# Intermediate Math Circles <br> October 272021 <br> <br> Problem Set 1 

 <br> <br> Problem Set 1}

1. Let $a=\angle E G F, b=\angle F E G$. Since $A B \| C D$, we know that alternate interior angles are equal so $a=50^{\circ}$. Observe that $a$ and the angle $13 x$ form a straight angle. Then,

$$
\begin{aligned}
a+13 x & =180 \\
50+13 x & =180 \\
x & =10
\end{aligned}
$$

Similarly, using $b$, the $50^{\circ}$ angle, and the angle $3 x=30$,

$$
\begin{aligned}
b+50+30 & =180 \\
b+80 & =180 \\
b & =100
\end{aligned}
$$

Since $y$ is an external angle to $\triangle E F G, y=a+b=150^{\circ}$.
Therefore, $x=10^{\circ}, y=150^{\circ}$.
2. $\triangle A B D$ is isosceles since $A B=B D$. Therefore $\angle B D A=\angle B A D=52^{\circ}$.

Then in $\triangle B A D$,

$$
\begin{aligned}
\angle A B D & =180^{\circ}-\angle A-\angle B D A \\
& =180^{\circ}-52^{\circ}-52^{\circ} \\
& =76^{\circ}
\end{aligned}
$$

Since AB \| DC, we have $\angle B D C=\angle A B D=76^{\circ}$.
Since $\mathrm{BD}=\mathrm{BC}, \triangle B D C$ is isosceles. Therefore, $\angle B D C=\angle B C D=76^{\circ}$
Therefore, by sum of interior angles of a triangle, $\angle D B C=180^{\circ}-76^{\circ}-76^{\circ}=28^{\circ}$.
3. In a square, the corner angles are $90^{\circ}$. The triangle is equilateral (all sides equal), so we know all the angles are equal and hence must be $60^{\circ}$ each.
If we look at the place where the triangle and two squares meet (where $x$ is located), we notice it is made up of four angles; two corner angles of a square, one corner angle of a triangle, and $x$. These four angles form a complete revolution, so they must sum up to $360^{\circ}$.
Then,

$$
\begin{aligned}
x+90+90+60 & =360 \\
x+240 & =360 \\
x=120^{\circ} &
\end{aligned}
$$

Therefore the measure of angle $x$ is $120^{\circ}$.
4. Since $\angle F J I=111^{\circ}$ is part of a straight angle with $\angle F J G$, we have that $\angle F J G=69^{\circ}$.

We see that because $G F=G J, \triangle F G J$ is isosceles, with equal base angles $\angle F J G$ and $\angle G F J$, we get $\angle G F J=69^{\circ}$ and so $\angle F G J=42^{\circ}$
Because $F G \| I H, \angle F G I=\angle G I H=42^{\circ}$. Also, $\triangle I H G$ is isosceles since $G H=H I$, so $\angle I G H=\angle G I H=42^{\circ}$
Since $G H \| F I, \angle F I G=\angle I G H=42^{\circ}$.
Using $\triangle F J I$, we see $\quad \angle F J I+\angle F I J+\angle J F I=180$

$$
\begin{aligned}
111+42+\angle J F I & =180 \\
\therefore \angle J F I & =27^{\circ}
\end{aligned}
$$

5. Since $A B C D$ is a square, $B C=C D$. Since $\triangle C D E$ is equilateral, $C D=D E=E C$. Therefore, $B C=C D=D E=E C$ and so $B C=E C$.


By the properties of a square, $\angle B C D=90^{\circ}$. By the properties of equilateral triangles, $\angle D C E=60^{\circ}$. Therefore $\angle B C E=\angle B C D+\angle D C E=90+60=150^{\circ}$.
Since $B C=E C, \triangle B C E$ is isosceles. So $\angle E B C=\angle B E C=x$. In this triangle, we have

$$
\begin{aligned}
\angle B C E+x+x & =180 \\
150+2 x & =180 \\
x & =15^{\circ}
\end{aligned}
$$

