Problem of the Month

Problem 7: April 2024

Curves in the plane are often given as the set of points (x, y) that satisfy some equation in x and y. For example, the set of points (x, y) that satisfy $y=x^{2}$ is a parabola, the set of points (x, y) that satisfy $y=3 x+4$ is a line, and the set of points (x, y) that satisfy $x^{2}+y^{2}=1$ is the circle of radius 1 centred at the origin.

Another way to express a curve in the plane is using parametric equations. With this type of description, we introduce a third variable, t, called the parameter, and each of x and y is given as a function of t. This is useful for describing the position of a point that is moving around the plane. For example, imagine that an ant is crawling around the plane. If its x-coordinate at time t is $x=x(t)$ and its y-coordinate at time t is $y(t)$, then its position at time t is $(x(t), y(t))$.
(a) A particle's position at time t is $(x, y)=(1+t,-2+2 t)$. That is, its x-coordinate at time t is $1+t$ and its y-coordinate at time t is $-2+2 t$.
(i) Plot the position of the particle at $t=0,1,2,3$, and 4 .
(ii) Show that every position the particle occupies is on the line with equation $y=2 x-4$.
(iii) Sketch the path of the particle from $t=0$ through $t=4$.
(b) A particle's position at time t is $(\cos (t), \sin (t))$. Sketch the path of the particle from $t=0$ through $t=2 \pi$.
(c) A particle's position at time t is $(\cos (t), \sin (2 t))$.
(i) Plot the position of the particle at $t=\frac{k \pi}{12}$ for the integers $k=0$ through $k=24$. Sketch the path of the particle from $t=0$ through $t=2 \pi$.
(ii) Show that every position the particle occupies is on the curve with equation $y^{2}=4 x^{2}-4 x^{4}$.
(d) Circle 1 is centred at the origin, Circle 2 is centred at (2,0), and both circles have radius 1 . The circles are tangent at $(1,0)$. Circle 2 is "rolled" in the counterclockwise direction along the outside of the circumference of Circle 1 without slipping. The point on Circle 2 that was originally at $(1,0)$ (the point of tangency) follows a curve in the plane. Find functions $x(t)$ and $y(t)$ so that the points on this curve are $(x(t), y(t))$ for $0 \leq t \leq 2 \pi$.

(e) The setup in this problem is similar to (d). Circle 1 is centred at the origin and has radius 2 and Circle 2 is centred at $(1,0)$ and has radius 1 so that the two circles are tangent at $(2,0)$. Circle 2 is rolled around the inside of the circumference of Circle 1 in the counterclockwise direction. Describe the curve in the plane followed by the point on Circle 2 that is initially at $(2,0)$.

(f) Circle 1 is centred at the origin and has radius 1 . Circle 2 has radius $r<1$, is inside Circle 1, and the two circles are initially tangent at $(1,0)$. When Circle 2 is rolled around the inside of Circle 1 in the counterclockwise direction, the point on Circle 2 that was initially at $(1,0)$ will follow some curve in the plane.
(i) Show that when $r=\frac{1}{4}$, the points on the curve satisfy the equation $(\sqrt[3]{x})^{2}+(\sqrt[3]{y})^{2}=1$.
(ii) Show that the curves for $r=\frac{1}{3}$ and $r=\frac{2}{3}$ are exactly the same and that the point initially at $(1,0)$ travels this curve in opposite directions for the two radii.

