Intermediate Math Circles

Rob Gleeson
Geometry I: Geometry and Angles
rob.gleeson@uwaterloo.ca
cemc.uwaterloo.ca

October 272021

Getting Started - Basic Definitions

In geometry, there are certain terms that we just understand. For example, if you were asked to define an angle, you might struggle with appropriate words but could easily draw an angle.

Getting Started - Basic Definitions

In geometry, there are certain terms that we just understand. For example, if you were asked to define an angle, you might struggle with appropriate words but could easily draw an angle.

Definition: An angle is the space formed by two lines or rays diverging from a common point (the vertex). The space is commonly measured in degrees.

Getting Started - Basic Definitions

In geometry, there are certain terms that we just understand. For example, if you were asked to define an angle, you might struggle with appropriate words but could easily draw an angle.

Definition: An angle is the space formed by two lines or rays diverging from a common point (the vertex). The space is commonly measured in degrees.

On the next page is a list of terms that we will use in this week's Math Circle.

Getting Started - Basic Definitions

Angle Related Definitions

Getting Started - Basic Definitions

Angle Related Definitions
An acute angle is any angle measuring between 0° and 90°.

Getting Started - Basic Definitions

Angle Related Definitions
An acute angle is any angle measuring between 0° and 90°. A right angle is an angle measuring exactly 90°.

Getting Started - Basic Definitions

Angle Related Definitions
An acute angle is any angle measuring between 0° and 90°.
A right angle is an angle measuring exactly 90°.
An obtuse angle is any angle measuring between 90° and 180°.

Getting Started - Basic Definitions

Angle Related Definitions
An acute angle is any angle measuring between 0° and 90°.
A right angle is an angle measuring exactly 90°.
An obtuse angle is any angle measuring between 90° and 180°.
A straight angle is an angle measuring exactly 180°.

Getting Started - Basic Definitions

Angle Related Definitions
An acute angle is any angle measuring between 0° and 90°.
A right angle is an angle measuring exactly 90°.
An obtuse angle is any angle measuring between 90° and 180°.
A straight angle is an angle measuring exactly 180°.
Two angles whose sum is 180° are called supplementary angles.

Getting Started - Basic Definitions

Angle Related Definitions
An acute angle is any angle measuring between 0° and 90°.
A right angle is an angle measuring exactly 90°.
An obtuse angle is any angle measuring between 90° and 180°.
A straight angle is an angle measuring exactly 180°.
Two angles whose sum is 180° are called supplementary angles.
Two angles whose sum is 90° are called complementary angles.

Getting Started - Basic Definitions

Angle Related Definitions
An acute angle is any angle measuring between 0° and 90°.
A right angle is an angle measuring exactly 90°.
An obtuse angle is any angle measuring between 90° and 180°.
A straight angle is an angle measuring exactly 180°.
Two angles whose sum is 180° are called supplementary angles.
Two angles whose sum is 90° are called complementary angles.
A scalene triangle has three sides of different length.

Getting Started - Basic Definitions

Angle Related Definitions
An acute angle is any angle measuring between 0° and 90°.
A right angle is an angle measuring exactly 90°.
An obtuse angle is any angle measuring between 90° and 180°.
A straight angle is an angle measuring exactly 180°.
Two angles whose sum is 180° are called supplementary angles.
Two angles whose sum is 90° are called complementary angles.
A scalene triangle has three sides of different length.
An isosceles triangle has two sides of equal length.

Getting Started - Basic Definitions

Angle Related Definitions
An acute angle is any angle measuring between 0° and 90°.
A right angle is an angle measuring exactly 90°.
An obtuse angle is any angle measuring between 90° and 180°.
A straight angle is an angle measuring exactly 180°.
Two angles whose sum is 180° are called supplementary angles.
Two angles whose sum is 90° are called complementary angles.
A scalene triangle has three sides of different length.
An isosceles triangle has two sides of equal length.
An equilateral triangle has three sides of equal length.