So $\angle B E C=x=15^{\circ}$.
Note that $60^{\circ}=\angle D E C=\angle B E D+\angle B E C=\angle B E D+15$.
Therefore, $\angle B E D=60-15=45^{\circ}$.
6. Consider the angles opposite to the angles marked $y$. Since they are opposite angles, they are equal to $y$.
The quadrilateral formed in the overlap must have angle sum $360^{\circ}$. We know two of the angles are $y$.
The other two angles are actually the missing angle of the two isosceles triangles. In the left triangle, this angle is $180-2 x$; for the triangle on the right, it is also $180-2 x$.
These four angles have to sum to $360^{\circ}$. Therefore,

$$
\begin{aligned}
y+y+(180-2 x)+(180-2 x) & =360 \\
2 y+360-4 x & =360 \\
2 y & =4 x \\
y & =2 x
\end{aligned}
$$

$\therefore y=2 x$ is our desired relationship.
7. Let $\angle S P R=x$. Then, $\angle Q P R=\angle Q P S+\angle S P R=12^{\circ}+x$.

Since $P S=S R, \triangle S P R$ is isosceles and so $\angle P R S=\angle S P R=x$. Since $P S=P Q, \triangle P Q S$ is isosceles and so $\angle P Q S=\angle P S Q=y$.
Then

$$
\begin{aligned}
12+y+y & =180 \\
2 y & =168 \\
y & =84^{\circ}
\end{aligned}
$$

Since $Q S R$ is a straight line, $y=\angle P S Q$ is external to $\triangle P S R$, so $84^{\circ}=y=x+x=2 x$.
Therefore, $x=42^{\circ}$. And $\angle Q P R=\angle Q P S+\angle S P R=12+x=12+42=54^{\circ}$.
8. Since we are using angle bisectors, let $\angle L N O=\angle O N M=x, \angle N L O=\angle O L M=y$, and $\angle L M O=\angle O M N=z$.
But $68^{\circ}=\angle L N M=\angle N L O+\angle O L M=2 x$, so $x=34^{\circ}$.
We also have $\angle L O N=180-(x+y)=146-y, \angle L O M=180-(y+z)$, and $\angle N O M=$ $180-(x+z)=146-z$.
$\angle L O N, \angle N O M$, and $\angle L O M$ form a complete revolution.
So, $\angle L O M=360-\angle L O N-\angle N O M=360-(146-y)-(146-z)=68+y+z$
Using the entire triangle,

$$
\begin{gathered}
\angle L N M+\angle N L M+\angle L M N=180 \\
68+2 y+2 z=180 \\
2 y+2 z=112 \\
y+z=56
\end{gathered}
$$

Therefore, substituting back in, we get $\angle L O M=68+56=124^{\circ}$.
9. Since $A B=A F, \triangle A B F$ is isosceles, so $\angle A F B=\angle A B F=a$.

Since $\angle A F B$ and $\angle D F E$ are opposite angles, $\angle D F E=\angle A F B=a$.
$\angle A B E$ is external to $\triangle C B E$, so $\angle A B E=\angle A C E+\angle B E C$ and $a=x+z$ follows. (1) $\angle A D C$ is external to $\triangle D F E$, so $\angle A D C=\angle D F E+\angle D E C$ and $y=a+z$ follows. (2)

Substituting (1) into (2) for $a$, we obtain $y=x+z+z$. Rearranging and simplifying we obtain $x-y+2 z=0$. This is the equation relating $x, y, z$.
10. Since AE bisects $\angle B A C$, we can let $x=\angle B A E=\angle E A C$.

Since $\mathrm{CB}=\mathrm{CD}, \triangle B C D$ is isosceles so $y=\angle C B D=\angle C D B$.


In $\triangle A B D$, by the sum of interior angles of a triangle,

$$
\begin{aligned}
2 x+(90+y)+y & =180 \\
90+2 x+2 y & =180 \\
2 x+2 y & =90 \\
x+y & =45
\end{aligned}
$$

In $\triangle A B E$, using the sum of interior angles,

$$
\begin{array}{rlrl}
x+(90+y)+\angle A E B & =180 & \\
90+(x+y)+\angle A E B & =180 & & \\
90+45+\angle A E B & =180 & & \\
45+\angle A E B & =90 & \text { from above) } \\
\angle A E B & =45^{\circ} & & \text { (as required) }
\end{array}
$$

