Problem of the Week
Problem E and Solution
Check Your Units

Problem
The sum of the first n positive integers is $1 + 2 + 3 + \ldots + n$. We define a_n to be the units digit of the sum of the first n positive integers.

Determine the smallest value of n such that $a_1 + a_2 + a_3 + \ldots + a_n \geq 2019$.

Solution
Let’s start by examining the values of a_n until we start to see a pattern.

\[
\begin{align*}
a_1 &= 1 \\
a_2 &= 3, \text{ since } 1 + 2 = 3 \\
a_3 &= 6, \text{ since } 1 + 2 + 3 = 6 \\
a_4 &= 0, \text{ since } 1 + 2 + 3 + 4 = 10 \\
a_5 &= 5, \text{ since } 10 + 5 = 15 \\
a_6 &= 1, \text{ since } 15 + 6 = 21 \\
\end{align*}
\]

Unfortunately, we do not have a pattern yet. Since $21 + 7 = 28$, $a_7 = 8$. We need to keep calculating values of a_n.

Notice that we can determine the units digit of the sum of the first n integers from the units digit from the sum of the first $n - 1$ integers and the units digit of n. For example, to calculate a_7, we simply need to know that $a_6 = 1$ and the sum $1 + 7 = 8$ has units digit 8.

\[
\begin{align*}
a_7 &= 8 \\
a_8 &= 6, \text{ since } a_7 + 8 = 16 \\
a_9 &= 5, \text{ since } a_8 + 9 = 15 \\
a_{10} &= 5, \text{ since } a_9 + 0 = 5 \\
a_{11} &= 6, \text{ since } a_{10} + 1 = 6 \\
a_{12} &= 8, \text{ since } a_{11} + 2 = 8 \\
a_{13} &= 1, \text{ since } a_{12} + 3 = 11 \\
a_{14} &= 5, \text{ since } a_{13} + 4 = 5 \\
a_{15} &= 0, \text{ since } a_{14} + 5 = 10 \\
a_{16} &= 6, \text{ since } a_{15} + 6 = 6 \\
a_{17} &= 3, \text{ since } a_{16} + 7 = 13 \\
a_{18} &= 1, \text{ since } a_{17} + 8 = 11 \\
a_{19} &= 0, \text{ since } a_{18} + 9 = 10 \\
a_{20} &= 0, \text{ since } a_{19} + 0 = 0 \\
a_{21} &= 1, \text{ since } a_{20} + 1 = 1 \\
\end{align*}
\]
The values of a_n should repeat now. Can you see why?

Since $a_{21} = a_1$ and the units digit of 22 equals the units digit of 2, $a_{22} = a_2$. Similarly, since $a_{22} = a_2$ and the units digit of 23 equals the units digit of 3, $a_{23} = a_3$. We will also have $a_{24} = a_4$, and so on.

Therefore, the values of a_n will repeat every 20 values of n.

We can calculate

$$a_1 + a_2 + a_3 + a_4 + a_5 + a_6 + a_7 + a_8 + a_9 + a_{10} + a_{11} + a_{12} + a_{13} + a_{14} + a_{15} + a_{16} + a_{17} + a_{18} + a_{19} + a_{20} = 1 + 3 + 6 + 0 + 5 + 1 + 8 + 6 + 5 + 5 + 6 + 8 + 1 + 5 + 0 + 6 + 3 + 1 + 0 + 0 = 70$$

Since the values of a_n repeat every 20 values of n, it is also true that

$$a_{21} + a_{22} + a_{23} + \ldots + a_{39} + a_{40} = 70$$,

and

$$a_{41} + a_{42} + a_{43} + \ldots + a_{59} + a_{60} = 70$$, and so on.

Since $\frac{2019}{70} = 28 \frac{59}{70}$, there are 28 complete cycles of the 20 repeating values of a_n.

Therefore, the sum of the first $28 \times 20 = 560$ values of a_n sum to $28 \times 70 = 1960$. In other words, $a_1 + a_2 + a_3 + \ldots + a_{559} + a_{560} = 1960$.

Let’s keep adding values of a_n until we reach 2019.

$$a_{561} + a_{562} + a_{563} + a_{564} + a_{565} + a_{566} + a_{567} + a_{568} + a_{569} + a_{570}$$

$$= a_1 + a_2 + a_3 + a_4 + a_5 + a_6 + a_7 + a_8 + a_9 + a_{10}$$

$$= 1 + 3 + 6 + 0 + 5 + 1 + 8 + 6 + 5 + 5 = 40.$$

Therefore, $a_1 + a_2 + a_3 \ldots a_{569} + a_{570} = 1960 + 40 = 2000$.

$$a_{571} = a_{11} = 6, a_{572} = a_{12} = 8, a_{573} = a_{13} = 1$$ and $a_{574} = a_{14} = 5$.

Now,

$$a_1 + a_2 + a_3 + \ldots + a_{569} + a_{570} + a_{571} + a_{572} + a_{573} = 2000 + 6 + 8 + 1 = 2015 \leq 2019$$.

and

$$a_1 + a_2 + a_3 + \ldots + a_{569} + a_{570} + a_{571} + a_{572} + a_{573} + a_{574} = 2015 + 5 = 2020 \geq 2019.$$

Therefore, the smallest value of n such that $a_1 + a_2 + a_3 + \ldots + a_n \geq 2019$ is $n = 574$.