Getting Started - Basic Definitions

Angle Related Definitions
An acute angle is any angle measuring between 0° and 90°.
A right angle is an angle measuring exactly 90°.
An obtuse angle is any angle measuring between 90° and 180°.
A straight angle is an angle measuring exactly 180°.
Two angles whose sum is 180° are called supplementary angles.
Two angles whose sum is 90° are called complementary angles.
A scalene triangle has three sides of different length.
An isosceles triangle has two sides of equal length.
An equilateral triangle has three sides of equal length.
When two lines intersect four angles are formed. The angles that are directly opposite to each other are called opposite angles.

Are Opposite Angles equal, really?

Prove: Opposite angles are equal.

$$
a \quad b \quad c
$$

Are Opposite Angles equal, really?

Prove: Opposite angles are equal.

Proof:

We want to show that $a=c$.

Are Opposite Angles equal, really?

Prove: Opposite angles are equal.

Proof:

We want to show that $a=c$.
Since a and b form a straight angle, $a+b=180^{\circ}$. (1)

Are Opposite Angles equal, really?

Prove: Opposite angles are equal.

Proof:

We want to show that $a=c$.
Since a and b form a straight angle, $a+b=180^{\circ}$. (1)
Since c and b form a straight angle, $c+b=180^{\circ}$. (2)

Are Opposite Angles equal, really?

Prove: Opposite angles are equal.

Proof:

We want to show that $a=c$.
Since a and b form a straight angle, $a+b=180^{\circ}$. (1)
Since c and b form a straight angle, $c+b=180^{\circ}$. (2) In (1) and (2), since $180^{\circ}=180^{\circ}$, then $a+b=c+b$.

Are Opposite Angles equal, really?

Prove: Opposite angles are equal.

Proof:

We want to show that $a=c$.
Since a and b form a straight angle, $a+b=180^{\circ}$. (1)
Since c and b form a straight angle, $c+b=180^{\circ}$. (2) In (1) and (2), since $180^{\circ}=180^{\circ}$, then $a+b=c+b$. b is common to both sides so $a=c$ follows.

Are Opposite Angles equal, really?

Prove: Opposite angles are equal.

Proof:

We want to show that $a=c$.
Since a and b form a straight angle, $a+b=180^{\circ}$. (1)
Since c and b form a straight angle, $c+b=180^{\circ}$. (2) In (1) and (2), since $180^{\circ}=180^{\circ}$, then $a+b=c+b$. b is common to both sides so $a=c$ follows.

Therefore, opposite angles are equal.

More Terminology

A transversal is any line that intersects two (or more) lines at different points.

$$
\begin{aligned}
& e f f \\
& h \\
& \hline
\end{aligned}
$$

transversal

More Terminology

A transversal is any line that intersects two (or more) lines at different points.

$$
\begin{array}{r}
e f \\
h \quad g
\end{array}
$$

transversal

Over the next few pages, we will define three types of angles related to transversals.

More Terminology

A transversal is any line that intersects two (or more) lines at different points.
e
h
g
transversal

Over the next few pages, we will define three types of angles related to transversals.
For each definition, state all possible angle pairs that satisfy the definition.

More Terminology

Two angles located on the same side of the transversal between the two lines are called co - interior angles.

transversal

More Terminology

Two angles located on the same side of the transversal between the two lines are called co - interior angles.
$h \quad \begin{aligned} & \text { h } \\ & h\end{aligned}$
transversal
$\angle d$ and $\angle e$ are co-interior angles.
$\angle c$ and $\angle f$ are co-interior angles.

More Terminology

Two non-adjacent angles located on opposite sides of the transversal between the two lines are called alternate (interior) angles.
e
h
transversal

More Terminology

Two non-adjacent angles located on opposite sides of the transversal between the two lines are called alternate (interior) angles.

transversal
$\angle d$ and $\angle f$ are alternate interior angles.
$\angle c$ and $\angle e$ are alternate interior angles.

