## Intermediate Math Circles Wednesday November 3, 2021 Solutions to Problem Set 2

1.) Chord $B C$ subtends both $\angle B A C$ and $\angle B D C$. Therefore, from Circle Theorem $2, \angle B A C=$ $\angle B D C=60^{\circ}$. Now in $\triangle B A E, \angle B A E+\angle A E B+\angle A B E=180$ or $60+80+x=180$ and $x=40^{\circ}$.
Therefore, $\angle A B E=40^{\circ}$.
2.) $\triangle A O B$ is isosceles. Therefore, $\angle B A O=65^{\circ}$ and $\angle D A B=35^{\circ}+65^{\circ}=100^{\circ}$.

Now $B A D C$ is a cyclic quadrilateral, Therefore, $\angle D A B+\angle B C D=180$ or $100+\angle B C D=180$. Therefore $\angle B C D=80^{\circ}$.
3.) Chord $B C$ subtends both $\angle B A C$ and $\angle B D C$. Therefore, from Circle Theorem $2, \angle B D C=$ $\angle B A C=45^{\circ}$. Now in $\triangle F D C, \angle F C D+\angle C D F+\angle D F C=180$ or $\angle F C D+45+95=180$ and $\angle F C D=40^{\circ}$.
Now quadrilateral $A E D C$ is a cyclic quadrilateral. Therefore, $\angle A C D+\angle D E A=180$ or $40+\angle D E A=180$ Therefore, $\angle D E A=140^{\circ}$.
4.) Chord $B C$ subtends both $\angle B A C$ and $\angle B D C$. Therefore, from Circle Angle $2, \angle B D C=$ $\angle B A C=40^{\circ}$. Now $\triangle D O C$ is isosceles.
Therefore $\angle O C D=\angle O D C=40^{\circ}$
5.) Since $O B \| B C$, then $\angle O B C+\angle D C B=180$. It follows that $\angle D C B=115^{\circ}$. Now $A B C D$ is a cyclic quadrilateral. Therefore, $\angle B A D+\angle D C B=180$ or $\angle B A D+115=180$.
Therefore, $\angle B A D=65^{\circ}$.
6.) Now $\triangle D O C$ is isosceles. Therefore, $\angle O D C+\angle O C D=\frac{180-110}{2}=35$. Now $A B C D$ is a cyclic quadrilateral. Therefore, $\angle B A D+\angle D C B=180$ or $80+\angle B C D=180$ or $\angle B C D=100$. Now $\angle B C D=\angle O C B+\angle O C D$ or $100=\angle O C B+35$.
Therefore, $\angle O C B=65^{\circ}$.
7.) Since $\angle B D C$ is opposite $\angle F D G$, then $\angle B D C=\angle F D G=40$. Now $\angle A B D$ and $\angle C D B$ are alternate angles for $B A \| C D$. Therefore, $\angle A B D=\angle C D B=40$. Now, chord $A D$ subtends both $\angle A B D$ and $\angle A C D$.
Therefore, $\angle A C D=\angle A B D=40^{\circ}$.
8.) Now $\angle A C B$ is an exterior angle to $\triangle E A C$. Therefore, $\angle A C B=\angle E C A+\angle E A C=48$. Now, chord $C D$ subtends both $\angle D B C$ and $\angle D A C$. Therefore, $\angle D B C=\angle D A C=15$. Now $\angle A X B$ is an exterior angle to $\triangle B C X$.
Therefore, $\angle A X B=\angle X B C+\angle X C B=63$.
9.) Now chord $A C$ subtends the central angle $\angle A O C$ and inscribed angle $\angle A D C$. Therefore by Circle Theorem $1, \angle A D C=\frac{1}{2} \angle A O C=(2 x+5)$. Now $A B C D$ is a cyclic quadrilateral. Therefore,

$$
\begin{aligned}
\angle A B C+\angle A D C & =180 \\
3 x-10+2 x+5 & =180 \\
5 x-5 & =180 \\
5 x & =185 \\
x & =37
\end{aligned}
$$

Therefore $\angle A D C=2(37)+5=79^{\circ}$.
10.) In the circle centred on $P$, chord $E D$ subtends both $\angle E F D$ and $\angle E C D$. Therefore, from Circle Theorem 2, $\angle E F D=\angle E C D=40^{\circ}$. Now $\angle A C B$ is opposite $\angle E C D$. Therefore, $\angle A C B=\angle E C D=40^{\circ}$.. Now, In the circle centred on $O$, chord $A B$ subtends both $\angle A F B$ and $\angle A C B$.
Therefore, from Circle Theorem $2, \angle A F B=\angle A C B=40^{\circ}$.
11.) We will need to show that $\angle A O B=2 \angle A C B$.

We will construct the diameter from C.


We now look at $\triangle C O A$. We know $\triangle C O A$ is isosceles. Therefore let $\angle O A C=\angle O C A=b$. Now $\angle A O D$ is exterior to $\triangle C O A$ and therefore $\angle A O D=2 b$.

We now look at $\triangle C O B$. We know $\triangle C O B$ is isosceles. Therefore let $\angle O C B=\angle O B C=a$. Now $\angle B O D$ is exterior to $\triangle C O B$ and therefore $\angle B O D=2 a$.

For inscribed $A C B, \angle A C B=\angle O C A-\angle O C B=b-a$.
For central angle $A O B, \angle A O B=\angle A O D-\angle B O D=$ $2 b-2 a$.


Now, $\angle A O B=2 b-2 a=2(b-a)=2 \angle A C B$. Therefore, the central angle subtended by a chord is twice the angle of an inscribed angle subtended by the same chord when the centre of the circle is outside the inscribed angle.
12.) Construct $A E$ and $D C$. Let the intersection of $B C$ and $D E$ be $F$ and $\angle E A D=s$.
To show that $E D$ is a diameter we will show $\angle D A E=90^{\circ}$. (i.e. $x+s=90^{\circ}$ )


Chord $B D$ subtends both $\angle B A D$ and $\angle B C D$. Therefore, from Circle Theorem $2, \angle B A D=$ $\angle B C D=x$.

Chord $C E$ subtends both $\angle E A C$ and $\angle E D C$. Therefore, from Circle Theorem $2, \angle E A C=$ $\angle E D C=s$.

Now in $\triangle F C D, \angle F C D+\angle C D F+\angle D F C=x+s+90=180$ or $x+s=90$.
Therefore, $\angle D A E=90^{\circ}$ and $D E$ is a diameter.

