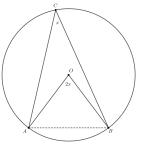
Intermediate Math Circles Wednesday Nov 3 2021 Geometry II: Angles and Circles

What do we know about circles?

•			
•			
• • Definition: <u>A</u>	<i>circle</i> is		
• Definition: <u>A</u>	<i>chord</i> is		
• Definition: $\underline{\mathbf{A}}$	diameter is	 	

WWW.CEMC.UWATERLOO.CA | The CENTRE for EDUCATION in MATHEMATICS and COMPUTING

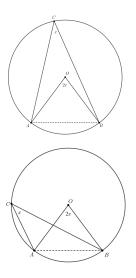

We are going to take a look at a number of theorems related to circles.

We will give some more definitions, then introduce some of the theorems.

Definition: A *central angle* is

Definition: An *inscribed angle* is

Circle Theorem 1: The central angle subtended by a chord is twice the angle of an inscribed angle subtended by the same chord.

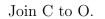


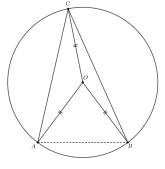
Proof of Circle Theorem 1. There are two cases we need to look at:

Case 1: The centre of the circle is in the inscribed angle. We will prove this case.

Case 2: The centre of the circle is outside the inscribed angle.

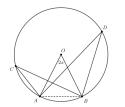
The proof will be asked as a question in the problem set.




0

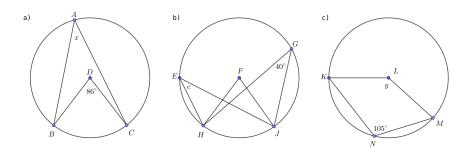
Proof of Circle Theorem 1.

Case 1: The centre of the circle is in the inscribed angle.



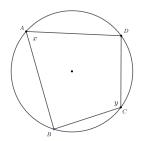
Circle Theorem 2: Two inscribed angles subtended by the same chord and on the same side of the chord are equal. This means for the following diagram $\angle ACB = \angle ADB$.

Proof of Circle Theorem 2


We will draw central angle subtended from chord AB. We will let $\angle AOB = 2x$.

Exercises:

For each question, find the value of the unknowns. Justify your answers.

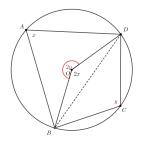


Circle Theorem 3: An inscribed angle subtended by a diameter is a right angle. In the diagram AB is a diameter and, therefore, $\angle ACB = 90^{\circ}$.

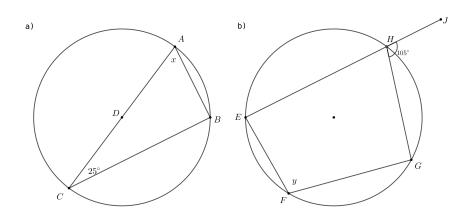
Proof of Circle Theorem 3:

Cyclic Quadrilaterals:

A quadrilateral that has all its vertices lying on the same circle is called a *cyclic quadrilateral*. In our diagram, ABCD is a cyclic quadrilateral.



Circle Theorem 4: The opposite angles of a cyclic quadrilateral are supplementary. In the diagram, $x+y=180^\circ$


Proof of Circle Theorem 4:

Construct radii BO, DO and chord BD.

Exercises 2:

For each question, find the value of the unknowns. Justify your answers.