More Terminology

Two angles each of which is on the same side of one of two lines cut by a transversal and on the same side of the transversal are called corresponding angles.
e
h
transversal

More Terminology

Two angles each of which is on the same side of one of two lines cut by a transversal and on the same side of the transversal are called corresponding angles.
$\angle a$ and $\angle e$ are corresponding angles.
$\angle d$ and $\angle h$ are corresponding angles.
$\angle b$ and $\angle f$ are corresponding angles.
$\angle c$ and $\angle g$ are corresponding angles.

Where Should We Begin?

An axiom is a logical statement which is assumed to be true. We just accept the truth of the statement.

Where Should We Begin?

An axiom is a logical statement which is assumed to be true. We just accept the truth of the statement.

Axiom:

If a transversal cuts two parallel lines,
 then the co-interior angles are supplementary. That is, the two co-interior an-
 gles add to 180°.

Where Should We Begin?

An axiom is a logical statement which is assumed to be true. We just accept the truth of the statement.

Axiom:

If a transversal cuts two parallel lines,
 then the co-interior angles are supplementary. That is, the two co-interior an$\xrightarrow[h g]{e f} L_{2}$ transversal

Another axiom that we could have started with is: "the angles in a triangle sum to 180°." As a result of starting with the first axiom, we will be able to prove the second axiom (it will not be an axiom for us).

As a result of an axiom, what can we prove?

Prove:

If a transversal cuts two parallel lines, then the alternate angles are equal and the corresponding angles are equal.

Proof:
transversal

As a result of an axiom, what can we prove?

Prove:

$\xrightarrow[d c]{a b} L_{1}$

If a transversal cuts two parallel lines, then the alternate angles are equal and the corresponding angles are equal.

Proof:
transversal
We will show that two alternate interior angles d and f are equal.

As a result of an axiom, what can we prove?

Prove:

$\xrightarrow[d c]{a b} L_{1}$

If a transversal cuts two parallel lines, then the alternate angles are equal and the corresponding angles are equal.

Proof:
transversal
We will show that two alternate interior angles d and f are equal.
Since d and c form a straight line, $d+c=180^{\circ}$. (1)

As a result of an axiom, what can we prove?

Prove:

$\xrightarrow[d a]{a} c \quad L_{1}$

If a transversal cuts two parallel lines, then the alternate angles are equal and the corresponding angles are equal.

Proof:
transversal
We will show that two alternate interior angles d and f are equal.
Since d and c form a straight line, $d+c=180^{\circ}$. (1)
Since $L_{1} \| L_{2}$, then using the axiom, $f+c=180^{\circ}$. (2)

As a result of an axiom, what can we prove?

Prove:

$\xrightarrow[d a]{a} c \quad L_{1}$

If a transversal cuts two parallel lines, then the alternate angles are equal and the corresponding angles are equal.

Proof:

transversal

We will show that two alternate interior angles d and f are equal.
Since d and c form a straight line, $d+c=180^{\circ}$. (1)
Since $L_{1} \| L_{2}$, then using the axiom, $f+c=180^{\circ}$. (2)
In (1) and (2), since $180^{\circ}=180^{\circ}$, then $d+c=f+c$.

As a result of an axiom, what can we prove?

Prove:

$\xrightarrow[d c]{a b} L_{1}$

If a transversal cuts two parallel lines, then the alternate angles are equal and the corresponding angles are equal.

Proof:

transversal

We will show that two alternate interior angles d and f are equal.
Since d and c form a straight line, $d+c=180^{\circ}$. (1)
Since $L_{1} \| L_{2}$, then using the axiom, $f+c=180^{\circ}$. (2)
In (1) and (2), since $180^{\circ}=180^{\circ}$, then $d+c=f+c$.
c is common to both sides so $d=f$ follows.

As a result of an axiom, what can we prove?

Prove:

$\xrightarrow[d c]{a b} L_{1}$

If a transversal cuts two parallel lines, then the alternate angles are equal and the corresponding angles are equal.

