 \\
A D & =\sqrt{75}, \text { since } A D>0 .
\end{aligned}
$$

Therefore, the area of $\triangle A B D=\frac{b h}{2}=\frac{5 \sqrt{75}}{2}$.
Similarly, we can show that the areas of $\triangle A O D, \triangle C O D$ and $\triangle C B D$ are each equal to $\frac{5 \sqrt{75}}{2}$. Since the area of the rhombus equals the sum of the 4 triangle, the area of the rhombus is $4\left(\frac{5 \sqrt{75}}{2}\right)=10 \sqrt{75}$.

Now to find the area of the shaded region we need to find the area of the sector and subtract the area of the rhombus.
$A_{\text {wholeCircle }}=\pi r^{2}=\pi(10)^{2}=100 \pi$
$A_{\text {sector }}=\left(\frac{120}{360}\right) 100 \pi=\frac{100 \pi}{3}$
$A_{\text {rhombus }}=10 \sqrt{75}$

Therefore, the area of the shaded region is $\frac{100 \pi}{3}-10 \sqrt{75}$.

NOTE:

This answer looks different than Solution 1. There is a way to simplify the second solution.
We can rewrite $\sqrt{75}$ as $\sqrt{25} \sqrt{3}=5 \sqrt{3}$.
Now the area in Solution 2 becomes $\frac{100 \pi}{3}-10 \sqrt{75}=\frac{100 \pi}{3}-10(5 \sqrt{3})=\frac{100 \pi}{3}-50 \sqrt{3}$.

Exercise 5 Solution

When we separate the two circles we get the following:

Note, when separated, in the circle centred at O, that the $\triangle A O B$ is an isosceles triangle with sides $A O=O B$ and $\angle B O A=60^{\circ}$ Therefore, $\angle O A B=\angle O B A$. Therefore, from previous examples we know that $\triangle A O B$ is equilateral and $A B=\sqrt{2}$.

Now, in the circle centred at C, we know $A B=\sqrt{2}$ and $\triangle A C B$ is a right isosceles triangle.

Using the Pythagorean Theorem on $\triangle A C B$, we get

$$
\begin{aligned}
(\sqrt{2})^{2} & =r^{2}+r^{2} \\
2 & =2 r^{2} \\
1 & =r^{2} \\
r & =1, \text { since } r>1
\end{aligned}
$$

To get the total shaded area, we now need to find the area of two shaded regions.

1. The first is the area of the shaded region in the circle centred at O.

$$
\begin{aligned}
& A_{w h o l e C i r c l e}=\pi r^{2}=\pi(\sqrt{2})^{2}=2 \pi \\
& A_{\text {sector }}=\left(\frac{60}{360}\right) 2 \pi=\frac{\pi}{3} \\
& A_{\text {equilateraltriangle }} \\
& =\frac{\sqrt{3} s^{2}}{4}=\frac{\sqrt{3}(\sqrt{2})^{2}}{4}=\frac{\sqrt{3}}{2}
\end{aligned}
$$

Therefore, the area of this shaded region is $\frac{\pi}{3}-\frac{\sqrt{3}}{2}$.
2. The second area is the area of the shaded region in the circle centred at C.

$$
\begin{aligned}
& A_{\text {wholeCircle }}=\pi r^{2}=\pi(\sqrt{1} 2)^{2}=\pi \\
& A_{\text {sector }}=\left(\frac{90}{360}\right) \pi=\frac{\pi}{4} \\
& A_{\text {triangle }}=\frac{b h}{2}=\frac{(1)(1)}{2}=\frac{1}{2}
\end{aligned}
$$

Therefore, the area of this shaded region is $\frac{\pi}{4}-\frac{1}{2}$

Therefore, the total area of the shaded region is

$$
\left(\frac{\pi}{3}-\frac{\sqrt{3}}{2}\right)+\left(\frac{\pi}{4}-\frac{1}{2}\right)=\frac{7 \pi}{12}-\frac{\sqrt{3}}{2}-\frac{1}{2}
$$

