Intermediate Math Circles
 Circles and Area
 Problem Set 2 Solutions

Exercise 6 Solution

Construct the altitude from O to $A B$. Label the foot of the altitude M. We now know that $O M$ is perpendicular to $A B$, $A M=M B$, We also know $\angle A O B=\angle B O M=\frac{120}{2}=60^{\circ}$.

If we take a close look at $\triangle A O M$. We know that $\angle A O M=60^{\circ}$ and $\angle A M O=90^{\circ}$. This means $\angle O A M=30^{\circ}$. We also know that $A M=12$. Label $O M$ as d.

If we look at the process we used to get the formula for the area of an equilateral triangle. We know $\angle A B D=60^{\circ}$. We know that when we created the altitude we. bisected $\angle B A C$. That is, $\angle B A D=30^{\circ}$. We notice in a triangle with angles $30^{\circ}, 60^{\circ}$ and 90°, the side between the 60° and the right angle equals half the length of the hypotenuse.

So in $\triangle A O M$, we know $A O=\frac{12}{2}=6$. Then using the pythagorean theorem, $A M^{2}=12^{2}-6^{2}=144-36=108$.. Since $A M>0$ then $A M=\sqrt{108}$.

We can similarly in $\triangle B O M$, we can show $B O=6$ and $M B=\sqrt{108}$. We can now find the are of $\triangle A O B$. The base is $2 \sqrt{108}$ and the height is 6 . Therefore, the area of the triangle is $\frac{(2 \sqrt{1} 08)(6)}{2}=6 \sqrt{1} 08$.

Now the area of the shaded region equals the area of the sector minus the area of the triangle.

$$
A=\frac{120}{360}\left(12^{2} \pi\right)-6 \sqrt{108}=48 \pi-6 \sqrt{108}
$$

NOTE: We can rewrite $\sqrt{108}$ as $\sqrt{3} 6 \sqrt{3}=6 \sqrt{3}$ and the area becomes

$$
A=48 \pi-6 \sqrt{108}=48 \pi-6(6 \sqrt{3})=48 \pi-36 \sqrt{3}
$$

For the past contest questions, the solutions can be found on our webpage. Each url directs you to the contest solutions but you will need find the specific question.
a) 2020 Cayley \# 16
https://cemc.uwaterloo.ca/contests/past_contests/2020/2020CayleySolution.pdf
b) Pascal 2013 \# 18
https://cemc.uwaterloo.ca/contests/past_contests/2013/2013PascalSolution.pdf
c) 2018 Pascal \# 23
https://cemc.uwaterloo.ca/contests/past_contests/2018/2018PascalSolution.pdf