Proof:

transversal

We will show that two alternate interior angles d and f are equal.
Since d and c form a straight line, $d+c=180^{\circ}$. (1)
Since $L_{1} \| L_{2}$, then using the axiom, $f+c=180^{\circ}$. (2)
In (1) and (2), since $180^{\circ}=180^{\circ}$, then $d+c=f+c$.
c is common to both sides so $d=f$ follows.
Therefore, alternate interior angles are equal.

As a result of an axiom, what can we prove?

Prove:

$\xrightarrow[d c]{a b} L_{1}$

If a transversal cuts two parallel lines, then the alternate angles are equal and the corresponding angles are equal.

Proof:

transversal

We will show that two alternate interior angles d and f are equal.
Since d and c form a straight line, $d+c=180^{\circ}$. (1)
Since $L_{1} \| L_{2}$, then using the axiom, $f+c=180^{\circ}$. (2)
In (1) and (2), since $180^{\circ}=180^{\circ}$, then $d+c=f+c$.
c is common to both sides so $d=f$ follows.
Therefore, alternate interior angles are equal.
The proof of the equality of corresponding angles is very similar to the proof presented here and, thus, will not provided.

An Example

1) Given $D C \| E G$ and $A H$ is a transversal that meets the parallel lines at B and F. Also given is $\angle A B D=45^{\circ}$. Find the value of x and y.

Take a few minutes to answer the above.

An Example

Here is one possible solution. (There are a few other similar solutions that we will not show.)

An Example

Here is one possible solution. (There are a few other similar solutions that we will not show.)

$\angle A B D=\angle B F E$ (corresponding angles)
Therefore, $\angle B F E=45^{\circ}$.

An Example

Here is one possible solution. (There are a few other similar solutions that we will not show.)

$\angle A B D=\angle B F E$ (corresponding angles)
Therefore, $\angle B F E=45^{\circ}$.
$\angle G F H=\angle B F E$ (opposite angles)

An Example

Here is one possible solution. (There are a few other similar solutions that we will not show.)

$\angle A B D=\angle B F E$ (corresponding angles)
Therefore, $\angle B F E=45^{\circ}$.
$\angle G F H=\angle B F E$ (opposite angles)
Therefore, $3 x=45^{\circ}$ and $x=15^{\circ}$

An Example

Here is one possible solution. (There are a few other similar solutions that we will not show.)

$\angle A B D=\angle B F E$ (corresponding angles)
Therefore, $\angle B F E=45^{\circ}$.
$\angle G F H=\angle B F E$ (opposite angles)
Therefore, $3 x=45^{\circ}$ and $x=15^{\circ}$
$y+3 x=180^{\circ}$ (straight angle)

An Example

Here is one possible solution. (There are a few other similar solutions that we will not show.)

$\angle A B D=\angle B F E$ (corresponding angles)
Therefore, $\angle B F E=45^{\circ}$.
$\angle G F H=\angle B F E$ (opposite angles)
Therefore, $3 x=45^{\circ}$ and $x=15^{\circ}$
$y+3 x=180^{\circ}$ (straight angle)
Therefore, $y=135^{\circ}$.

As a result of a proven result, what can we prove?

Prove:

In any triangle, the sum of the interior angles is 180°.

Proof: See next page

As a result of a proven result, what can we prove?

Prove:

In any triangle, the sum of the interior angles is 180°.

As a result of a proven result, what can we prove?

Prove:

In any triangle, the sum of the interior angles is 180°.
Proof:

As a result of a proven result, what can we prove?

Prove:

In any triangle, the sum of the interior angles is 180°.

Proof:

Construct $\triangle A B C$.
Let $\angle B A C=x, \angle A B C=y$, and $\angle A C B=z$. Through A draw line segment $D E$ parallel to $B C$.

As a result of a proven result, what can we prove?

Proof (continued):

As a result of a proven result, what can we prove?

Proof (continued):

Since $D E \| B C, \angle D A B=\angle A B C=y$ (alternate angles) and $\angle E A C=\angle A C B=z$ (alternate angles).

As a result of a proven result, what can we prove?

