Intermediate Math Circles Wednesday Nov 32021 Geometry II: Angles and Circles

What do we know about circles?

- \qquad
- \qquad
- \qquad
- Definition: A circle is
\qquad
\qquad
\qquad
- Definition: A chord is
- Definition: A diameter is

We are going to take a look at a number of theorems related to circles.

We will give some more definitions, then introduce some of the theorems.
Definition: A central angle is

Definition: An inscribed angle is
\qquad
\qquad
\qquad

Circle Theorem 1: The central angle subtended by a chord is twice the angle of an inscribed angle subtended by the same chord.

Proof of Circle Theorem 1.
There are two cases we need to look at:

Case 1: The centre of the circle is in the inscribed angle. We will prove this case.

Case 2: The centre of the circle is outside the inscribed angle.
The proof will be asked as a question in the problem set.

Proof of Circle Theorem 1.
Case 1: The centre of the circle is in the inscribed angle.

Join C to O.

Circle Theorem 2: Two inscribed angles subtended by the same chord and on the same side of the chord are equal. This means for the following diagram $\angle A C B=\angle A D B$.

Proof of Circle Theorem 2
We will draw central angle subtended from chord $A B$. We will let $\angle A O B=2 x$.

Exercises:

For each question, find the value of the unknowns. Justify your answers.

Circle Theorem 3: An inscribed angle subtended by a diameter is a right angle. In the diagram $A B$ is a diameter and, therefore, $\angle A C B=90^{\circ}$.

Proof of Circle Theorem 3:

Cyclic Quadrilaterals:
A quadrilateral that has all its vertices lying on the same circle is called a cyclic quadrilateral. In our diagram, $A B C D$ is a cyclic quadrilateral.

Circle Theorem 4: The opposite angles of a cyclic quadrilateral are supplementary. In the diagram, $x+y=180^{\circ}$

Proof of Circle Theorem 4:
Construct radii $B O, D O$ and chord $B D$.

Exercises 2:
For each question, find the value of the unknowns. Justify your answers.

