Intermediate Math Circles October 27 2021 Problem Set 1

1. Let $a = \angle EGF$, $b = \angle FEG$. Since $AB \parallel CD$, we know that alternate interior angles are equal so $a = 50^{\circ}$. Observe that a and the angle 13x form a straight angle. Then,

$$a + 13x = 180$$

$$50 + 13x = 180$$

$$x = 10$$

Similarly, using b, the 50° angle, and the angle 3x = 30,

$$+50 + 30 = 180$$

 $b + 80 = 180$
 $b = 100$

Since y is an external angle to $\triangle EFG$, $y = a + b = 150^{\circ}$. Therefore, $x = 10^{\circ}, y = 150^{\circ}$.

2. $\triangle ABD$ is isosceles since AB = BD. Therefore $\angle BDA = \angle BAD = 52^{\circ}$. Then in $\triangle BAD$,

b

$$\angle ABD = 180^{\circ} - \angle A - \angle BDA$$
$$= 180^{\circ} - 52^{\circ} - 52^{\circ}$$
$$= 76^{\circ}$$

Since AB || DC, we have $\angle BDC = \angle ABD = 76^{\circ}$. Since BD = BC, $\triangle BDC$ is isosceles. Therefore, $\angle BDC = \angle BCD = 76^{\circ}$. Therefore, by sum of interior angles of a triangle, $\angle DBC = 180^{\circ} - 76^{\circ} - 76^{\circ} = 28^{\circ}$.

3. In a square, the corner angles are 90° . The triangle is equilateral (all sides equal), so we know all the angles are equal and hence must be 60° each.

If we look at the place where the triangle and two squares meet (where x is located), we notice it is made up of four angles; two corner angles of a square, one corner angle of a triangle, and x. These four angles form a complete revolution, so they must sum up to 360° .

Then,

$$x + 90 + 90 + 60 = 360$$

 $x + 240 = 360$
 $x = 120^{\circ}$

Therefore the measure of angle x is 120° .

- 4. Since $\angle FJI = 111^{\circ}$ is part of a straight angle with $\angle FJG$, we have that $\angle FJG = 69^{\circ}$. We see that because GF = GJ, $\triangle FGJ$ is isosceles, with equal base angles $\angle FJG$ and $\angle GFJ$, we get $\angle GFJ = 69^{\circ}$ and so $\angle FGJ = 42^{\circ}$ Because $FG \parallel IH$, $\angle FGI = \angle GIH = 42^{\circ}$. Also, $\triangle IHG$ is isosceles since GH = HI, so $\angle IGH = \angle GIH = 42^{\circ}$ Since $GH \parallel FI$, $\angle FIG = \angle IGH = 42^{\circ}$. Using $\triangle FJI$, we see $\angle FJI + \angle FIJ + \angle JFI = 180$ $111 + 42 + \angle JFI = 180$ $\therefore \angle JFI = 27^{\circ}$
- 5. Since ABCD is a square, BC = CD. Since $\triangle CDE$ is equilateral, CD = DE = EC. Therefore, BC = CD = DE = EC and so BC = EC.

By the properties of a square, $\angle BCD = 90^{\circ}$. By the properties of equilateral triangles, $\angle DCE = 60^{\circ}$. Therefore $\angle BCE = \angle BCD + \angle DCE = 90 + 60 = 150^{\circ}$.

Since BC = EC, $\triangle BCE$ is isosceles. So $\angle EBC = \angle BEC = x$. In this triangle, we have

$$\angle BCE + x + x = 180$$
$$150 + 2x = 180$$
$$x = 15^{\circ}$$

So $\angle BEC = x = 15^{\circ}$. Note that $60^{\circ} = \angle DEC = \angle BED + \angle BEC = \angle BED + 15$. Therefore, $\angle BED = 60 - 15 = 45^{\circ}$.

6. Consider the angles opposite to the angles marked y. Since they are opposite angles, they are equal to y.

The quadrilateral formed in the overlap must have angle sum 360° . We know two of the angles are y.

The other two angles are actually the missing angle of the two isosceles triangles. In the left triangle, this angle is 180 - 2x; for the triangle on the right, it is also 180 - 2x.

These four angles have to sum to 360°. Therefore,

$$y + y + (180 - 2x) + (180 - 2x) = 360$$
$$2y + 360 - 4x = 360$$
$$2y = 4x$$
$$y = 2x$$

 $\therefore y = 2x$ is our desired relationship.

7. Let $\angle SPR = x$. Then, $\angle QPR = \angle QPS + \angle SPR = 12^{\circ} + x$.

Since PS = SR, $\triangle SPR$ is isosceles and so $\angle PRS = \angle SPR = x$. Since PS = PQ, $\triangle PQS$ is isosceles and so $\angle PQS = \angle PSQ = y$.

Then

$$12 + y + y = 180$$
$$2y = 168$$
$$y = 84^{\circ}$$

Since QSR is a straight line, $y = \angle PSQ$ is external to $\triangle PSR$, so $84^{\circ} = y = x + x = 2x$. Therefore, $x = 42^{\circ}$. And $\angle QPR = \angle QPS + \angle SPR = 12 + x = 12 + 42 = 54^{\circ}$.

8. Since we are using angle bisectors, let $\angle LNO = \angle ONM = x$, $\angle NLO = \angle OLM = y$, and $\angle LMO = \angle OMN = z$.

But $68^{\circ} = \angle LNM = \angle NLO + \angle OLM = 2x$, so $x = 34^{\circ}$.

We also have $\angle LON = 180 - (x + y) = 146 - y$, $\angle LOM = 180 - (y + z)$, and $\angle NOM = 180 - (x + z) = 146 - z$.

