Problem of the Week
Problem D and Solution
Shady Square
Problem
Rectangle \(STUV\) has square \(PQRS\) removed, leaving an area of \(92\mbox{ m}^2\).
Side \(PT\) is \(4\mbox{ m}\) in length and side \(RV\) is \(8\mbox{ m}\) in length.
What is the area of rectangle \(STUV\)?
Solution
Let \(x\) represent the side length of square \(PQRS\). In the diagram, extend \(RQ\) to intersect \(TU\) at \(W\). This creates rectangle \(PTWQ\) and rectangle \(RWUV\). Then \(UV=PT+SP=(4+x)\) m and \(TW=RS=x\) m.
\[\begin{aligned} \mbox{Area }PTWQ+\mbox{Area }RWUV&=\mbox{Remaining Area}\\ PT\times TW+RV\times UV&=92\\ 4x+8(4+x)&=92\\ 4x+32+8x&=92\\ 12x+32&=92\\ 12x&=60\\ x&=5\mbox{ m}\end{aligned}\]
Since \(x=5\) m, \(SV=8+x=13\) m and \(UV=4+x=9\) m.
Therefore, the original area of rectangle \(STUV\) is \(SV\times UV=13\times 9=117\mbox{ m}^2\).