Grade 9/10 Math Circles

February 23, 2022
Linear Diophantine Equations Part 2 - Problem Set

1. This problem will step you through determining all non-negative solutions to the linear Diophantine equation $12 x+57 y=423$.
(a) Use the Euclidean Algorithm to calculate gcd $(12,57)$.
(b) Using part (a), determine a solution to $12 x+57 y=3$.
(c) Using part (b), determine a solution to $12 x+57 y=423$.
(d) Using part (c), determine all solutions to $12 x+57 y=423$.
(e) Using your answer in part (d), determine all solutions to $12 x+57 y=423$ with $x \geq 0$ and $y \geq 0$. That is, determine all non-negative solutions to the linear Diophantine equation $12 x+57 y=423$.
2. Explain why there is no solution to the linear Diophantine equation from Exercise 2,

$$
4182 x+3689 y=102
$$

with $x \geq 0$ and $y \geq 0$.
3. Determine all possible ways that 1000 can be expressed as the sum of two positive integers, one which is divisible by 11 and the other by 17 .
4. At a museum, an adult ticket costs $\$ 34$ and a student ticket costs $\$ 28$. A group visiting the museum spends exactly $\$ 844$ on tickets. Determine all possible combinations for the number of adult and student tickets they could have purchased.
5. Find the smallest positive integer x so that $157 x$ leaves remainder 10 when divided by 24 .
6. Determine the number of ways you can make exactly $\$ 200$ using exactly 1000 coins if each coin is a quarter, a dime, or a nickel.
7. Let a, b, and c be positive integers and consider the linear Diophantine equation $a x+b y=c$. Show that the number of non-negative integer solutions to this equation cannot exceed $\frac{c}{a}$ or $\frac{c}{b}$.

