CEMC.UWATERLOO.CA | The CENTRE for EDUCATION in MATHEMATICS and COMPUTING

Grade 6 Math Circles November 8/9/10, 2022 Introduction to Set Theory - Problem Set

- 1. Rewrite these set definitions by listing the elements in the set.
 - (a) $A = \{x \mid x \text{ is an upper-case letter}\}.$
 - (b) $B = \{x \mid x \text{ is a Canadian province or territory}\}.$
 - (c) $C = \{x \mid x \text{ is an odd positive integer}\}.$
 - (d) $D = \{x \mid x \text{ is a prime number greater than } 2\}.$
 - (e) $E = \{x \mid x \text{ is a negative number greater than } 0\}.$
 - (f) $F = \{x \mid x \text{ is the empty set}\}.$
- 2. Let $U = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$ be the universal set.

Let $A = \{0, 1, 2, 8, 9\}$ and $B = \{1, 3, 5, 7, 9\}$. Find the following sets by listing all the elements.

- (a) $A \cup B$
- (b) $A \cap B$
- (c) A^C
- (d) B^C
- (e) $A \setminus B$
- (f) $B \setminus A$
- (g) $(A \cup B)^C$

3. Let $A = \{x \mid x \text{ is a real number greater than } 0\}$.

Let $B = \{x \mid x \text{ is a real number less than or equal to } 7\}.$

Write the set definitions of the following set by using the elementhood test.

- (a) $A \cap B$
- (b) $A \cup B$
- (c) $B \cap \mathbb{Z}$
- (d) $A \cup \mathbb{N}$

CEMC.UWATERLOO.CA | The CENTRE for EDUCATION in MATHEMATICS and COMPUTING

- 4. Find the cardinality of the following sets
 - (a) $\{101, 102, 103, 104\}$
 - (b) $\{ dog, cat \}$
 - (c) $\{\{a,b\},b,\{a,b,c\}\}$
 - (d) $\{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}$
 - (e) $\{x \in \mathbb{N} \mid x \leq 10\}$ (or $\{x \mid x \text{ is a natural number less than or equal to } 10\}$)
 - (f) $\{x \mid x \in \mathbb{W} \setminus \mathbb{N}\}$
 - (g) $\{x \mid x \text{ is a prime number}\} \cap \{x \mid x \text{ is an even positive integer}\}$
 - (h) $\mathbb{Q} \cap \emptyset$

5. Let A and B represent sets.

- (a) Is it always the case that $(A \cap B) \subseteq (A \cup B)$? Why or why not?
- (b) Is it always the case that $(A \cup B) \subseteq (A \cap B)$? Why or why not?
- (c) If you have $(A \cap B) \subseteq (A \cup B)$ and $(A \cup B) \subseteq (A \cap B)$, what do you know about the two sets A and B?
- 6. Let A and B represent sets.
 - (a) Is it always the case that $(A \setminus B) \subseteq (A \cap B^C)$? Why or why not?
 - (b) Is it always the case that $(A \cap B^C) \subseteq (A \setminus B)$? Why or why not?
 - (c) What can you conclude from (a) and (b)?
- 7. Let A and B represent sets.
 - (a) Is it always the case that $((A \cup B) \setminus B) \subseteq A$? Why or why not?
 - (b) Give an example of two sets A and B for which $(A \cup B) \setminus B \neq A$.

8. Below is the Venn diagram for 2 sets, A and B. Notice that the overlapping part is the intersection of A and B. Think about what part of the diagram represents the union of A and B.

Below is the Venn diagram for 3 sets, A, B, and C. Notice $A \cap B \cap C$ is marked where three circles (sets) are overlapping. Think about what parts of the diagram represent $(A \cap B), (B \cap C), (A \cup C), (A \cup B), (B \cup C), (A \cup C), (A \cup B \cup C)$, etc.

Now, do you think it is possible to draw a Venn diagram for 4 sets, A, B, C, and D? If so, how?

9. Introduction to Power Set

Power Set

Given a set A, we define the **power set** of A to be the set

$$\mathbb{P}(A) = \{ X \mid X \subseteq A \}.$$

In words, the power set of A, $\mathbb{P}(A)$, is a collection of all subsets of A including \emptyset and A itself.

Let $A = \{0, 1\}, B = \{0, 1, 2\}$, and $C = \{0, 1, 2, 3\}$.

- (a) Find $\mathbb{P}(A)$, $\mathbb{P}(B)$, and $\mathbb{P}(C)$.
- (b) Find the cardinality of A, B, and C.
- (c) Find the cardinality of $\mathbb{P}(A)$, $\mathbb{P}(B)$, and $\mathbb{P}(C)$.
- (d) What observation can you make with what you have found in (b) and (c)?