Problem of the Month
Problem 4: January 2024

Hint

(a) Any list that compresses [1 : 9] must contain 1. Think about the largest possible number of integers in \(f(A) \) when \(A \) is a list of length \(k \).

(b) First, try to find a list that compresses [1 : 63] that is as short as possible. It might help to read about the binary representation of positive integers.

(c) Work out a few more examples like the one in (b). It is possible to compress [1 : \(n \)] using a list \(A \) that consists entirely or almost entirely of powers of 2.

(d) For \(k \geq 3 \) and \(m \geq 2 \), if \(A \) compresses \([m : m + k - 1]\), then \(A \) must contain \(m \) and \(m + 1 \).

(e) The answer is 39. Do not worry about trying to compress [5 : \(k \)] using as short a list as possible. As well, inductive thinking could be useful here. Suppose you can show that there is some \(k \) with the property that [5 : \(k \)], [5 : \(k + 1 \)], [5 : \(k + 2 \)], [5 : \(k + 3 \)], and [5 : \(k + 4 \)] are all compressible. Can you deduce that [5 : \(n \)] is compressible for all \(n \geq k \)?