Proof (continued):

Since $D E \| B C, \angle D A B=\angle A B C=y$ (alternate angles) and $\angle E A C=\angle A C B=z$ (alternate angles).

$$
\begin{aligned}
\angle A B C+\angle B A C+\angle A C B & =y+x+z \\
& =\angle D A B+\angle B A C+\angle E A C \\
& =180^{\circ} \quad \text { a straight angle. }
\end{aligned}
$$

As a result of a proven result, what can we prove?

Proof (continued):

Since $D E \| B C, \angle D A B=\angle A B C=y$ (alternate angles) and $\angle E A C=\angle A C B=z$ (alternate angles).

$$
\begin{aligned}
\angle A B C+\angle B A C+\angle A C B & =y+x+z \\
& =\angle D A B+\angle B A C+\angle E A C \\
& =180^{\circ} \quad \text { a straight angle. }
\end{aligned}
$$

Therefore, the angles in a triangle sum to 180°.

One More Proof

Definition:

An exterior angle is the angle between one side of a triangle and the extension of an adjacent side. In the diagram, w is an exterior angle.

One More Proof

Definition:

An exterior angle is the angle between one side of a triangle and the extension of an adjacent side. In the diagram, w is an exterior angle.

Prove:

An exterior angle of a triangle is equal to the sum of the opposite interior angles. (In the above diagram, x and y are the opposite interior angles related to w.)

One More Proof

Definition:

An exterior angle is the angle between one side of a triangle and the extension of an adjacent side. In the diagram, w is an exterior angle.

Prove:

An exterior angle of a triangle is equal to the sum of the opposite interior angles. (In the above diagram, x and y are the opposite interior angles related to w.)

Proof:

See next page

One More Proof

Prove:

An exterior angle of a triangle is equal to the sum of the opposite interior angles. In the diagram, x and y are the opposite interior angles related to w. (i.e. Show $w=x+y$)

Proof:

One More Proof

Prove:

An exterior angle of a triangle is equal to the sum of the opposite interior angles. In the diagram, x and y are the opposite interior angles related to w. (i.e. Show $w=x+y$)

Proof:

Since $B C D$ is a straight angle, $\angle B C A+w=180^{\circ}$.

One More Proof

Prove:

An exterior angle of a triangle is equal to the sum of the opposite interior angles. In the diagram, x and y are the opposite interior angles related to w. (i.e. Show $w=x+y$)

Proof:

Since $B C D$ is a straight angle, $\angle B C A+w=180^{\circ}$.
In $\triangle A B C, \angle B C A+x+y=180^{\circ}$. (2)

One More Proof

Prove:

An exterior angle of a triangle is equal to the sum of the opposite interior angles. In the diagram, x and y are the opposite interior angles related to w. (i.e. Show $w=x+y$)

Proof:

Since $B C D$ is a straight angle, $\angle B C A+w=180^{\circ}$.
In $\triangle A B C, \angle B C A+x+y=180^{\circ}$. (2)
Since $180^{\circ}=180^{\circ}$ in (1) and (2), $\angle B C A+w=\angle B C A+x+y$. $\angle B C A$ is common to both sides.

One More Proof

Prove:

An exterior angle of a triangle is equal to the sum of the opposite interior angles. In the diagram, x and y are the opposite interior angles related to w. (i.e. Show $w=x+y$)

Proof:

Since $B C D$ is a straight angle, $\angle B C A+w=180^{\circ}$.
In $\triangle A B C, \angle B C A+x+y=180^{\circ}$. (2)
Since $180^{\circ}=180^{\circ}$ in (1) and (2), $\angle B C A+w=\angle B C A+x+y$.
$\angle B C A$ is common to both sides.
It follows that $w=x+y$.

