Problem of the Week
Problem E and Solution
A Tale of Two Cities

Problem

Two cities, Mytown and Yourtown, had the same population at the end 2015. The population of Mytown decreased by 2.5% from the end of 2015 to the end of 2016. Then, the population increased by 8.4% from the end of 2016 to the end of 2017. The population of Yourtown increased by \(r \%), \(r > 0 \), from the end of 2015 to the end of 2016. Then, the population of Yourtown increased by \((r + 2)\% \) from the end of 2016 to the end of 2017. Surprisingly, the populations of both cities were the same again at the end of 2017. Determine the value of \(r \) correct to one decimal place.

Solution

Let \(p \) be the population of Mytown at the end of 2015. Since Mytown and Yourtown have the same population size, then \(p \) is also the population of Yourtown at the end of 2015.

The population of Mytown decreased by 2.5% in 2016, so the population at the end of 2016 is
\[
p - \frac{2.5}{100}p = \left(1 - \frac{2.5}{100}\right)p = 0.975p.
\]

The population of Mytown then increased by 8.4% during 2017, so the population at the end of 2017 is
\[
0.975p + \left(\frac{8.4}{100}\right)(0.975p) = \left(1 + \frac{8.4}{100}\right)(0.975p) = 1.084(0.975p) = 1.0569p.
\]

The population of Yourtown increased by \(r\% \) in 2016, so the population at the end of 2016 is
\[
p + \frac{r}{100}p = \left(1 + \frac{r}{100}\right)p.
\]

The population of Yourtown then increased by \((r + 2)\% \) during 2017, so the population at the end of 2017 is
\[
\left(1 + \frac{r}{100}\right)p + \frac{r + 2}{100}\left(1 + \frac{r}{100}\right)p = \left(1 + \frac{r}{100}\right)p\left(1 + \frac{r + 2}{100}\right).
\]

Since the populations of Mytown and Yourtown are equal at the end of 2017, we have
\[
\left(1 + \frac{r}{100}\right)\left(1 + \frac{r + 2}{100}\right)p = 1.0569p
\]
\[
\left(\frac{100 + r}{100}\right)\left(\frac{100 + r + 2}{100}\right) = 1.0569, \quad \text{dividing both sides by} \ p, \ \text{since} \ p > 0
\]
\[
(100 + r)(102 + r) = 10569, \quad \text{multiplying both sides by} \ 10000 \ \text{to clear fractions}
\]
\[
10200 + 202r + r^2 = 10569
\]
\[
r^2 + 202r - 369 = 0
\]

After using the quadratic formula and ruling out an inadmissible \(r \) value, we obtain \(r = 1.8\% \), correct to one decimal place.