Intermediate Math Circles

Rob Gleeson
Geometry II: Circles
rob.gleeson@uwaterloo.ca
cemc.uwaterloo.ca

November 32021

Circle Geometry

What do we know about circles?

Circle Geometry

What do we know about circles?

- Circles are round.

Circle Geometry

What do we know about circles?

- Circles are round.
- Diameter $=2 \times$ radius

Circle Geometry

What do we know about circles?

- Circles are round.
- Diameter $=2 \times$ radius
- $A=\pi r^{2}$

Circle Geometry

What do we know about circles?

- Circles are round.
- Diameter $=2 \times$ radius
- $A=\pi r^{2}$
- $C=\pi d$ or $C=2 \pi r$

Circle Geometry

Definition of a Circle

Circle Geometry

Definition of a Circle

A circle is a set of points in 2-space that are all equidistant from a fixed point. The fixed distance is called the radius and the fixed point is called the centre.

Circle Geometry

Definition of a Chord

Circle Geometry

Definition of a Chord

A chord is a line segment with its endpoints on the circumference of a circle.

Circle Geometry

Definition of a Chord

A chord is a line segment with its endpoints on the circumference of a circle.

Circle Geometry

Definition of a Chord

A chord is a line segment with its endpoints on the circumference of a circle.

Definition of a Diameter

Circle Geometry

Definition of a Chord

A chord is a line segment with its endpoints on the circumference of a circle.

Definition of a Diameter

A diameter is a chord that passes through the centre of a circle.

Circle Geometry

Definition of a Chord

A chord is a line segment with its endpoints on the circumference of a circle.

Definition of a Diameter

A diameter is a chord that passes through the centre of a circle.

Circle Theorems

We are going to take a look at a number of theorems related to circles.
We will give some more definitions, then introduce some of the theorems.

Central and Inscribed Angles

A central angle is an angle whose vertex is at the centre that is subtended by a chord (or an arc) of a circle. In the diagram, O is the centre of the circle and therefore, $\angle A O B$ is a central angle.

Central and Inscribed Angles

A central angle is an angle whose vertex is at the centre that is subtended by a chord (or an arc) of a circle. In the diagram, O is the centre of the circle and therefore, $\angle A O B$ is a central angle.

An inscribed angle is an angle whose vertex is on the circle that is subtended by a chord (or an arc) of a circle. In the diagram, $\angle A C B$ is a central angle.

Circle Theorems

Circle Theorem 1: The central angle subtended by a chord is twice the angle of an inscribed angle subtended by the same chord.

Circle Theorems

Proof of Circle Theorem 1.
There are two cases we need to look at:
Case 1: The centre of the circle is in the inscribed angle.
We will prove this case over the next few pages.

Case 2: The centre of the circle is outside the inscribed angle.
The proof will be asked as a question in the problem set.

Circle Theorems

Proof of Circle Theorem 1.
Case 1: The centre of the circle is in the inscribed angle.
Join C to O .
Therefore, $O A=O C=O B$ since all three are radii of the same circle.
Now $\triangle A O C$ is isosceles and from the Isosceles Triangle Theorem.
Therefore, for some real number a, $\angle O C A=\angle O A C=a$. Therefore,

$\angle C O A=180-2 a$.
Similarly, we can show that for some real number b, $\angle O C B=\angle O B C=b$ and $\angle C O A=180-2 b$.
(We will continue onto the next page.)

Circle Theorems

Now $\angle A O C, \angle B O C$, and $\angle A O B$ form a full rotation. Therefore,

$$
\angle A O C+\angle B O C+\angle A O B=360
$$

$$
(180-2 a)+(180-2 b)+\angle A O B=360
$$

$$
\begin{aligned}
360-2 a-2 b+\angle A O B & =360 \\
\angle A O B & =2 a+2 b \\
\angle A O B & =2(a+b)
\end{aligned}
$$

Now $\angle A C B=\angle A C O+\angle B C O=a+b$.
Therefore, $\angle A O B=2 \angle A C B$.
Therefore, the central angle subtended by a chord is twice the angle of an inscribed angle subtended by the same chord.

Circle Theorems

Note that the Circle Theorem 1 also works if the inscribed angle is obtuse.