One More Proof

Prove:

An exterior angle of a triangle is equal to the sum of the opposite interior angles. In the diagram, x and y are the opposite interior angles related to w. (i.e. Show $w=x+y$)

Proof:

Since $B C D$ is a straight angle, $\angle B C A+w=180^{\circ}$.
In $\triangle A B C, \angle B C A+x+y=180^{\circ}$. (2)
Since $180^{\circ}=180^{\circ}$ in (1) and (2), $\angle B C A+w=\angle B C A+x+y$.
$\angle B C A$ is common to both sides.
It follows that $w=x+y$.
Therefore, an exterior angle of a triangle is equal to the sum of the opposite interior angles.

Congruent Triangles

Two triangles are said to be congruent if their corresponding sides are equal and their corresponding angles are equal.
For the following $\triangle A B C$ and $\triangle D E F$

Since, we are given:

$$
\begin{aligned}
A B & =D E \\
B C & =E F \\
A C & =D F \\
\angle A B C & =\angle D E F \\
\angle B A C & =\angle E D F \\
\angle A C B & =\angle D F E
\end{aligned}
$$

Then we say that $\triangle A B C$ is congruent to $\triangle D E F$. We write this as $\triangle A B C \cong \triangle D E F$.

Congruent Triangles

Conversely, if $\triangle P Q R \cong \triangle T S U$ (notice the order of the letters) then the following facts are true.

$$
\begin{aligned}
P Q & =T S \\
Q R & =S U \\
P R & =T U \\
\angle P Q R & =\angle T S U \\
\angle Q R P & =\angle S U T \\
\angle R P Q & =\angle U T S
\end{aligned}
$$

Congruent Triangles

We do not need all 6 equalities to show that two triangles are congruent.

Congruent Triangles

We do not need all 6 equalities to show that two triangles are congruent.

A postulate is a logical statement which is assumed to be true. We just accept the truth of the statement. This is similar to an axiom.

Congruent Triangles

We do not need all 6 equalities to show that two triangles are congruent.

A postulate is a logical statement which is assumed to be true. We just accept the truth of the statement. This is similar to an axiom.

There are three triangle congruency postulates that we will use.

Congruent Postulate SSS

1) The Side-Side-Side Postulate (SSS) states that if the three sides of one triangle are congruent to three sides of another triangle, then the two triangles are congruent.

Given the following diagram.

We can state that $\triangle L M N \cong \triangle F G H$ because of the Side-Side-Side Postulate (SSS). Here is a proof:

Congruent Postulate SSS

1) The Side-Side-Side Postulate (SSS) states that if the three sides of one triangle are congruent to three sides of another triangle, then the two triangles are congruent.

Given the following diagram.

We can state that $\triangle L M N \cong \triangle F G H$ because of the Side-Side-Side Postulate (SSS). Here is a proof:
$\triangle L M N \cong \triangle F G H$ (SSS)

$$
\begin{aligned}
L M & =F G(\text { given }) \\
M N & =G H(\text { given }) \\
N L & =H F(\text { given })
\end{aligned}
$$

Congruent Postulates SSS

Given the following diagram.

From the previous page we know $\triangle L M N \cong \triangle F G H$ (SSS)
Note: Once we prove a triangle with a congruency postulate, we get the other three equalities. In this case we now know that:
$\angle L M N=\angle F G H$ (corresponding angles of congruent triangles)
$\angle M N L=\angle G H F$ (corresponding angles of congruent triangles)
$\angle N L M=\angle H F G$ (corresponding angles of congruent triangles)

Congruent Postulates SAS

2) The Side-Angle-Side Postulate (SAS) states that if two sides and the included angle of one triangle are congruent to two sides and the included angle of another triangle, then the two triangles are congruent.

Given the following diagram.

We can state that $\triangle T D A \cong \triangle Z P W$ because of the Side-Angle-Side Postulate (SAS). Here is a proof:
$\triangle T D A \cong \triangle Z P W$ (SAS)

$$
\begin{aligned}
A D & =W P(\text { given }) \\
\angle D A T & =\angle P W Z(\text { given }) \\
A T & =W Z(\text { given })
\end{aligned}
$$

Congruent Postulates SAS

Given the following diagram.