 $\angle LON$, $\angle NOM$, and $\angle LOM$ form a complete revolution.

So, $\angle LOM = 360 - \angle LON - \angle NOM = 360 - (146 - y) - (146 - z) = 68 + y + z$

Using the entire triangle,

$$\angle LNM + \angle NLM + \angle LMN = 180$$

$$68 + 2y + 2z = 180$$

$$2y + 2z = 112$$

$$y + z = 56$$

Therefore, substituting back in, we get $\angle LOM = 68 + 56 = 124^{\circ}$.

9. Since AB = AF, △ABF is isosceles, so ∠AFB = ∠ABF = a. Since ∠AFB and ∠DFE are opposite angles, ∠DFE = ∠AFB = a. ∠ABE is external to △CBE, so ∠ABE = ∠ACE + ∠BEC and a = x + z follows. (1) ∠ADC is external to △DFE, so ∠ADC = ∠DFE + ∠DEC and y = a + z follows. (2) Substituting (1) into (2) for a, we obtain y = x + z + z. Rearranging and simplifying we obtain x - y + 2z = 0. This is the equation relating x, y, z. 10. Since AE bisects $\angle BAC$, we can let $x = \angle BAE = \angle EAC$. Since CB = CD, $\triangle BCD$ is isosceles so $y = \angle CBD = \angle CDB$.

In $\triangle ABD$, by the sum of interior angles of a triangle,

$$2x + (90 + y) + y = 180$$
$$90 + 2x + 2y = 180$$
$$2x + 2y = 90$$
$$x + y = 45$$

In $\triangle ABE$, using the sum of interior angles,

$$x + (90 + y) + \angle AEB = 180$$

$$90 + (x + y) + \angle AEB = 180$$

$$90 + 45 + \angle AEB = 180$$
 (from above)

$$45 + \angle AEB = 90$$

$$\angle AEB = 45^{\circ}$$
 (as required)

11. Since $\triangle PQR$ is isosceles, then $\angle PRQ = \angle PQR = 2x^{\circ}$. Since $\angle PRQ$ and $\angle SRT$ are opposite angles, then $\angle SRT = \angle PRQ = 2x^{\circ}$. Since $\triangle RST$ is isosceles with RS = RT, then

$$\angle RST = \frac{1}{2} (180^\circ - \angle SRT)$$
$$= \frac{1}{2} (180^\circ - 2x^\circ)$$
$$= (90 - x)^\circ$$

12. Since PQ = PR and QS = QR, we can label the diagram as shown.

Note that $\angle SPR = 180 - 2y$. Using $\triangle SPR$, we see the angle sum gives us

$$180 = \angle SPR + \angle PSR + \angle PRS$$

$$180 = (180 - 2y) + x + (x + y)$$

$$180 = 180 - y + 2x$$

$$y = 2x$$

So $\angle PRS = x + y = x + 2x = 3x = 3(\angle QSR)$ as required.

13. Since ∠TQP and ∠RQU are opposite angles, then ∠RQU = ∠TQP = x°. Similarly, ∠QRU = ∠VRS = y°. Since the angles in a triangle add to 180°, then ∠QUR = 180° - ∠RQU - ∠QRU = 180° - x° - y°. Now, ∠WQP and ∠WQR are supplementary, as they lie along a line. Thus, ∠WQR = 180° - ∠WQP = 180° - 2x°. Similarly, ∠WRQ = 180° - ∠WRS = 180° - 2y°. Since the angles in △WQR add to 180°, then

$$38^{\circ} + (180^{\circ} - x^{\circ}) + (180^{\circ} - 2y^{\circ}) = 180$$
$$218^{\circ} = 2x^{\circ} + 2y^{\circ}$$
$$x^{\circ} + y^{\circ} = 109^{\circ}$$

Finally, $\angle QUR = 180^{\circ} - x^{\circ} - y^{\circ} = 180^{\circ} - (x^{\circ} + y^{\circ}) = 180^{\circ} - 109^{\circ} = 71^{\circ}.$

14. Since points Y, W and Q form a straight line segment, then $\angle YWV = 180^{\circ} - \angle VWQ$ and so $\angle YWV = 180^{\circ} - 125^{\circ} = 55^{\circ}$.

Since Q' is the final position of Q after folding, then $\angle Q'WV = \angle QWV$.

Thus, $\angle Q'WV = \angle QWV = 125^{\circ}$ and so $\angle Q'WY = \angle Q'WV - \angle YWN = 125^{\circ} - 55^{\circ} = 70^{\circ}$.

Since Q'W and R'Y are parallel sides of the piece of paper, then $\angle R'YW + \angle Q'WY = 180^{\circ}$, and so $\angle R'YW = 180^{\circ} - \angle Q'WY = 180^{\circ} - 70^{\circ} = 110^{\circ}$. Finally, $\angle PYV$ is opposite $\angle R'YW$ so $\angle PYV = \angle R'YW = 110^{\circ}$. 15. If the diagonals bisect each other the we need to show AE = EC and BE = ED. Here is the parallelogram with certain angles marked.

In $\triangle AEB$ and $\triangle CED$

 $\angle EAB = \angle ECD$ (alternate angles) AB = CD (property of a parallelogram) $\angle EBA = \angle EDC$ (alternate angles)

Therefore, $\triangle AEB \cong \triangle CED$ (ASA congruency)

Therefore:

AE = EC (corresponding sides of congruent triangles) BE = ED (corresponding sides of congruent triangles) Therefore the diagonals bisect each other.