Circle Theorems

Circle Theorem 2: Two inscribed angles subtended by the same chord and on the same side of the chord are equal. This means for the following diagram $\angle A C B=\angle A D B$.

We will prove this theorem on the next page.

Circle Theorems

Proof of Circle Theorem 2.
We will draw central angle subtended from chord $A B$. We will let $\angle A O B=2 x$.

Now, we know $\angle A C B$ is an inscribed angle subtended from the chord $A B$ and $\angle A O B$ is the central angle subtended
 from chord $A B$.
From Circle Theorem 1, $\angle A C B=\frac{1}{2} \angle A O B=\frac{1}{2}(2 x)=x$.
Similarly, we can show that $\angle A D B=x$.
Therefore, $\angle A C B=\angle A D B=x$.
Therefore, two inscribed angles subtended by the same chord are equal.

Circle Theorems Exercises

For each question, find the value of the unknowns. Justify your answers.

Solutions are given on the next page.

Circle Theorems Exercises Solutions

a) Since $B C$ is a chord, $\angle B A C$ is an inscribed angle and $\angle B D C$ is a central angle. By Circle Theorem 1, $\angle B A C=\frac{1}{2} \angle B D C=43$. Therefore $x=43^{\circ}$.
b) Since $H J$ is a chord, $\angle H E J$ and $\angle H G J$ are inscribed angles. By Circle Theorem 2, $\angle H E J=\angle H G J=40$. Therefore, $c=40^{\circ}$.
c) Since $K M$ is a chord, $\angle K N M$ is an inscribed angle and reflex angle $K L M$ is the associated central angle. By Circle Theorem 1, $\angle K L M=2 \angle K N M=210$. Now $210+y=360$ or $y=150$.

Circle Theorems

Circle Theorem 3: An inscribed angle subtended by a diameter is a right angle. In the diagram $A B$ is a diameter and, therefore, $\angle A C B=90^{\circ}$.

We will prove this on the next page.

Circle Theorems

Proof of Circle Theorem 3:
Central $\angle A O B=180^{\circ}$ is subtended by $A B$.
$\angle A C B$ is an inscribed angle subtended by $A B$.
By Circle Theorem 1,
$\angle A C B=\frac{1}{2} \angle A O B=\frac{1}{2}\left(180^{\circ}\right)=90^{\circ}$.

Therefore, an inscribed angle subtended by a diameter is a right angle.

Cyclic Quadrilaterals

A quadrilateral that has all its vertices lying on the same circle is called a cyclic quadrilateral. In our diagram, $A B C D$ is a cyclic quadrilateral.

Another Circle Theorem

Circle Theorem 4: The opposite angles of a cyclic quadrilateral are supplementary. In the diagram, $x+y=180^{\circ}$

The proof is on the next page.

Another Circle Theorem

Proof of Circle Theorem 4:

Construct radii $B O, D O$ and chord $B D$. $\angle B A D$ is an inscribed angle of chord $B D$. The associated central angle is the smaller angle $\angle B O D$.
Therefore, $\angle B O D=2 \angle B A D=2 x$.

Similarly, we can show reflex angle $\angle B O D=2 y$.
Therefore, $2 x+2 y=360^{\circ}$. and $x+y=180^{\circ}$
Therefore, the opposite angles of a cyclic quadrilateral are supplementary.

Circle Theorems Exercises 2

For each question, find the value of the unknowns. Justify your answers.

Solutions are given on the next page.

Circle Theorems Exercises Solutions

a) Since $A B$ is a diameter, $\angle A B C$ is an inscribed angle and therefore, by Circle Theorem $3 \angle A B C=90^{\circ}$. Now all the angles in a triangle, therefore, $\angle B A C+\angle A B C+\angle A C B=180$. or $\angle B A C+90+25=180$ and it follows $\angle B A C=65$ Therefore $x=65^{\circ}$.
b) Since $E H J$ is a straight line, then $\angle J H G+\angle E H G=180$ or $105+\angle E H G=180$ and it follows $\angle E H G=75$. Now, $E F G H$ is a cyclic quadrilateral. From Circle Theorem 4, $\angle E F G+\angle E H G=180$ or $\angle E F G+75=180$ and it follows that $\angle E F G=105$. Therefore, $y=105^{\circ}$.

Problem Set

You may now work on Problem Set 2.