From the previous page we know $\triangle T D A \cong \triangle Z P W$ (SAS)
Note: Once we prove a triangle with a congruency postulate, we get the other three equalities. In this case we now know that:
$\angle A D T=\angle W P Z$ (corresponding angles of congruent triangles)
$\angle D T A=\angle P Z W$ (corresponding angles of congruent triangles) $D T=P Z$ (corresponding sides of congruent triangles)

Congruent Postulates ASA

3) The Angle-Side-Angle Postulate (ASA) states that if two angles and the included side of one triangle are congruent to two angles and the included side of another triangle, then the two triangles are congruent.

Given the following diagram.

We can state that $\triangle M A N \cong \triangle P T L$ because of the Angle-Side-Angle Postulate (ASA). Here is a proof:
$\triangle M A N \cong \triangle P T L$ (ASA)

$$
\begin{aligned}
\angle M A N & =\angle P T L \text { (given) } \\
M A & =P T \text { (given) } \\
\angle A M N & =\angle T P L \text { (given) }
\end{aligned}
$$

Congruent Postulates ASA

Given the following diagram.

From the previous page we know $\triangle M A N \cong \triangle P T L$ (ASA)
Note: Once we prove a triangle with a congruency postulate, we get the other three equalities. In this case we now know that:
$\angle M N A=\angle P L T$ (corresponding angles of congruent triangles)
$A N=T L$ (corresponding sides of congruent triangles)
$M N=P L$ (corresponding sides of congruent triangles)

And Even One More Proof

We are going to use the Side-Angle-Side Postulate to prove the following.

Prove:

If a triangle is isosceles, then the angles opposite the equal sides are equal.
(This is known as the Isosceles Triangle Theorem.)
Proof: A
Construct isosceles $\triangle A B C$ so that $x x$ $A B=A C$. We are required to prove $\angle A B C=\angle A C B$.
Construct $A D$, the angle bisector of $\angle B A C$.

It follows that $\angle B A D=\angle D A C$. (Definition of an angle bisector.)

Proof:

Construct isosceles $\triangle A B C$ so that $x x$ $A B=A C$. We are required to prove $\angle A B C=\angle A C B$.

Construct $A D$, the angle bisector of $\angle B A C$.

It follows that $\angle B A D=\angle D A C$. (Definition of an angle bisector.) In $\triangle B A D$ and $\triangle C A D$,

$$
\begin{array}{r}
A B=A C(\text { given }) \\
\angle B A D=\angle C A D(\text { constructed }) \\
A D=A D(\text { common })
\end{array}
$$

Therefore, $\triangle B A D \cong \triangle C A D$ (SAS).

Proof:

Construct isosceles $\triangle A B C$ so that $x x$ $A B=A C$. We are required to prove $\angle A B C=\angle A C B$.

Construct $A D$, the angle bisector of $\angle B A C$.

It follows that $\angle B A D=\angle D A C$. (Definition of an angle bisector.) In $\triangle B A D$ and $\triangle C A D$,

$$
\begin{array}{r}
A B=A C(\text { given }) \\
\angle B A D=\angle C A D(\text { constructed }) \\
A D=A D(\text { common })
\end{array}
$$

Therefore, $\triangle B A D \cong \triangle C A D$ (SAS).
It follows that $\angle A B C=\angle A C B$, as required.

Two more examples

1) Find the value of x.

2) Find the value of y.

Solutions

1) Since $\triangle A B C$ is isosceles then $\angle A B C=\angle A C B=x$. The three angles in the triangle sum to 180°, therefore $x+x+40=180$ or $2 x=140$ and $x=70^{\circ}$.

2) Since $\triangle A B C$ is isosceles then $\angle A B C=\angle A C B=x$. The three angles in the triangle sum to 180°, therefore $x+x+40=180$ or $2 x=140$ and $x=70^{\circ}$.

3) Since $\triangle P Q R$ is isosceles then $\angle R P Q=\angle R Q P=75$.

The three angles in the triangle sum to 180°, therefore $75+75+y=180$ and $y=30^{\circ}$.

You can now do Problem Set 1.

