Grade 7/8 Math Circles

November 3, 2021

Polygonal Numbers - Problem Set

1. Recall that the $n^{\text {th }}$ triangular number can be found using the formula $\frac{n^{2}+n}{2}$. Compute the $10^{\text {th }}, 17^{\text {th }}$, and the $56^{\text {th }}$ triangular number.
2. Compute the following.
(a) The $6^{\text {th }}$ term of the sequence of hexagonal numbers.
(b) The $9^{\text {th }}$ term of the sequence of octagonal numbers.
(c) The $5^{\text {th }}$ term of the sequence of icosagonal numbers (20 sides).
3. Find a closed-form formula for the $n^{\text {th }}$ term of the sequence of
(a) Tridecagonal numbers (13 sides)
(b) Enneadecagonal numbers (19 sides)
(c) Icositetragonal numbers (24 sides)
4. An oblong number is the number of dots in a rectangular grid with one more row than column. The first four oblong numbers are $2,6,12$, and 20 , as shown below.

What is the $9^{\text {th }}$ oblong number?
5 . An n-gon is an n-sided regular polygon. For example, a 5 -gon is a pentagon.
A diagonal of a polygon is a line segment drawn between any two vertices (corners). For example, a pentagon has 5 diagonals, shown on the image below.

How many diagonals does an n-gon have? (Hint: try sketching out the first few n-gons starting from the triangle and counting the number of diagonals.)
6. Compute the first 10 triangular numbers using the closed-form formula for the sequence of triangular numbers. Then, compute the first 5 hexagonal numbers by using the generalized closed-form formula. What do you notice about these two sequences?
7. Without using a calculator, find the sum of the integers from 1 to 100 . In other words, find

$$
1+2+3+\ldots+100
$$

Use a similar strategy to find

$$
18+19+20+\ldots+77+79
$$

8. Using square numbers, compute the sum of the first 15 consecutive positive even integers. Then, find a general closed-form formula for the sum of the first n consecutive positive even integers.
