Intermediate Math Circles Wednesday November 32021 Problem Set 2

1.) A, B, C and D are points on a circle. $A C$ meets $B D$ at E. Find the measure of $\angle A B E$.

2.) A, B, C and D are points on a circle with O at its centre. $C O A$ is a straight line. Find the measure of $\angle B C D$.

3.) A, B, C, D and E are points on a circle. Find the measure of $\angle D E A$.

4.) A, B, C and D are points on a circle with O at its centre. $D O B$ is a straight line. Find the measure of $\angle O C D$.
5.) A, B, C and D are points on a circle with O at its the centre. $O B \| D C$. Find the measure of $\angle B A D$.

6.) A, B, C and D are points on a circle with O at its centre. Find the measure of $\angle O C B$.

7.) A, B, C, D and E are points on a circle with O at its centre. $B A \| C D . B D$ is extended to G and $C D$ is extended to F. If $\angle F D G=40^{\circ}$, find the measure of $\angle A C D$.

8.) A, B, C and D are points on a circle. $A B$ and $D C$ are extended to meet at E. If $\angle A E D=33^{\circ}$ and $\angle B D C=15^{\circ}$, find the measure of $\angle A X B$.

9.) A, B, C and D are points on a circle with O at its centre. Given $\angle A O C=4 x+10$ and $\angle A B C=3 x-10$, find the measure of $\angle A D C$.

10.) Given two circles centred at O and P intersect at the points F and C. A and B are points on the circle with O at its centre. D and E are points on the circle with P at its centre. $A D$ and $B C$ intersect at C. If $\angle E F D=40^{\circ}$, find the measure of $\angle A F B$.

11.) Show that the central angle subtended by a chord is twice the angle of an inscribed angle subtended by the same chord when the centre of the circle is outside the inscribed angle. (This is case 2 for Circle Angle 1) Hint: Draw the diameter from C.

12.) $\triangle A B C$ has its vertices on a circle. The bisector of angle at A meets the circumference at D. From D, a line is drawn perpendicular to the chord $B C$ so that it meets the circumference at E. Prove $D E$ is a diameter of the circle.