11. Since $\triangle P Q R$ is isosceles, then $\angle P R Q=\angle P Q R=2 x^{\circ}$.

Since $\angle P R Q$ and $\angle S R T$ are opposite angles, then $\angle S R T=\angle P R Q=2 x^{\circ}$.
Since $\triangle R S T$ is isosceles with $R S=R T$, then

$$
\begin{aligned}
\angle R S T & =\frac{1}{2}\left(180^{\circ}-\angle S R T\right) \\
& =\frac{1}{2}\left(180^{\circ}-2 x^{\circ}\right) \\
& =(90-x)^{\circ}
\end{aligned}
$$

12. Since $P Q=P R$ and $Q S=Q R$, we can label the diagram as shown.

Note that $\angle S P R=180-2 y$. Using $\triangle S P R$, we see the angle sum gives us

$$
\begin{aligned}
180 & =\angle S P R+\angle P S R+\angle P R S \\
180 & =(180-2 y)+x+(x+y) \\
180 & =180-y+2 x \\
y & =2 x
\end{aligned}
$$



So $\angle P R S=x+y=x+2 x=3 x=3(\underset{4}{\angle Q S R})$ as required.
13. Since $\angle T Q P$ and $\angle R Q U$ are opposite angles, then $\angle R Q U=\angle T Q P=x^{\circ}$.

Similarly, $\angle Q R U=\angle V R S=y^{\circ}$.
Since the angles in a triangle add to $180^{\circ}$, then
$\angle Q U R=180^{\circ}-\angle R Q U-\angle Q R U=180^{\circ}-x^{\circ}-y^{\circ}$.
Now, $\angle W Q P$ and $\angle W Q R$ are supplementary, as they lie along a line.
Thus, $\angle W Q R=180^{\circ}-\angle W Q P=180^{\circ}-2 x^{\circ}$.
Similarly, $\angle W R Q=180^{\circ}-\angle W R S=180^{\circ}-2 y^{\circ}$.
Since the angles in $\triangle W Q R$ add to $180^{\circ}$, then

$$
\begin{aligned}
38^{\circ}+\left(180^{\circ}-x^{\circ}\right)+\left(180^{\circ}-2 y^{\circ}\right) & =180 \\
218^{\circ} & =2 x^{\circ}+2 y^{\circ} \\
x^{\circ}+y^{\circ} & =109^{\circ}
\end{aligned}
$$

Finally, $\angle Q U R=180^{\circ}-x^{\circ}-y^{\circ}=180^{\circ}-\left(x^{\circ}+y^{\circ}\right)=180^{\circ}-109^{\circ}=71^{\circ}$.
14. Since points $Y, W$ and $Q$ form a straight line segment, then $\angle Y W V=180^{\circ}-\angle V W Q$ and so $\angle Y W V=180^{\circ}-125^{\circ}=55^{\circ}$.
Since $Q^{\prime}$ is the final position of $Q$ after folding, then $\angle Q^{\prime} W V=\angle Q W V$.
Thus, $\angle Q^{\prime} W V=\angle Q W V=125^{\circ}$ and so $\angle Q^{\prime} W Y=\angle Q^{\prime} W V-\angle Y W N=125^{\circ}-55^{\circ}=70^{\circ}$.


Since $Q^{\prime} W$ and $R^{\prime} Y$ are parallel sides of the piece of paper, then $\angle R^{\prime} Y W+\angle Q^{\prime} W Y=180^{\circ}$, and so $\angle R^{\prime} Y W=180^{\circ}-\angle Q^{\prime} W Y=180^{\circ}-70^{\circ}=110^{\circ}$.
Finally, $\angle P Y V$ is opposite $\angle R^{\prime} Y W$ so $\angle P Y V=\angle R^{\prime} Y W=110^{\circ}$.
15. If the diagonals bisect each other the we need to show $A E=E C$ and $B E=E D$. Here is the parallelogram with certain angles marked.


In $\triangle A E B$ and $\triangle C E D$

$$
\begin{aligned}
\angle E A B & =\angle E C D \text { (alternate angles) } \\
A B & =C D \text { (property of a parallelogram) } \\
\angle E B A & =\angle E D C \text { (alternate angles) }
\end{aligned}
$$

Therefore, $\triangle A E B \cong \triangle C E D$ (ASA congruency)
Therefore:
$A E=E C$ (corresponding sides of congruent triangles)
$B E=E D$ (corresponding sides of congruent triangles)
Therefore the diagonals bisect each other.

